Traffic Safety Improvement Program

Applications for
 Site Specific FY 2017

Received August 15, 2015

Site Specific FY 2017				
Page No.	Applicant	Title/Subject	\$ \$ \$	
			Project	Request
5	Iowa DOT Traffic and Safety	Low-cost safety improvements on county roads	\$500,000	\$500,000
9	Iowa DOT District 1	Intersection of Oralabor Rd \& Delaware Ave in Ankeny	\$3,217,300	\$500,000
45	City of Des Moines	42nd St Streetscape	\$1,696,300	\$500,000
89	City of Des Moines	Martin Luther King Jr Parkway \& Prospect Road Signal	\$290,000	\$120,000
116	City of Des Moines	Upgrading the traffic signal operation at 25 existing intersections that currently operate as fixed-time signals	\$660,000	\$120,000
164	City of Urbandale	142nd St and Douglas Ave	\$502,000	\$500,000
201	City of Ames	South Duff Avenue Traffic Signal	\$450,000	\$450,000
213	Webster County	P59 approx. 2 miles north of the City of Fort Dodge	\$190,000	\$190,000
232	City of Cedar Falls	University Ave and Cedar Heights Drive intersection	\$2,100,000	\$500,000
260	City of Waterloo	Systemic Traffic Safety Improvements on 5th and 6th Streets	\$484,000	\$484,000
281	Cherokee County	480th Street extension/paving	\$2,190,000	\$750,000
290	Clay County \& City of Spencer	West 4th St/Co Rd B-24	\$620,000	\$500,000
313	Crawford Count	Intersection with US 30 on the north end south and east to the intersection with E53	\$1,734,740	\$500,000
384	Plymouth County	C-60 reconstruction from C-66 west 3.25 miles	\$1,740,000.00	\$50,000

Site Specific
 (Continued)

PageNo.	Applicant	Title/Subject	\$ \$ \$	
			Project	Request
418	Montgomery County	H34 East Pavement Widening	\$695,644	\$400,000
423	City of Ottumwa	S Marion St and 2nd St W	\$223,700	\$223,700
462	Washington County	W61 from G36 (220th St) to G26 (190th St)	\$2,039,026	\$500,000
481	Buchanan County	Otterville blacktop shoulders	\$1,160,000	\$500,000
493	City of DeWitt	Intersection of 11th St., Maynard Way and Casey's General Store business driveway	\$445,700	\$300,000
618	City of Clinton	13th Ave N corridor from N 4th St to N 2nd St	\$200,000	\$200,000
671	City of Dubuque	Northwest Arterial and Pennsylvania Ave Intersection	\$415,005.13	\$364,005.13
691	RPA 8	US 52 from Dubuque/Jackson Co line to the northern city limits of Bellevue	\$1,800,000	\$500,000
705	Iowa DOT District 6	US 151/IA 13/US 30 Ramp D	\$450,000	\$450,000
722	City of Cedar Rapids	Kirkwood Blvd SW \& CCSD South Access Drive	\$636,780	\$500,000
746	Iowa DOT District 6	US 61 Turn Lanes at Coonhunter's Road	\$170,000	\$170,000
771	Iowa DOT District 6	US 61 paved shoulders - Blue Grass to Davenport	\$1,500,000	\$500,000
	Totals	26 Projects	\$ 26,110,196	\$ 10,271,705

Statewide

CIOWADOT

Application for TRAFFIC SAFETY FUNDS

GENERAL INFORMATION
DATE: 8/13/15

Location / Title of Project Low-Cost Safety Improvements on County Roads
Applicant Iowa DOT Office of Traffic and Safety
Contact Person Chris Poole
Title Safety Programs Engineer
Complete Mailing Address 800 Lincoln Way
Ames, IA 50010

Phone
(515) 239-1267

E-Mail chris.poole@dot.iowa.gov

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \qquad
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone
E-Mail \qquad
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

Application Type

Site Specific	$\boxed{ }$
Traffic Control Device	\square
Safety Study	\square

Funding Amount

Total Project Cost
\$ 500,000
Safety Funds Requested
\$ 500,000

A. Application Certification: Not applicable

B. Narrative:

Local and national research indicates that a high portion of run-off-the-road crashes occur on two lane roadways, and that many of those crashes can be mitigated through the application of low-cost, systemic-type safety improvements. Such improvements include edgeline rumble strips, centerline rumble strips, enhanced pavement markings, lighting, and signage. These strategies are designed to increase driver awareness of the roadway environment, and decrease the risk of motorists departing the roadway.

These funds will be used by the lowa DOT's Office of Traffic and Safety to provide matching funds for county projects utilizing the Department's HSIP-Secondary program. The percentage of the match may vary depending on project type, but will not exceed 10 percent. HSIP-Secondary projects must incorporate low-cost, systemic-type safety improvements, with per-mile costs in the range of $\$ 2,000$ to $\$ 10,000$. Projects are selected based on potential impact on safety, with a focus on reducing lane departure crashes.
C. Cost: $\$ 500,000$
D. Schedule: July 1, 2016 through June 30, 2017
E. Map: N/A
F. Pictures of the Site: N/A
G. Plan View: N/A
H. Aerial Photograph: N/A
I. Crash Reports: To be determined.
J. Traffic Volumes: To be determined.
K. Traffic Signal Information: N/A
L. B/C Ratio: Example attached.

Edgeline - Centerline County Program Benefit Cost Sheet Example

Surface:	Paved Federal Aid
Routes:	
F(x) Class:	All

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{County Information} \& \multicolumn{3}{|c|}{Benefit/Cost Information}

\hline County \& Mileage

(miles) \& \begin{tabular}{l}
Percent of Total County Mileage

(\%)

 \&

Percent of Total Paved Mileage

(\%)

 \&

Percent of Total Federal Aid Mileage

(\%)
\end{tabular} \& AADT

(veh/day) \& Present Value of Avoided Crashes

\qquad (s) \& | Present |
| :--- |
| Value of Project Costs (s) | \& Benefit Cost Ratio

\hline Black Hawk \& 123.410 \& 15.85\% \& 51.19\% \& 97.72\% \& 1201.2 \& \$ 2,344,092 \& \$ 740,460 \& 3.17

\hline Bremer \& 96.223 \& 13.46\% \& 70.80\% \& 100.00\% \& 944.6 \& \$ 945,968 \& \$ 577,338 \& 1.64

\hline Buchanan \& 182.076 \& 19.02\% \& 90.47\% \& 99.30\% \& 796.9 \& \$ 3,323,771 \& \$ 1,092,456 \& 3.04

\hline Butler \& 138.469 \& 14.36\% \& 67.10\% \& 95.12\% \& 526.1 \& \$ 2,641,127 \& \$ 830,814 \& 3.18

\hline Chickasaw \& 125.514 \& 14.74\% \& 85.15\% \& 95.30\% \& 603.8 \& \$ 1,938,855 \& \$ 753,084 \& 2.57

\hline Grundy \& 136.703 \& 16.38\% \& 69.45\% \& 97.83\% \& 745.1 \& \$ 3,287,458 \& \$ 820,218 \& 4.01

\hline 6 County Average \& 133.733 \& 15.63\% \& 72.36\% \& 97.55\% \& 802.9 \& \$2,413,545 \& \$802,395 \& 2.94

\hline
\end{tabular}

District 1

Application for TRAFFIC SAFETY FUNDS

GENERAL INFORMATION

Location / Title of Project Intersection of Oralabor Rd \& Delaware Ave in Ankeny

Phone
E-Mail gary.kretlowjr@dot.iowa.gov

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \qquad
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone \qquad E-Mail \qquad
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type

Site Specific	$\boxed{ }$
Traffic Control Device	\square
Safety Study	\square

Funding Amount

Total Project Cost
Safety Funds Requested
\$ 3,217,300
\$ 500,000

FINAL PROJECT CONCEPT STATEMENT

SE Delaware Avenue and IA 160 (SE Oralabor Road)
Polk County
Proj.\# NHSN-160-1-1(12)--2R-77
Maint. No. 7702.4S160
FHWA No. 41781
Prepared by Foth Infrastructure \& Environment for the City of Ankeny and the Iowa Department of Transportation District 1

May 11, 2015

I. STUDY AREA

A. Project Description

The project consists of a traffic study and conceptual development of improvements at the intersection of SE Delaware Avenue and IA 160 (SE Oralabor Road) and along IA 160 (SE Oralabor Road) from SE Peachtree Drive to SE Creekview Drive in the City of Ankeny. The traffic study limits along IA 160 begin at SE Peachtree Drive and extend east to SE Creekview Drive. The study limits along SE Delaware Avenue begin at the signalized entrance to Mills Fleet Farm and extend north to SE Lorenz Drive. The project includes collecting existing traffic data for the study corridor, existing traffic capacity analyses, proposing intersection improvement alternatives, preparing a traffic study report, selecting the preferred alternatives, developing a concept statement, preparing an interchange operations report and recommending funding sources.

B. Need for Project

The City of Ankeny and the Iowa DOT requested a traffic impact study of the intersection of SE Delaware Avenue and SE Oralabor Road to address long traffic queues and lengthy delays at the signalized intersection. The traffic queues and delays occurring for the southbound SE Delaware Ave to eastbound IA 160 and the northbound I-35 exit to westbound IA 160 were identified as the most problematic. The study area for the project extends along SE Delaware Avenue from SE Lorenz Drive south to the Mills Fleet Farm traffic signal and along IA 160 from SE Peachtree Drive east to SE Creekview Drive. The study area includes the I-35 interchange ramp terminals. The traffic study was conducted to account for both the existing traffic volumes and the projected traffic growth along the corridor. The purpose of the study was to identify both near term and future improvements to the existing intersection configuration and traffic signal timing improvements or modifications within the corridor. The near term improvements would be based on the I-35 interchange remaining as currently constructed, while the future improvements would consider future reconstruction of the interchange.

C. Present Facility

IA 160 (SE Oralabor Road) in the project area is a $4 / 5$ lane urban facility with $53^{\prime} / 69^{\prime}$ wide PCC pavement with curb and gutter. A 10^{\prime} wide bike trail exists along the south side of IA 160 , from U.S. Highway 69 east to SE Delaware Avenue. A 4' sidewalk is present along the north side of IA 160 from the approximately 300' west of SE Rio Drive to SE Delaware Avenue. IA 160 was re-constructed from a 2-lane rural facility to a 4-lane urban facility in 1986. IA 160 was widened in 1997 from a 4-lane facility to a 5-lane facility from just west of SE Hulsizer Drive to just east of SE Delaware Avenue. Additional widening on IA 160 from a 4-lane to 5-lane facility was completed in 2012 from just east of U.S. Highway 69 to just east of SE Peachtree Drive.

The existing structure carrying IA 160 traffic over Interstate 35 is a $253^{\prime} \times 68^{\prime}$ prestressed concrete beam bridge constructed in 1986.

SE Delaware Avenue is a 5-lane urban facility with 79' wide PCC pavement with curb and gutter.

D. Traffic Estimates

The current year (2012) and design year (2025) average daily traffic estimates for IA 160 are $28,200 \mathrm{ADT}$ with 3% trucks and $34,700 \mathrm{ADT}$ with 3% trucks, respectively. The current year (2012) and design year (2025) average daily traffic estimates for SE Delaware Avenue are 24,200 ADT with 2% trucks and 32,800 ADT with 2% trucks, respectively.

E. Sufficiency Rating

IA 160 is classified as a principal arterial and is a maintenance service level " B " road with a sufficiency rating of 53 . The federal bridge sufficiency rating for the I-35 overpass is 66 .

F. Access Control

Access rights will not be required for this project. In general, along both IA 160 and SE Delaware Avenue full accesses currently exist at 600 ' spacing and right-in / right-out accesses are established at 300 'spacing.

G. Crash History

During the five-year study period from 2007 through 2012, there were 35 crashes reported at this intersection. A total of 316 crashes were reported along IA 160 within the traffic study corridor. No fatalities were reported within the study period.

II. PROJECT CONCEPT

A. Feasible Alternates

Alternative \#1

Alternative \#1 includes widening of IA 160 to provide the following:
An additional lane from IA 160 to enter the I-35 Southbound Entrance Ramp, creating a dedicated right turn lane and a shared thru-right lane onto the I-35 Southbound Entrance Ramp.

Dual westbound right turn lanes, dual westbound left turn lanes, dual eastbound left turn lanes, dual northbound left turn lanes and a single northbound right turn lane at the intersection of IA 160 and SE Delaware Avenue.

A single left turn lane for both westbound and eastbound IA 160 at both the I-35 Southbound Ramp and I-35 Northbound Entrance Ramp.

Installation of new traffic signals will be necessary at the intersection of IA 160 and SE Delaware Avenue, the intersection of IA 160 and the I-35 southbound ramp terminals, and the intersection of IA 160 and the $\mathrm{I}-35$ northbound ramp terminals.

Refer to attached sheets A1.1-A1.4 for Alternative \#1 details.
The existing Right-of-Way widths are generally 140^{\prime} west of SE Hulsizer Drive and 160^{\prime} east of SE Hulsizer Drive along IA 160 . The Right-of-Way width is 120 ' along SE Delaware Avenue. Permanent Right-of-Way is anticipated in the SE quadrant of the IA 160 and SE Delaware Avenue intersection for the proposed traffic signal and pedestrian ramp.

Traffic will be maintained via staging. It is anticipated that lane closures will be limited to nonpeak hours whenever possible to reduce traffic delays.

Road Item

Estimated Cost

Excavation \$102,750
Removal of pavement $\$ 24,000$
Modified subbase $\$ 83,250$
PCC Pavement, 9 in. $\$ 691,250$
PCC median, 6 in. $\$ 85,000$
Storm Sewer Structures $\$ 31,500$
Storm Sewer $\$ 11,250$
Guardrail, Steel Beam $\$ 12,000$
Sidewalk, PCC $\$ 6,000$
Traffic Signals $\$ 750,000$

Erosion Control	$\$ 7,500$
Traffic Control	$\$ 75,000$
Mobilization	$\$ 150,000$
Misc. \& Contingency @ 30%	$\$ 608,900$
Right-of-Way	$\$ 21,000$
Road Total	$\$ 2,659,400$
Bridge Item	Estimated Cost
Bridge Approach Pavement	$\$ 218,000$
Bridge Approach Barrier	$\$ 14,000$
Bridge End Drains	$\$ 20,000$
Misc. \& Contingency @ 10\%	$\$ 25,200$
Bridge Total	$\$ 277, \mathbf{2 0 0}$
Total for Alternative \#1 Bridge and Road Items Combined	$\mathbf{\$ 2 , 9 3 6 , 6 0 0}$

Alternative \#2

This alternative is similar to Alternative \#1 with the addition of dual northbound right turn lanes and a single westbound right turn lane at the intersection of IA 160 and the I- 35 northbound ramp terminals. The northbound I-35 exit ramp will be widened to accommodate approximately 400' of a two-lane ramp section in advance of the dedicated turn lanes. The widening will require extending the inlet of an existing box culvert. Alternative \#2 will include the addition of dual southbound right turn lanes at the I-35 southbound ramp terminal. Refer to attached sheets A2.1A2.4 for Alternative \#2 details.

The existing Right-of-Way widths are generally 140^{\prime} west of SE Hulsizer Drive and 160^{\prime} east of SE Hulsizer Drive along IA 160. The Right-of-Way width is 120^{\prime} along SE Delaware Avenue. Permanent Right-of-Way is anticipated in the SE quadrant of the IA 160 and SE Delaware Avenue intersection for the proposed traffic signal and pedestrian ramp.

Traffic will be maintained via staging. It is anticipated that lane closures will be limited to nonpeak hours.

Road Item	Estimated Cost
Excavation	$\$ 120,000$
Removal of Pavement	$\$ 24,000$
Modified Subbase	$\$ 103,500$
PCC Pavement, 9 in.	$\$ 799,850$
PCC Median, 6 in.	$\$ 85,000$
Paved Shoulder	$\$ 27,500$
Storm Sewer Structures	$\$ 31,500$
Storm Sewer	$\$ 11,250$
Guardrail, Steel Beam	$\$ 12,000$
Sidewalk, PCC	$\$ 6,000$
Traffic Signals	$\$ 750,000$
Erosion Control	$\$ 7,500$
Traffic Control	$\$ 75,000$
Mobilization	$\$ 150,000$
Misc. \& Contingency @ 30\%	$\$ 661,000$

Right-of-Way	$\$ 21,000$
Road Total	$\mathbf{\$ 2 , 8 8 5 , 1 0 0}$

Bridge Item	Estimated Cost
RCB Culvert Extension	$\$ 50,000$
Bridge Approach Pavement	$\$ 218,000$
Bridge Approach Barrier	$\$ 14,000$
Bridge End Drains	$\$ 20,000$
Misc. \& Contingency @ 10\%	$\$ 30,200$
\quad Bridge Total	$\$ 332,200$
Total for Alternative \#2 Bridge and Road Items Combined	$\mathbf{\$ 3 , 2 1 7 , 3 0 0}$

B. Recommendations

Based on the similarity of the alternatives, it is recommended that Alternative \#2 be implemented to provide the maximum benefit for improving current traffic queues and delays within the study corridor. The additional cost associated with Alternative \#2 was considered necessary to add benefit in traffic operations at the interchange ramp intersections.

C. Construction Sequence

It is anticipated that all work on this project will be awarded to one prime contractor.

D. Pedestrian Facilities

Existing and proposed pedestrian facilities are present within the project limits. ADA accommodations will be included in the design and construction of the project.

E. Special Considerations

OLE has not reviewed the proposed alternatives to determine if a 404 permit would be required for either alternative. Wetland and stream mitigation is not anticipated for either proposed alternative.

Permanent Right-of-Way is anticipated for the proposed alternatives. Permanent Right-of-Way is anticipated in the SE and NE quadrants of the IA 160 and SE Delaware Avenue intersection for the proposed traffic signal and pedestrian ramp improvements. Temporary easements may be necessary for grading purposes and to tie existing driveways into the proposed widening. The temporary easements will be similar for each alternative.

Existing utilities in the area include overhead electric and underground communications lines within the existing Right-of-Way. Underground communication lines run along both the north and south sides of IA 160. Communication lines are also present along both the east and west sides of SE Delaware Avenue. The City of Ankeny has traffic signal interconnect fiber line located along the north side of IA 160 from SE Peachtree Drive east to just west of the I-35 northbound ramp terminals, where it crosses to the south side and continues to SE Creekview Drive. A major overhead electric line is present along the east side of SE Delaware Avenue.

The power pole located in the SE quadrant of the intersection of IA 160 and SE Delaware Avenue will be impacted by the widening project. Existing street lighting along the north side of 1 A 160 from SE Peachtree Drive east to SE Hulsizer Drive will also be impacted by the widening project. Impacts to existing utilities will be similar for each alternative.

F. Program Status

This project is not currently listed in the approved 2015-2019 Iowa Transportation Improvement Program. The Iowa DOT will apply for TSIP funding on behalf of the City of Ankeny. The City of Ankeny intends to apply for U-STEP and ICAAP funding. The TSIP, U-STEP, ICAAP, Iowa DOT FY2017-3R, and city funding sources will be used for the project's construction. The agreement between the Iowa DOT and the City of Ankeny will include the responsibility for project costs. In addition to the identified potential funding sources, the Iowa DOT will be responsible for Right-of-Way costs and construction phase services.

[^0]

Looking North along Delaware Avenue south of Oralabor Road (IA 160) from south entrance to Karl

Looking North along Delaware Avenue south of Oralabor Road (IA 160) from north entrance to Karl

Looking west along Oralabor Road (IA 160) toward Delaware Avenue

Looking East along Oralabor Road (IA 160) towards west side of I-35 interchange

Looking East along Oralabor Road (IA 160) towards east side of I-35 interchange

Looking south along the east side of Delaware Avenue towards Oralabor Road (IA 160)

Looking south along the west side of Delaware Avenue towards Oralabor Road (IA 160)

Looking east along Oralabor Road towards Delaware Avenue from south side of Oralabor Road

/17/2015 SYSTEMDATE m

Iowa Department of Transportation

Turning Movement Traffic Count Summary
Annualized Daily Traffic For All Vehicles

Raw Data-All Vehicles:

	N Leg			E Leg			S Leg			W Leg		
	L	T	R	L	T	R	L	T	R	L	T	R
07:00	560	252	59	101	643	395	57	95	52	71	541	72
08:00	395	194	78	71	473	338	68	128	43	104	417	79
11:00	379	269	154	92	358	499	98	255	95	251	368	74
12:00	519	434	212	90	391	570	120	297	60	276	404	66
15:00	430	243	135	105	415	502	95	227	85	196	451	67
16:00	558	277	163	127	559	636	128	308	104	194	629	71
17:00	541	276	163	124	571	739	118	310	99	277	597	69

Iowa Department of Transportation

Turning Movement Traffic Count Summary
Vehicle Type: Passenger Vehicles

Station Number: 77331701099			
Count Date: Tuesday, October 02, 2012			-
County: Polk			
Location Description:	LA 160		1 A 160
	4725 <		4-7408
Volume Factor: N/A	5012		-6966
Pass Class Factor: N/A SU Class Factor: N/A Combo Class Factor: N/A			

Raw Data-Passenger Vehicles:

	N Leg			ELeg			S Leg			W Leg		
	L	T	R	L	T	R	L	T	R	L	T	R
07:00	544	243	55	93	610	385	46	87	46	65	512	69
08:00	358	177	72	69	424	321	60	113	37	97	393	71
11:00	359	261	149	84	313	489	90	244	84	246	342	65
12:00	500	419	208	83	354	547	111	289	55	265	380	60
15:00	411	231	133	96	383	491	89	217	76	193	428	63
16:00	548	266	160	111	534	633	120	303	94	193	596	59
17:00	534	269	160	118	538	732	116	304	96	277	573	65

lowa Department of Transportation

Turning Movement Traffic Count Summary
Vehicle Type: Single-Unit Trucks

Station Number: 77331701099	\qquad		22 51 74 \downarrow			
Count Date: Tuesday, October 02, 2012				+		
County: Polk						
Location Description: IA 160 \& SE Deleware Ave				A 160		
	155 -	$26 \pm$			L_{47}	* 185
		$81 \longrightarrow$			-106	\square
Volume Factor: N/A Pass Class Factor: N/A SU Class Factor: N/A Combo Class Factor: N/A	$141 \longrightarrow$	347			Γ^{32}	$\rightarrow 193$
			${ }_{27}^{7} \underset{54}{\dagger} \underset{38}{\boldsymbol{r}}$			
		等				

Raw Data-Single-Unit Trucks:

	N Leg			E Leg			S Leg			W Leg		
	L	T	R	L	T	R	L	T	R	L	T	R
07:00	7	2	3	5	11	5	5	7	4	4	16	2
08:00	24	10	5	0	28	10	5	13	5	6	11	8
11:00	13	7	4	6	29	6	6	9	7	4	4	6
12:00	9	10	2	7	9	11	4	6	5	9	9	5
15:00	10	9	2	4	12	8	4	8	7	2	10	3
16:00	6	8	3	8	11	3	2	5	8	1	22	7
17:00	5	5	3	2	6	4	1	6	2	0	9	3

Turning Movement Traffic Count Summary
Vehicle Type: Combination Trucks

Raw Data-Combination Trucks:

	N Leg			E Leg			S Leg			W Leg		
	L	T	R									
$07: 00$	9	7	1	3	22	5	6	1	2	2	13	1
$08: 00$	13	7	1	2	21	7	3	2	1	1	13	0
$11: 00$	7	1	1	2	16	4	2	2	4	1	22	3
$12: 00$	10	5	2	0	28	12	5	2	0	2	15	1
$15: 00$	9	3	0	5	20	3	2	2	2	1	13	1
$16: 00$	4	3	0	8	14	0	6	0	2	0	11	5
$17: 00$	2	2	0	4	27	3	1	0	1	0	15	1

of 1

Driver and Time Summary
 Oralabor Rd from SE PDI Place to east side of

Repart Veriten 1.0 Au 200 s

Crash Time of Day Summary:															
From	00:00	02:00	04:00	06:00	08:00	10:00	12:00	14:00	16:00	18:00	20:00	22:00			
To	01:59	03:59	05:59	07:59	09:59	11:59	13:59	15:59	17:59	19:59	21:59	23:59	NR	Total	\%
SUN	-	-	-	1	-	1	2	5	2	1	-	-	-	12	5
MON	-	-	-	-	2	3	7	3	8	-	1	-	-	24	11
TUE	-	-	-	3	2	5	3	8	10	4	4	-	-	39	18
WED	-	-	2	2	3	2	2	3	11	5	3	-	-	33	15
THU	-	-	-	3	5	4	4	3	7	2	2	1	-	31	14
FRI	-	-	-	4	1	5	10	7	12	3	2	-	-	44	20
SAT	-	-	-	-	1	5	12	10	3	2	3	1	-	37	17
Tot.			2	13	14	25	40	39	53	17	15	2		220	
\%			1	6	6	11	18	18	24	8	7	1			100

Driver Age/Gender Summary:					
Age	Male	Female	NR	Drivers	\%
<14	-	-	-		
14	-	-	-		
15	3	-	-	3	1
16	4	4	-	8	2
17	3	4	-	7	1
18	8	14	-	22	5
19	10	7	-	17	4
20	9	6	2	17	4
21 to 24	26	23	-	49	10
25 to 29	21	24	1	46	10
30 to 34	25	26	2	53	11
35 to 39	33	7	-	40	9
40 to 44	17	19	1	37	8
45 to 49	21	14	-	35	7
50 to 54	23	18	-	41	9
55 to 59	20	9	-	29	6
60 to 64	11	14	1	26	6
65 to 69	4	4	-	8	2
70 to 74	6	4	-	10	2
75 to 79	1	3	-	4	1
80 to 84	2	1	-	3	1
85 to 89	1	3	-	4	1
90 to 94	-	1	-	1	0
95 plus	-	-	-		
NR	-	1	6	7	1
Drivers	248	206	13	467	
\%	53	44	3		00

Drug/Alcohol Summary:		
	Total	$\%$
Drug		
Alcohol, Less than Statutory		
Alcohol, Statutory	2	1
Drug/Alcohol, Less than Statutory		
Drug/Alcohol, Statutory		
Refused	1	0
Under Influence of Alc/Drugs/Meds	1	0
None Indicated	216	98
Total Crashes	220	100

Fixed Object Struck Summary:

Selection Filter:

$((\operatorname{YEAR}=2010$ or $\operatorname{YEAR}=2011$ or $\operatorname{YEAR}=2012$ or $\operatorname{YEAR}=2013$ or $\operatorname{YEAR}=2014))$

Analyst: G. Kretlow
Notes:

Major Cause Summary

Oralabor Rd from SE PDI Place to east side of
Analysis Years: $\quad 2010$ (48], 2011 [42], 2012 [51], 2013 (35), 2014 [44]

Crash Summary:		Injury Summary:		Surface Condition Summ	
Fatal	-	Fatal	-	Dry	174
Major Injury	2	Major Injury	2	Wet	27
Minor Injury	13	Minor Injury	15	Ice	6
Possible/Unknown	52	Possible	70	Snow	9
PDO	153	Unknown	-	Slush	1
Total Crashes	220	Total Injuries	87	Sand/Dirt/Oi/Gravel	1
				Water	-
TOT Property Damage: \$872,874				Other	
				Unknown	1
				Not Reported	1
AVG Property Damage: \$3,968				Total Crashes	220

Major Cause Summary:

- Animal

25 Ran Traffic Signal Ran Stop Sign
?, 4 Crossed Centerline FTYROW: At Uncontrolled Intersection
4 FTYROW: Making Right Turn on Red Signal
FTYROW: From Stop Sign
FTYROW: From Yield Sign
4 FTYROW: Making Left Turn
1 FTYROW: From Driveway
FTYROW: From Parked Position
FTYROW: To Pedestrian
7 FTYROW: Other (explain in narrative) Traveling Wrong Way or on Wrong Side of Rd
14 Driving Too Fast for Conditions

- Exceeded Authorized Speed

3 Made Improper Turn Improper Lane Change
? 42 Followed Too Close
Disregarded Railroad Signal
Disregarded Warning Sign
z-Operating Vehicle in Reckless/Aggressive Manner

Improper Backing
Illegally Parked/Unattended
4 Swerving/Evasive Action
Over-Correcting/Over-Steering
Downhill Runaway
1 Equipment Failure
Separation of Units
Ran Off Road - Right
1 Ran Off Road - Straight
Ran Off Road - Left
6 Lost Control
3-Inattentive/Distracted By: Passenger
${ }^{3}$ Inattentive/Distracted By: Use of Phone or Other

- 6 Inattentive/Distracted By: Fallen Object

I Inattentive/Distracted By: Fatigued/Asleep
Other: Vision Obstructed
Oversized Load/ Oversized Vehicle
Cargo/Equipment Loss or Shift
77 Other: Other Improper Action
9 Unknown
1 Other: No Improper Action None Indicated

Selection Filter:

$(($ YEAR $=2010$ or YEAR $=2011$ or YEAR $=2012$ or YEAR $=2013$ or $\operatorname{YEAR}=2014))$

1/26/2015

Abbreviated Crash Report Oralabor Rd from SE PDI Place to east side of					
Date	DOT Case \#	Agency Case \#	City	Crash Sev.	Description
01/07/2010	2010549343	10-000092	Ankeny	PDO	$0 / \mathrm{SE}$ DELAWARE AVE and SE DELAWARE AVE and Iowa 0160 / SE ORALABOR
01/16/2010	2010552508	10-000256	Ankeny	PDO	1100 BLOCK SE ORALABOR
01/28/2010	2010554038	10-000469	Ankeny	PDO	0 / SE DELAWARE Ave and SE delaware
02/04/2010	2010556117	10-000579	Ankeny	PDO	900 BLK SE ORALABOR RD (EB)
02/05/2010	2010556107	10-000599	Ankeny	Poss/Unk	$0 / \mathrm{SE}$ DELAWARE AVE and SE DELAWARE AVE and Iowa 0160 / SE ORALABOR
02/08/2010	2010557956	10-000646	Ankeny	PDO	SE DELAWARE, SE ORALABOR
02/09/2010	2010557962	10-000698	Ankeny	PDO	I-35 NORTHBOUND OFF RAMP AT ORALABOE EXIt
03/06/2010	2010562656	10-001093	Ankeny	PDO	1200 BLOCK OF SE ORALABOR RD
03/16/2010	2010563760	10-001264	Ankeny	PDO	0 / SE DELAWARE AVE and SE DELAWARE AVE and Iowa 0160 / SE ORALABOR
03/20/2010	2010564678	10-001342	Ankeny	Poss/Unk	$0 / \mathrm{SE}$ DELAWARE AVE and SE DELAWARE AVE and NB/EB Iowa $0160 / \mathrm{SE}$
03/29/2010	2010565693	10-001478	Ankeny	Poss/Unk	1100 BLK SE ORALAOR RD
04/03/2010	2010598600	10-001564	Ankeny	Minor	SB/WB Iowa 0160 / SE ORALABOR RD
04/27/2010	2010570399	10-001974	Ankeny	PDO	1300 BLOCK IOWA 0160 / SE ORALABOR RD
05/18/2010	2010573833	10-002364	Ankeny	PDO	SE PDI PL AND SE ORALABOR RD EAST Bound
05/21/2010	2010573842	10-002418	Ankeny	PDO	1200 BLOCK SE ORALBOR RD
05/25/2010	2010574760	10-002488	Ankeny	PDO	2600 BLOCK SE DELAWARE AVE
05/27/2010	2010576035	10-002511	Ankeny	PDO	1200 BLOCK SE ORALABOR RD.
06/06/2010	2010577120	10-002697	Ankeny	PDO	1600 BLOCK SE ORALABOR RD
06/09/2010	2010577123	10-002730	Ankeny	Minor	E BOUND ORALABOR / I-35 NB OFF RAMP
06/11/2010	2010577129	10-002772	Ankeny	Poss/Unk	SE delaware avenue and se oralabor rd
07/17/2010	2010586585	10-003452	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and Interstate 0035
07/23/2010	2010583639	10-003554	Ankeny	PDO	I-35 NORTHBOUND OFF RAMP AND SE ORALABOR
07/23/2010	2010583640	10-003559	Ankeny	PDO	1200-B SE ORALABOR RD
07/25/2010	2010585515	10-003597	Ankeny	Poss/Unk	SE ORALABOR RD AND SE PDI PL
08/06/2010	2010585534	10-003817	Ankeny	PDO	SE ORALABOR, SE PDI PLACE
08/08/2010	2010586590	10-003856	Ankeny	PDO	INTERSTATE 35 AND SE ORALABOR RD
08/18/2010	2010587585	10-004063	Ankeny	PDO	SE ORALABOR RD AND SE DELAWARE AVE
08/30/2010	2010589609	10-004287	Ankeny	Poss/Unk	SE PDI PL and Iowa 0160 / SE ORALABOR RD
09/08/2010	2010590636	10-004445	Ankeny	Minor	SE DELAWARE AVE/SE ORALABOR RD
09/16/2010	2010591680	10-004579	Ankeny	Poss/Unk	Interstate 35 NORTHBOUND OFF RAMP TO SE ORALABOR
09/16/2010	2010591681	10-004585	Ankeny	Minor	1100 BLK SE ORALABOR RD
09/17/2010	2010591684	10-004598	Ankeny	Poss/Unk	Iowa 0160 / SE ORALABOR RD and Interstate 0035

lowa Department of Transportation		Abbreviated Crash Report Oralabor Rd from SE PDI Place to east side of			
Date	DOT Case \#	Agency Case \#	City	Crash Sev.	Literal Description
09/20/2010	2010592722	10-004650	Ankeny	Poss/Unk	1100 BLOCK SE ORALABOR
09/22/2010	2010592729	10-004702	Ankeny	Minor	1100 BLOCK SE ORALABOR
09/30/2010	2010593871	10-004867	Ankeny	PDO	SE ORLABOR RD/I-35 SB ON-RAMP
10/02/2010	2010595043	10-004895	Ankeny	PDO	SE ORALABOR, WEStBound Lane, WIth intersection of Sb interstate 35
10/07/2010	2010595050	10-004971	Ankeny	Poss/Unk	1010 SE ORALABOR ROAD
10/18/2010	2010597421	10-005177	Ankeny	PDO	NB OFF RAMP INTERSTATE 35 AT SE ORALABOR RD
10/26/2010	2010598607	10-005317	Ankeny	PDO	SE ORALABOR RD AND SE DELAWARE AVE
11/06/2010	2010601824	10-005520	Ankeny	Minor	IOWA 0160 / SE ORALABOR RD AND INTERSTATE 0035
11/08/2010	2010601830	10-005574	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
11/11/2010	2010601837	10-005628	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
11/13/2010	2010603107	10-005671	Ankeny	pDo	Iowa 0160 / SE ORALABOR RD overpass of Interstate 0035
12/01/2010	2010606163	10-005986	Ankeny	PDO	SE ORALABOR RD \& SE DELAWARE AVE
12/07/2010	2010606179	10-006081	Ankeny	Poss/Unk	1200 BLK SE ORALABOR RD
12/11/2010	2010610283	10-006154	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
12/19/2010	2010610271	10-006269	Ankeny	PDO	NB/EB Iowa 0160 / SE ORALABOR RD
12/25/2010	2010610239	10-006344	Ankeny	PDO	1400 SE ORALABOR RD
01/12/2011	2011618571	11-000213	Ankeny	PDO	1010 SE ORALABOR RD
01/30/2011	2011617291	11-000461	Ankeny	PDO	SE ORALABOR RD / SE PDI PLACE
02/01/2011	2011617300	11-000497	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
03/09/2011	2011622627	11-001066	Ankeny	PDO	1300-BLOCK SE ORALABOR RD
03/15/2011	2011623395	11-001154	Ankeny	Poss/Unk	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
03/16/2011	2011624540	11-001175	Ankeny	PDO	SE ORALABOR RD./SE DELAWARE AVE.
03/26/2011	2011625331	11-001332	Ankeny	Poss/Unk	1300 BLOCK SE ORALABOR RD
04/01/2011	2011625338	11-001429	Ankeny	PDO	1200 BLOCK SE ORALABOR
04/15/2011	2011631461	11-001676	Ankeny	PDO	1100 BLK SE ORALABOR RD.
04/21/2011	2011627913	11-001796	Ankeny	Major	SE ORALABOR RD AND SB I-35 ON RAMP
05/13/2011	2011630727	11-002163	Ankeny	PDO	IOWA 0160 / SE ORALABOR RD AND INTERSTATE 0035 NB OFF-RAMP
05/21/2011	2011632476	11-002302	Ankeny	PDO	SE ORALABOR RD AND SE DELAWARE AVE
06/11/2011	2011634528	11-002626	Ankeny	PDO	1300 BLOCK SE ORALABOR RD
06/12/2011	2011635485	11-002653	Ankeny	PDO	SE ORALABOR RD AND SE PDI PL
06/17/2011	2011635496	11-002732	Ankeny	Poss/Unk	1200 SE ORALABOR RD
06/25/2011	2011636251	11-002866	Ankeny	Poss/Unk	SB/WB Iowa 0160 / SE ORALABOR RD and SE PDI PL

8. Iowa Department

8) Iowa Department					
Date	DOT Case \#	Agency Case \#	City	Crash Sev.	
07/09/2011	2011638419	11-003142	Ankeny	PDO	Iowa 0160 Literal Description
07/18/2011	2011639492	11-003469	Ankeny	Minor	PDI PI AND SE ORALABOR
07/20/2011	2011639497	11-003508	Ankeny	PDO	1000 BLOCK SE ORALABOR
07/30/2011	2011641541	11-003706	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
08/06/2011	2011642361	11-003827	Ankeny	PDO	1200 SE ORALABOR RD
08/10/2011	2011643477	11-003884	Ankeny	Minor	SE ORALABOR RD AND I-35 SB OFF RAMP
08/15/2011	2011644364	11-003960	Ankeny	PDO	1100 SE ORALABOR RD
08/25/2011	2011646453	2011049509	Ankeny	PDO	I35 AND ORALABOR RD WB
08/25/2011	2011646463	2011049505	Ankeny	PDO	NB/EB Iowa 0160 / SE ORALABOR RD
08/25/2011	2011648345	11-004123	Ankeny	PDO	SE ORALABOR RD/SE PDI PL
08/31/2011	2011646318	11-004200	Ankeny	PDO	SB/WB Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
09/01/2011	2011646324	11-004215	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
09/14/2011	2011648357	11-004438	Ankeny	PDO	SE ORALABOR RD AND SE DELAWARE AVE
09/16/2011	2011648365	11-004470	Ankeny	PDO	900 SE ORALABOR RD
09/22/2011	2011649423	11-004573	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD overpass of Interstate 0035
09/29/2011	2011650439	11-004678	Ankeny	PDO	NB/EB Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
11/04/2011	2011656602	11-005272	Ankeny	Poss/Unk	SE ORALABOR RD/SE DELAWARE AVE.
11/15/2011	2011658979	11-005476	Ankeny	PDO	900 BLK SE ORALABOR RD.
11/19/2011	2011658972	11-005537	Ankeny	PDO	WB IOWA 0160 / SE ORALABOR RD AND SE Delaware ave
11/20/2011	2011658974	11-005546	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
12/02/2011	2011661303	11-005748	Ankeny	PDO	900 BLK SE ORALABOR RD
12/10/2011	2011663698	2011068877	Ankeny	PDO	OFF RAMP I 35 TO WB ON ORALABOR
12/13/2011	2011663934	11-005912	Ankeny	Minor	SE ORALABOR RD AND I-35 NORTHBOUND ON RAMP
12/14/2011	2011663943	11-005938	Ankeny	PDO	SE ORALABOR RD/SE DELAWARE AVE.
12/15/2011	2011663944	11-005953	Ankeny	Poss/Unk	1300 BLOCK SE ORALABOR RD
12/19/2011	2011665481	11-006024	Ankeny	PDO	SE ORALABOR RD AND SE DELAWARE AVE
02/01/2012	2012671915	12-000404	Ankeny	Poss/Unk	1500 BLOCK SE ORALABOR RD
02/04/2012	2012672877	12-000452	Ankeny	PDO	1000 BLK SE ORALABOR RD
02/25/2012	2012674893	12-000766	Ankeny	PDO	1200 BLK SE ORALABOR RD.
02/25/2012	2012674895	12-000767	Ankeny	Poss/Unk	SE ORALABOR RD/SE DELAWARE AVE.
02/28/2012	2012676015	12-000817	Ankeny	Poss/Unk	1300 BLK SE ORALABOR RD
03/06/2012	2012677206	12-000903	Ankeny	PDO	1200 BLK SE ORALABOR RD

8. lowa Department of Transportation		Abbreviated Crash Report Oralabor Rd from SE PDI Place to east side of			
Date	DOT Case \#	Agency Case \#	City	Crash Sev.	Literal Description
03/10/2012	2012677210	12-000957	Ankeny	Poss/Unk	Iowa 0160 / SE ORALABOR RD overpass of Interstate 0035
03/20/2012	2012679374	12-001089	Ankeny	PDO	1000 BLK SE ORALABOR RD.
04/08/2012	2012681313	12-001373	Ankeny	Poss/Unk	NB/EB Iowa 0160 / SE ORALABOR RD and SE PDI PI
04/14/2012	2012687934	12-001456	Ankeny	Minor	$\mathrm{NB} / \mathrm{EB}$ Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
04/17/2012	2012683128	12-001494	Ankeny	PDO	1200 BLK SE ORALABOR
04/23/2012	2012684080	12-001594	Ankeny	PDO	SE ORALABOR RD and Se delaware ave
04/25/2012	2012685031	12-001628	Ankeny	PDO	1100 BLK SE ORALABOR RD
05/02/2012	2012685033	12-001758	Ankeny	PDO	1300 BLOCK SE ORALABOR RD
05/06/2012	2012686044	12-001823	Ankeny	PDO	1100 SE ORALABOR RD
05/11/2012	2012686053	12-001915	Ankeny	PDO	1200 BLK SE ORALABOR RD
06/13/2012	2012691029	12-002420	Ankeny	PDO	1500 BLK SE ORALABOR RD
06/18/2012	2012692304	12-002491	Ankeny	PDO	1200 SE ORALABOR
06/20/2012	2012692309	12-002514	Ankeny	PDO	1300 BLOCK SE ORALABOR RD
07/03/2012	2012694532	12-002741	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and Interstate 0035 and SB/WB NE 78TH AVE
07/13/2012	2012695036	12-002916	Ankeny	Poss/Unk	1300 BLOCK SE ORALABOR RD
07/17/2012	2012695931	12-002968	Ankeny	PDO	1200 BLK SE ORALABOR
07/19/2012	2012695936	12-003014	Ankeny	Poss/Unk	Iowa 0160 / SE ORALABOR RD
07/24/2012	2012698795	12-003105	Ankeny	Major	SE ORALABOR AND SE PDI PL
07/26/2012	2012696900	12-003132	Ankeny	Poss/Unk	I35 OVERPASS / SE ORALABOR RD
08/10/2012	2012698810	12-003367	Ankeny	PDO	1100 BLK WB IOWA 0160 / SE ORALABOR RD
08/10/2012	2012698811	12-003365	Ankeny	PDO	WB IOWA 0160 / SE ORALABOR RD - 200 feet EASt OF SE delamare ave
08/13/2012	2012699749	12-003418	Ankeny	PDO	SE DELAWARE AVE/SE ORALABOR RD
08/18/2012	2012699763	12-003493	Ankeny	PDO	300 FEET WEST OF I-35 NORTHBOUND RAMPS - IOWA 0160 / SE ORALABOR RD
08/18/2012	2012699765	12-003501	Ankeny	Poss/Unk	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
08/18/2012	2012699766	12-003502	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and SE DELAWARE AVE
08/31/2012	2012701635	12-003713	Ankeny	PDO	NB/EB Iowa 0160 / SE ORALABOR RD
08/31/2012	2012701637	12-003718	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
09/10/2012	2012703560	12-003853	Ankeny	PDO	1200 BLK SE ORALABOR RD
09/11/2012	2012703566	12-003888	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
09/28/2012	2012705752	12-004144	Ankeny	Poss/Unk	1200 BLOCK SE ORALABOR
09/28/2012	2012706858	12-004137	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
10/02/2012	2012706863	12-004202	Ankeny	PDO	1000 BLOCK SE ORALABOR RD

(8) Iowa Department

Abbreviated Crash Report Oralabor Rd from SE PDI Place to east side of					
Date	DOT Case \#	Agency Case \#	City	Crash Sev.	
10/05/2012	2012706859	12-004251	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
10/05/2012	2012706869	12-004256	Ankeny	PDO	900 BLK SE ORALABOR
10/30/2012	2012711072	12-004651	Ankeny	Poss/Unk	900 BLOCK SE ORALABOR RD
11/09/2012	2012712557	12-004824	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
11/12/2012	2012712563	12-004872	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and Interstate 0035
11/15/2012	2012714411	12-004913	Ankeny	PDO	INT SE ORALABOR AND SE DELAWARE
11/30/2012	2012715451	12-005152	Ankeny	PDO	1300 BLOCK SE ORALABOR
12/11/2012	2012717794	12-005304	Ankeny	Poss/Unk	1200 BLOCK SE ORALABOR RD
12/12/2012	2012717806	12-005316	Ankeny	PDO	1100 BLK SE ORALABOR RD
12/19/2012	2012720868	12-005422	Ankeny	Poss/Unk	1100 BLOCK SE ORALABOR RD
12/27/2012	2012719693	12-005570	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
12/28/2012	2012719704	12-005599	Ankeny	PDO	NB/EB Iowa 0160 / SE ORALABOR RD and SE DELAWARE AV
12/31/2012	2012719708	12-005642	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and Interstate 0035
01/08/2013	2013721960	13-000097	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD and Interstate 0035 and NE 78TH A
02/01/2013	2013724237	13-000453	Ankeny	PDO	INT SE ORALABOR RD AND SE PDI PL
02/08/2013	2013725812	13-000558	Ankeny	PDO	1200 BLOCK SE ORALABOR
02/15/2013	2013726353	13-000676	Ankeny	PDO	SE PDI AND SE ORALABOR RD
03/05/2013	2013729130	13-000940	Ankeny	Poss/Unk	Interstate 35 AND Ne 78TH Ave and interstate 35 and state 160/S
03/26/2013	2013732613	13-001218	Ankeny	PDO	1200 BLOCK SE ORALABOR RD
03/29/2013	2013732621	13-001260	Ankeny	PDO	1200 BLOCK SE ORALABOR RD
05/08/2013	2013739587	13-001827	Ankeny	PDO	STATE 160/SE ORALABOR RD And Interstate 35
05/10/2013	2013739591	13-001857	Ankeny	PDO	1200 SE ORALABOR RD
05/21/2013	2013740589	13-002026	Ankeny	PDO	STATE 160/SE ORALABOR RD
05/23/2013	2013740590	13-002051	Ankeny	PDO	1100 BLK SE ORALABOR RD
06/19/2013	2013745167	13-002472	Ankeny	PDO	2700 BLK SE PDI PL
07/11/2013	2013748096	13-002803	Ankeny	PDO	SE ORALABOR RD AND SE PDI PL
07/29/2013	2013751230	13-003075	Ankeny	PDO	SB/WB Iowa 0160 / SE ORALABOR RD
08/01/2013	2013751237	13-003116	Ankeny	PDO	900 BLOCK SE ORALABOR RD
08/09/2013	2013752496	13-003215	Altoona	PDO	1200 BLK SE ORALABOR RD
08/22/2013	2013757921	13-003403	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
08/24/2013	2013754351	13-003448	Ankeny	PDO	State 160/SE ORALABOR RD And se delaware ave
08/25/2013	2013754352	13-003459	Ankeny	PDO	State $160 /$ SE ORALABOR RD And SE delaware ave

[^1](8.) owa Department

Abbreviated Crash Report Orabaor Rd too SE PD Pl Place to east side of
 Oralabor Rd from SE PDI Place to east side of

Date	DOT Case \#	Agency Case \#	City	Crash Sev.	Literal Description
08/26/2013	2013755385	13-003475	Ankeny	PDO	INTERSTATE 35 AND NE 78TH AVE AND INTERSTATE 35 AND STATE 160/SE
08/30/2013	2013755398	13-003542	Ankeny	PDO	900 BLOCK SE ORALABOR RD
09/11/2013	2013756948	13-003711	Ankeny	Poss/Unk	SB ENTRANCE RAMP AT SE ORALABOR RD
10/03/2013	2013761054	13-004023	Ankeny	PDO	STATE 160/SE ORALABOR RD
10/09/2013	2013761569	13-004121	Ankeny	PDO	NB/EB Iowa 0160 / SE ORALABOR RD
10/11/2013	2013761576	13-004157	Ankeny	Poss/Unk	INTERSTATE 35 AND STATE 160/SE ORALABOR RD AND INTERSTATE 35 AND NE
10/12/2013	2013761578	13-004177	Ankeny	Minor	STATE $160 / \mathrm{SE}$ ORALABOR RD AND SE DELAWARE AVE
10/15/2013	2013762363	13-004221	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
10/19/2013	2013763013	13-004283	Ankeny	Minor	1100 BLK SE ORALABOR (WESTBOUND LANE), EAST OF THE INTERSECTION WITH
10/22/2013	2013763017	13-004341	Ankeny	PDO	900 BLK SE ORALABOR RD
10/23/2013	2013763218	13-004357	Ankeny	PDO	900 BLOCK SE ORALABOR RD
11/12/2013	2013767135	13-004708	Ankeny	Poss/Unk	1400 BLK SE ORALABOR RD
12/10/2013	2013772557	13-005106	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
12/13/2013	2013773261	13-005155	Ankeny	PDO	SE ORALABOR RD/SE PDI PL
12/18/2013	2013774202	13-005234	Ankeny	PDO	1200 BLOCK SE ORALABOR RD
12/21/2013	2013774993	13-005298	Ankeny	PDO	SE PDI PLACE AND SE ORALABOR RD
01/02/2014	2014777258	14-000025	Ankeny	PDO	STATE 160/SE ORALABOR RD AND SE DELAWARE AVE
01/03/2014	2014777710	14-000039	Ankeny	PDO	STATE $160 / \mathrm{SE}$ ORALABOR RD AND SE DELAWARE AVE
01/08/2014	2014778443	14-000091	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
01/28/2014	2014782276	14-000426	Ankeny	Poss/Unk	SE ORALABOR RD AND INTERSTATE 35
02/02/2014	2014782780	14-000486	Ankeny	PDO	SE DELAWARE AVE/SE ORALABOR RD
02/04/2014	2014783291	14-000516	Ankeny	PDO	STATE 160/SE ORALABOR RD AND SE DELAWARE AVE
02/09/2014	2014784388	14-000636	Ankeny	PDO	1200 BLOCK SE ORALABOR RD
02/13/2014	2014785881	14-000697	Ankeny	PDO	1200 BLOCK SE ORALABOR RD
02/20/2014	2014787118	14-000829	Ankeny	Poss/Unk	NB/EB Interstate 0035 underpass of Iowa 0160 / SE ORALABOR RD
02/21/2014	2014787419	14-000847	Ankeny	PDO	INTERSTATE 35 AND STATE 160/SE ORALABOR RD AND INTERSTATE 35 AND NE
02/26/2014	2014788541	14-000945	Ankeny	Poss/Unk	SE PDI PL AND SE ORALABOR RD
03/03/2014	2014789222	14-001027	Ankeny	PDO	1000 BLOCK SE ORALABOR RD
03/05/2014	2014789605	14-001051	Ankeny	PDO	900 BLK STATE 160/SE ORALABOR RD
03/14/2014	2014791016	14-001186	Ankeny	Poss/Unk	STATE 160/SE ORALABOR RD AND SE PDI PL
05/05/2014	2014797754	14-001957	Ankeny	Poss/Unk	1300 BLK SE ORALABOR RD
05/07/2014	2014797865	14-001983	Ankeny	Poss/Unk	STATE $160 / \mathrm{SE}$ ORALABOR RD AND SE DELAWARE AVE

(8) Iowa Department

8 Iowa Department					
Date	DOT Case \#	Agency Case \#	City	Crash Sev.	Literal Description
05/10/2014	2014798325	14-002034	Ankeny	PDO	Iowa 0160 / SE ORALABOR RD
05/31/2014	2014801247	14-002359	Ankeny	Poss/Unk	1200 BLK SE ORALABOR RD
06/07/2014	2014802578	14-002464	Ankeny	Poss/Unk	STATE 160/SE ORALABOR RD AND SE DELAWARE AVE
06/30/2014	2014805965	14-002809	Ankeny	Poss/Unk	1300 BLOCK SE ORALABOR RD
07/01/2014	2014806162	14-002825	Ankeny	PDO	SE PDI PL AND SE ORALABOR RD
07/01/2014	2014806164	14-002828	Ankeny	PDO	SE PDI PL/SE ORALABOR RD
07/04/2014	2014806591	14-002875	Ankeny	PDO	1400 BLK SE ORALABOR RD
07/07/2014	2014807410	14-002915	Ankeny	Poss/Unk	700 BLK SE ORALABOR RD
07/15/2014	2014807825	14-003038	Ankeny	Poss/Unk	State 160/SE ORALABOR RD And Interstate 35
07/16/2014	2014808150	14-003047	Ankeny	Poss/Unk	State 160/SE ORALABOR RD AND SE DELAWARE AVE
07/22/2014	2014808683	14-003143	Ankeny	PDO	1200 BLOCK SE ORALABOR RD
08/16/2014	2014812849	14-003514	Ankeny	PDO	SE PDI PL AND STATE 160/SE ORALABOR RD
08/25/2014	2014813887	14-003633	Ankeny	Poss/Unk	900 BLOCK SE ORALABOR
08/26/2014	2014814159	14-003661	Ankeny	Poss/Unk	STATE 160/SE ORALABOR RD And se delaware ave
09/20/2014	2014817661	14-004065	Ankeny	PDO	1400 BLK SE ORALABOR RD
10/24/2014	2014823333	14-004612	Ankeny	Poss/Unk	900 SE ORALABOR RD
10/29/2014	2014824139	14-004686	Ankeny	Poss/Unk	2600 BLOCK SE DELAWARE AVE
10/30/2014	2014824311	14-004697	Ankeny	PDO	STATE 160/SE ORALABOR RD And Interstate 35 And Interstate 35
10/30/2014	2014824538	14-004705	Ankeny	PDO	Interstate 35 And Se ORALABOR RD
11/21/2014	2014834165	14-005052	Ankeny	PDO	SE PDI/SE ORALABOR
11/28/2014	2014830935	14-005163	Ankeny	PDO	Interstate 35 And State 160/SE ORALABOR RD And Interstate 35 AND NE
12/01/2014	2014831566	14-005200	Ankeny	PDO	STATE 160/SE ORALABOR RD AND SE DELAWARE AVE
12/02/2014	2014831568	14-005217	Ankeny	Minor	1300 BLK SE ORALABOR RD
12/16/2014	2014834450	14-005431	Ankeny	PDO	State 160/SE ORALABOR RD and se delaware ave
12/17/2014	2014834265	14-005439	Ankeny	Poss/Unk	State 160/SE ORALABOR RD and se delaware ave
12/20/2014	2014834958	14-005482	Ankeny	Poss/Unk	State 160/SE ORALABOR RD And interstate 35
12/22/2014	2014835213	14-005503	Ankeny	PDO	I-35/SE ORALABOR RD
12/26/2014	2014835918	14-005561	Ankeny	PDO	STATE 160/SE ORALABOR RD And SE DELAWARE AVE MEASURING 3545 feet

8. lowa Department of Transportation	Abbreviated Crash Report Oralabor Rd from SE PDI Place to east side of				12manes
Date DOT Case \#	Agency Case \#	City	Crash Sev.	Literal Description	
Selection Filter: ($($ YEAR $=2010$ or YEAR $=2011$ or YEAR $=2012$ or YEAR $=2013$ or YEAR $=2014)$)					
Analyst: G. Kretlow	Notes:				

County: Polk Prepared by:_Gary Kretlow Date Prepared:_Jan 22, 2015

Location: On Oralabor Rd from SE PDI Place east to east side of I-35 interchange

Improvement

Proposed Improvement(s): add additional turn lanes at Delaware Ave and over bridge over I-35

\$	500,000	Estimated Improvement Cost, EC		Est. Improvement Life, years, Y
\$	500	Other Annual Cost (after initial year), AC	8	Crash Reduction Factor (integer), CRF
\$	6,795	Present Value Other Annual Costs, OC	4.0\%	Discount Rate, INT
		$O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)$	\$ 506,795	Present Value All Costs, $\operatorname{cosT}=E C+O C$

Traffic Volume Data

Source: lowa DOT
2013
Date of traffic count
Two-way
Length (mi.) veh/day Description

0.20	20,100	from SE Hulsizer to Delaware
0.30	28,000	from Delaware to I-35
0.50		

1.0\% Projected Traffic Growth (0\%-10\%), G

$$
\begin{array}{cc}
12,420 & \text { Current Vehicle Miles / Day, VMI } \\
15,155 & \text { End of Life Veh. Miles / Day } \\
4,533,300 & \text { Current Veh. Miles / Year, AM } \\
99,818,751 & \text { Total Projected Veh. Miles Over } \\
\text { Life of Project, TVMT } \\
& \text { TVMT }=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
\end{array}
$$

Application for FY2017 Traffic Safety Funds lowa Department of Transportation

(Site Specific)

42 ${ }^{\text {nd }}$ Street Streetscape

Corridor Safety Improvements

Division of Traffic and Transportation Jennifer L. McCoy, P.E., P.T.O.E. City Traffic Engineer

August, 2015

Application for TRAFFIC SAFETY FUNDS

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) N/A
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone \qquad E-Mail \qquad

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type

Site Specific	$\boxed{ }$
Traffic Control Device	\square
Safety Study	\square

Funding Amount
Total Project Cost
Safety Funds Requested
\$ 1,696,300
$\$ \quad 500,000$

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the

Signed:

> T. M. Prank in Conic

Typed Name

Attest:

Diane Rauh
Typed Name
\qquad
\qquad

APPROVING FISCAL YEAR 2017 TRAFFIC SAFETY FUND APPLICATIONS TO THE IOWA DEPARTMENT OF TRANSPORTATION

BE IT RESOLVED, BY THE CITY COUNCIL OF THE CITY OF DES MOINES, IOWA:
That the City Manager is hereby directed to submit applications to the Iowa Department of Transportation for Traffic Safety Funds to cover a portion of the construction costs for the following projects:

1. $42^{\text {nd }}$ Street Streetscape
2. Martin Luther King Jr. Parkway and Prospect Road Traffic Signal Installation
3. Citywide Fixed-Time Signal Upgrade Project - Phase 2

The City further agrees that if these projects are funded and constructed, the City of Des Moines will provide adequate resources to maintain the improvements for their useful life.
(Council Communication Number $15: 428$ Attached)
Moved by $Q 2+10$ \qquad to adopt.

APPROVED AS TO FORM:

8

COUNCL ACTION	YEAS	NAYS	PASS	ABSEN
COWMIE	\square			
COLEMAN	\square			
Gatto	1			
GRAY	5			
EENSLEY	4			
MAHAFREY	\square			
Moorre	4			
TOTAL	\cdots			

CERTIFICATE

I, DIANE RAUH, City Clerk of said City hereby certify that at a meeting of the City Council of said City of Des Moines, held on the above date, among other proceedings the above was adopted.

IN WITNESS WHEREOE, I have herewnto set my hand and affixed my seal the day and year first above written.

City Clerk

PROJECT DESCRIPTION

42nd Street Streetscape
 Corridor Safety Improvements

Project Description:

The project includes the implementation of the safety improvements identified as part of the Roosevelt Cultural District Streetscape Study. See Attachment A for the proposed plan. Identified improvements include traffic signalization at 42nd Street and Crocker Street, removing the westbound traffic movement at the 42nd Street and Chamberlain Drive intersection, replacement/relocation of the pedestrian signals across 42nd Street, additional dedicated turn lanes, and sidewalk improvements to enhance pedestrian mobility and safety along the corridor.

The total project cost is estimated to be approximately $\$ 1.7 \mathrm{M}$. The City is responsible for approximately $\$ 982,300$ and private funding is anticipated to be approximately $\$ 714,000$. TAP funding in the amount of $\$ 480,000$ has been programmed for $F Y$ 2017. A total of $\$ 500,000$ is being requested from State Traffic Safety Improvement Program funds.

Existing Conditions:

$42^{\text {nd }}$ Street is classified as a Minor Arterial Roadway. In this area it has a four lane undivided cross-section with two-through lanes in each direction at the south end of the corridor transitioning to a two-lane undivided section on the north end. The 2012 Average Daily Traffic for $42^{\text {nd }}$ Street was 16,500 vehicles per day (vpd) at the south end of the corridor and 15,700 vpd at the north end of the corridor. There is a designated right-turn lane for southbound traffic at Center Street / I-235. The posted speed limit on this section of $42^{\text {nd }}$ Street is $30-\mathrm{MPH}$.

There are substantial volumes of pedestrians that cross $42^{\text {nd }}$ Street along the corridor due to the shopping district and school within the project area. The Des Moines Area Regional Transit (DART) has bus service along this section of $42^{\text {nd }}$ Street. There is a DART stop on the west side of $42^{\text {nd }}$ Street south of Chamberlain Avenue and a stop on the east side of $42^{\text {nd }}$ Street south of Crocker Street adding to the volume of pedestrians in the project area.

Project Justification:

A traffic study was completed in December 2012 as a part of the Streetscape Study and is attached as Attachment A for reference. The study included a traffic capacity, pedestrian, and safety analysis for existing conditions as well as the proposed alternatives.

The study also reported that traffic signals would be warranted at $42^{\text {nd }}$ Street and Crocker Street based on Warrant No. 1B (8-Hour Vehicular Volume) once the proposed traffic pattern changes are made.

Of the thirty-four reported crashes between 2010 and 2014, there were eleven personal injury crashes. The majority of the crashes were rear-end, broadside, and sideswipe-same direction. All of these types of crashes would generally be considered correctible by the improvements planned as part of this project due to the reduction of several conflict points along the corridor.

$42^{\text {nd }}$ Street Streetscape TSIP Application

Crash reduction factors for the proposed corridor improvements were obtained from the Crash Modification Factors Clearinghouse for a 4-lane to 3-lane road diet, the addition of a traffic signal at $42^{\text {nd }}$ Street and Crocker Street, and the elimination of a left turn for northbound $42^{\text {nd }}$ Street traffic at Chamberlain Avenue.

Based on current IDOT value factors, the total estimated loss from crashes during the described five-year period is $\$ 666,600$ (See Exhibit "L"). Assuming an overall crash reduction factor of 61 percent and an estimated project life of 15 years, the request for $\$ 500,000$ of Traffic Safety relates to a benefit-cost factor of 1.93:1.

COST ESTIMATE

COSTS

City of Des Moines	$\$ 982,300$
Roosevelt Cultural District	$\underline{\$ 714,000}$
TOTAL PROJECT COST:	$\$ 1,696,300$

Federal Funding (FY 2017 TAP) \$480,000
TSF FUNDS REQUESTED: \$ 500,000
See Next Page for detailed Cost Opinion

Roosevlt Cultural District Master Plan
Preliminary Planning Opinion of Probable Project Costs

Prepared for Roosevelt Cultural District \& City of Des Moines
August 2013

Cost breakout based on the Streetscape Policy Base + MidAm Total + Private Improvements (TOTAL PROJECT COST)= \$1,696,300.00

Subtotal
\$725,400.00
$\$ 456,900.00$ includes private imp contingency \& design/eng
$\$ 72,000.00$ EACH: $\quad \$ 36,000.00$
\$1,254,300.00
\$249,000.00 50/50 Split
\$193,000.00 50/50 Split
\$442,000.00 EACH: \$221,000.00

GRAND TOTAL $\$ \mathbf{1 , 6 9 6 , 3 0 0 . 0 0}$

RCD Total	$\$ 714,000.00$	42%	$\$ 1,696,300.00$
City Total	$\$ 982,300.00$	58%	

Base Project					
No.	Item	Quantity	Unit	Unit Price	Extended Amount
1	Traffic Control	1	LS	\$67,000.00	\$67,000.00
2	Mobilization	1	LS	\$61,000.00	\$61,000.00
3	Localized Roadway Storm Sewer and Intakes \dagger	1	LS	\$60,000.00	\$60,000.00
4	Adjustment Of Water and Storm Sewer Fixtures	10	EA	\$500.00	\$5,000.00
5	Removal of Roadway Pavement and Driveways (includes curb)	1280	SY	\$11.00	\$14,080.00
6	Removal of Chain Link Fence, as per plan	225	LF	\$5.00	\$1,125.00
7	Removal of Pedestrian Signals	1	LS	\$5,000.00	\$5,000.00
8	Removal of Sidewalk	930	SY	\$5.00	\$4,650.00
9	Pavement Scarification / Milling for Resurfacing	5150	SY	\$5.00	\$25,750.00
10	HMA Pavement Overlay (2 IN. Surface)	570	TON	\$120.00	\$68,400.00
11	Concrete Curb and Gutter	1350	LF	\$25.00	\$33,750.00
12	Sidewalk PCC Concrete, 5 IN. (with decorative joint)	1285	SY	\$45.00	\$57,825.00
13	Driveway PCC Concrete, 7 IN . (with decorative joint)	225	SY	\$50.00	\$11,250.00
14	Cast Iron Detectable Warning Panels for Curb Ramps	180	SF	\$45.00	\$8,100.00
15	Decorative fence (east side of detention)	225	LF	\$80.00	\$18,000.00
16	Traffic Signalization	1	LS	\$200,000.00	\$200,000.00
17	Installation of Pedestrian Signalization	1	LS	\$100,000.00	\$100,000.00
18	Painted Pavement Markings, Epoxy	29	STA	\$85.00	\$2,465.00
19	2-5/8" (6CM) Concrete Pavers w/ Subbase	405	SY	\$95.00	\$38,475.00
20	3-1/8" (8CM) Concrete Pavers w/ Subbase [Crosswalks]	195	SY	\$120.00	\$23,400.00
21	Planter Paving Band	625	LF	\$35.00	\$21,875.00
22	Light Pole Banners (2 sided)	22	EA	\$350.00	\$7,700.00
23	Topsoil, Furnish and Spread	100	CY	\$40.00	\$4,000.00
24	Amended Soil	50	CY	\$60.00	\$3,000.00
25	Sodding	110	SQ	\$55.00	\$6,050.00
26	Street Trees	18	EA	\$400.00	\$7,200.00
27	Shrubs	120	EA	\$45.00	\$5,400.00
28	Perennials	410	EA	\$15.00	\$6,150.00
29	Benches	2	EA	\$1,500.00	\$3,000.00
30	Litter Receptacles	2	EA	\$1,200.00	\$2,400.00
31	Bike Racks	5	EA	\$800.00	\$4,000.00
32	Seat Wall	15	LF	\$150.00	\$2,250.00
33	Retaining Wall and Stairs in front of Hubbell	250	SF	\$30.00	\$7,500.00
34	Major Gateway Column w/ Footing	5	EA	\$12,000.00	\$60,000.00
35	Minor Gateway Column w/ Footing	7	EA	\$5,000.00	\$35,000.00
36	Miscellaneous Wayfinding	1	LS	\$10,000.00	\$10,000.00
37	Miscellaneous Column and Tree Lighting and Electrical	1	LS	\$15,000.00	\$15,000.00
				Subtotal $=$	\$1,006,000.00
				ontingency (20%) =	\$201,000.00
	Design, Engineering, and Administration (thru const) =				\$181,000.00
				Base Total =	\$1,388,000.00

[^2]\dagger There may be minor cost savings from the City's storm sewer separation project
\# This does not include costs for stand alone public art not integrated with site amenities
\mathbf{t} This does not include street reconfiguration on California and Crocker west of the Master Plan limits

${ }^{\dagger}$ Cost includes pole on the NW Corner of Crocker Street and a pole at the DM Playhouse. (There is a potential savings if poles need to be relocated as a result of conflict with storm sewer construciton.)

TIME SCHEDULE

42 ${ }^{\text {nd }}$ Street Streetscape Corridor Improvements

Project Approval: December, 2015
Agreement Signed:
Project bid:
Construction completed:
Project Closeout:

April, 2016
Fall, 2016
October, 2017
June, 2018

Exhibit F
CORRIDOR PHOTOGRAPHS

Looking North from Center Street

Looking North from Rollins Avenue

Exhibit F

Looking West down Chamberlain Avenue

Looking South from Crocker Street

Exhibit F

Looking West down Crocker Street

Looking East down Crocker Street

EXISTING AND PROPOSED CONDITIONS

Existing Conditions

AERIAL PHOTOGRAPH

Road Segment Benefit / Cost Safety Analysis Iowa DOT Office of Traffic \& Safety

County:	Polk Prepared by:	BJW	Date Prepared: \quad Aug 10, 2015
Location:	42nd Street between Center Street and Crocker Street		
provement			
Proposed Improvement(s):	Corridor Improvements as Identified on attached Improvements Plan		
\$ 500,000	Estimated Improvement Cost, EC	15 Est. Improvement Life, years, Y	
\$ -	Other Annual Cost (after initial year), AC	61 Crash Reduction Factor (integer), CRF	
\$	Present Value Other Annual Costs, OC	4.0\% Discount Rate, INT	
	$O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)$	\$ 500,000	Present Value All Costs, COST = EC + OC

Traffic Volume Data

2012 Date of traffic count

3,300 Current Vehicle Miles / Day, VM
3,831 End of Life Veh. Miles / Day
1,204,500 Current Veh. Miles / Year, AM
19,388,711 Total Projected Veh. Miles Over Life of Project, TVMT

$$
T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
$$

Crash Data

First full year --> \qquad Last full year

Additional months
\qquad Fatal Crashes Injury Crashes
\qquad Property Damage Only Total Crashes, TA
5.0 years, Time Period, T
values as of May 2014

$\$ 4,500,000$	$\$$	-
$\$ 325,000$	$\$$	-
$\$ 65,000$	$\$$	65,000
$\$ 35,000$	$\$$	350,000
$\$ 7,400$	$\$$	251,600

-OR- enter all Property Costs of all crashes:
Total \$ Loss, LOSS \$ 666,600
6.80 Current Crashes / Year, AA = TA / T
\$ 19,606 Cost per Crash, AVCR = LOSS / TA
109.5 Total Expected Crashes, TCR = CR x TVMT/10^8
4.15 Crashes Avoided First Year AAR = AA x CRF / 100
\$ 81,325 Crash Costs Avoided in First Year, AAR x AVCR
66.8 Total Avoided Crashes, TCR x CRF/ 100
564.5 Crashes / HMVM, Crash Rate, CR $\mathrm{CR}=\mathrm{TA} \times 10^{\wedge} 8 /(\mathrm{AM} \times \mathrm{T})$
$\$ \quad 963,311$ Present Value of Avoided Crashes, BENEFIT

$$
B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)
$$

Benefit / Cost Ratio

```
Benefit : Cost = $963,311 : $500,000 = 1.93 : 1
```

『○LTON \& MENK,
INC.
Consulting Engineers \& Surveyors
P.O. Box 668 • 2730 Ford Street • Ames, IA 50010-0668

Phone (515) 233-6100 • Fax (515) 233-4430
www.bolton-menk.com

MEMORANDUM

Date: December 18, 2012
To: City of Des Moines, IA
From: Bryan Nemeth, PE, PTOE
Jacob Bongard, EIT
Subject: Traffic Analysis and Recommendations
Roosevelt Cultural District Streetscape Study
City of Des Moines, Iowa
BMI Project No.: A11.105669

I. Introduction

The objective of this technical memorandum is to document and summarize the traffic operations for the Roosevelt Cultural District Streetscape Study area located in Des Moines, IA. This technical memorandum studies the impact of trip redistribution from possible access changes and roadway/traffic control improvements on the traffic operations of key study area intersections. This information will be used to identify problems and needs within the study area and develop recommendations on traffic control options and needs associated with roadway network alternatives.

II. Existing Conditions

Data Collection

In order to determine how traffic is currently operating in the study area, a traffic operations analysis was completed for existing conditions at eight key intersections within the study area. Turning movement volumes, Annual Daily Traffic volumes (ADT), and Annual Average Daily Traffic volumes (AADT) were collected from field studies and information from the Iowa Department of Transportation (IADOT) for these key intersections/segments.
Traffic data collection efforts were performed November 12 - 14, 2012 for AM (6:30-8:30 a.m.), Afternoon (2:30-3:30 p.m.), and PM (4:45-5:45 p.m.) peak periods. Peak hour traffic volumes were collected at the following intersections:

1. $42^{\text {nd }}$ Street at Kingman Boulevard
2. $42^{\text {nd }}$ Street at Crocker Street
3. $42^{\text {nd }}$ Street at Chamberlain Avenue/ Private Access
4. $42^{\text {nd }}$ Street at Rollins Avenue
5. $42^{\text {nd }}$ Street at I-235 Entrance/Exit Ramp / Center Street
6. $42^{\text {nd }}$ Street at I-235 NB Exit Ramp / Pleasant Street
7. $43^{\text {rd }}$ Street at Crocker Street

Additional daily volume counts were collected the roadway segments listed below:

1. I-235 Northbound Entrance Ramp (From Northbound $42^{\text {nd }}$ Street)
2. I-235 Northbound Entrance Ramp (From Southbound $42^{\text {nd }}$ Street)
3. I-235 Southbound Entrance Ramp
4. Center Street (West of I-235 Southbound Entrance Ramp)
5. Rollins Avenue (East of $42^{\text {nd }}$ Street)
6. Chamberlain Avenue (West of $42^{\text {nd }}$ Street)
7. $41^{\text {st }}$ Street (Between Rollins Avenue and I- 235 Southbound Ramp)
8. $42^{\text {nd }}$ Street (Between Rollins Avenue and $41^{\text {st }}$ Street)
9. $42^{\text {nd }}$ Street (North of Crocker Street)

Figure 1 illustrates the peak hour traffic and ADT volumes of these key intersections and segments.

Traffic Operation Analysis

Operations analysis of the AM and PM peak hours was conducted at the above listed key intersections to determine how traffic currently operates throughout the study area. A level of service (LOS) analysis was completed for key intersections to determine how well these intersections operate with study area traffic volumes. The LOS results are based on average delay per vehicle as calculated by the 2010 Highway Capacity Manual (HCM). Control delay is the delay experienced by vehicles slowing down as they are approaching the intersection, the wait time at the intersection, and the time for the vehicle to speed up through the intersection and enter into the traffic stream. The average intersection control delay is a volume weighted average of delay experienced by all motorists entering the intersection on all intersection approaches. Intersections and each intersection approach are given a ranking from LOS A through LOS F. LOS A indicates the best traffic operation, with vehicles experiencing minimal delays. LOS A through D is generally perceived to be acceptable to drivers. LOS E indicates that an intersection is operating at, or very near, its capacity and that drivers experience considerable delays. LOS F indicates an intersection where demand exceeds capacity and drivers experience substantial delays.

The LOS and its associated intersection delay for signalized and unsignalized intersections are presented in Table 1. The delay threshold for unsignalized intersections is lower for each LOS compared to signalized intersections, which accounts for the fact that people expect a higher level of service when at a stop-controlled intersection. A higher LOS (i.e. LOS D, E, and F) is indicative of elevated delay times compared to lower levels of service (i.e. LOS A, B, and C).

Table 1: Level of Service Criteria

	Signalized Intersection	Unsignalized Intersection
LOS	Control Delay per Vehicle (sec.)	Control Delay per Vehicle (sec.)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Figure 1 illustrates LOS for signalized and side street stop controlled movements during AM, Afternoon, and PM peak hours. Currently, the only movements displaying unacceptable levels of service are the westbound left-turn movements at Rollins Avenue, the Shops at Roosevelt, and Crocker Street. This is primarily due to the limited gaps available to motorists attempting to enter onto $42^{\text {nd }}$ Street against unopposed northbound and southbound thru traffic. It should be noted that Rollins Avenue is actually a one-way street eastbound away from $42^{\text {nd }}$ Street. Vehicles are illegally going westbound to access $42^{\text {nd }}$ Street. The results are shown in Table 2, below.

Table 2: Existing Traffic Operations

Intersection	Intersection Control	Peak Hour	Intersection LOS	Side Street LOS	Unacceptable Movements
42nd Street at Kingman Boulevard	Traffic Signal	AM	14-B	-	
		AFTERNOON	11-A	-	
		PM	10-B	-	
42nd Street at Crocker Street	Side Street Stop Signs	AM	-	324 - F	EB, WB
		AFTERNOON	-	108-F	EB, WB
		PM	-	$233-\mathrm{F}$	EB, WB
42nd Street at Chamberlain Avenue	Side Street Stop Signs	AM	-	$50-\mathrm{F}$	EB, WB
		AFTERNOON	-	32-D	
		PM	-	$277-\mathrm{F}$	WB
42nd Street at Rollins Avenue	Side Street Stop Signs	AM	-	18-C	
		AFTERNOON	-	26-D	
		PM	-	42-E	WB
42nd Street at I-235 Ramps/Center Street	Traffic Signal	AM	$37-\mathrm{D}$	-	WBT
		AFTERNOON	13-B	-	
		PM	12-B	-	
42nd Street at I-235 Ramp/Pleas ant Street	Traffic Signal	AM	10-A	-	
		AFTERNOON	15-B	-	
		PM	24-C	-	
43rd Street at Crocker Street	Side Street Stop Signs	AM	-	8 - A	
		AFTERNOON	-	8-A	
		PM	-	7 - A	
43rd Street at Chamberlain Avenue	Side Street Stop Signs	AM	-	10-B	
		AFTERNOON	-	10-B	
		PM	-	10-A	

While all intersections operate at an acceptable level, numerous side street stop controlled movements experience unacceptable delay during the existing AM, Afternoon, and PM peak hours. An unacceptable movement is classified as any that displays a LOS E or F. Intersection failure analysis is typically based upon the overall operations of an intersection as a whole, but in analyzing the individual movements, excessive delay for vehicles attempting to enter a high volume roadway are noted and accounted for. An unacceptable LOS for a side-street movement at an unsignalized intersection is considered to be unacceptable whereas a minor movement with unacceptable LOS at a signal or all-way stop may be considered acceptable.

The majority of failure occurring on individual movements can be attributed to the amount of delay experienced by the traffic on the minor approach attempting to complete a movement against the major street movements. As an example, the delay experienced for the eastbound and westbound movements at Crocker Street and Chamberlain Avenue under existing conditions exceed acceptable levels due to the large number of thru movements on $42^{\text {nd }}$ Street during the AM and PM peak hours. The elevated traffic volumes on $42^{\text {nd }}$ Street reduce the number of available gaps between vehicles on the mainline roadway, causing difficulties for side street traffic to enter into the flow of traffic.

III. Build Conditions

Traffic Forecasts

Concepts are proposed to better utilize the existing roadway footprint currently accommodating study area traffic. The goal is to not only better manage vehicular traffic, but to also better accommodate high pedestrian volumes. This becomes increasingly crucial due to the number of school-age pedestrians traveling to and from Hubbell Elementary School and Roosevelt High School that are required to cross $42^{\text {nd }}$ Street and other study area roadways on a daily basis. Existing measures have been taken to aid in the performance of these movements (i.e. pedestrian signal and a raised crosswalk with bump-outs) but further improvements can be made. Two primary concepts were developed to better manage traffic throughout the study corridor. The individual attributes of each concept are as follows:

Design Concept 1 (Figure 2)

- The westbound approach from I-235 westbound widened to three lanes of approach from the existing two lanes.
- $42^{\text {nd }}$ Street alignment shifted west to create additional green space and sidewalk near the Shops At Roosevelt.
- Chamberlain Avenue becomes one-way eastbound, east of the private parking lot.
- Two-Way-Left-Turn Lane (TWLTL) on $42^{\text {nd }}$ Street from Rollins Avenue to Crocker Street.
- Southbound, eastbound, and westbound Left-Turn Lanes provided at Crocker/42 ${ }^{\text {nd }}$.
- Traffic Signal at the intersection of $42^{\text {nd }}$ Street at Crocker Street.

Design Concept 2 (Figure 3)

- The westbound approach from I-235 westbound widened to three lanes of approach from the existing two lanes.
- $42^{\text {nd }}$ Street alignment shifted west to create additional green space and sidewalk near the Shops At Roosevelt.
- Additional right of way required west of $42^{\text {nd }}$ Street to accommodate full length right turn lane extending to Chamberlain Avenue with additional thru lane added at southbound $42^{\text {nd }}$ Street at Center Street/ I-235 SB Entrance Ramp.
- Chamberlain Avenue becomes one-way eastbound roadway, east of private parking lot.
- Two-Way-Left-Turn Lane (TWLTL) on $42^{\text {nd }}$ Street from Rollins Avenue to Crocker Street.
- Southbound, eastbound, and westbound Left-Turn Lanes at Crocker/42 ${ }^{\text {nd }}$.
- Traffic Signal at the intersection of $42^{\text {nd }}$ Street at Crocker Street.

Table 3, below, provides an overview of the operation of signalized and side street stop controlled movements during the AM and PM peak hours. AM and PM Peak hours were determined to be the controlling peak periods and were therefore the only peaks analyzed going forward from the existing conditions. A more detailed analysis of the proposed design concepts can be found in appendix A of this document. The analysis performed indicates that little to no intersection failures are anticipated for study area intersections following the implementation of the proposed improvements, and actually show improvements at multiple intersections. Figures 2 and 3 show the preliminary roadway design concepts for which the traffic forecasts were developed.

Table 3: Concept Traffic Operations

\#	Intersection		Level of Service		
		$\mathbf{2 0 1 2}$ Existing	$\mathbf{2 0 1 2}$ Concept	2012 Concept 2	
$\mathbf{1}$	42nd Street at Kingman Boulevard	B / B	B / B	B / B	
$\mathbf{2}$	42nd Street at Crocker Street	F / F	B / B	B / B	
$\mathbf{3}$	42nd Street at Chamberlain Avenue	F / F	D / B	D / B	
$\mathbf{4}$	42nd Street at Rollins Avenue	C / E	A / A	A / A	
$\mathbf{5}$	42nd Street at I-235 Ramps/Center Street	D / B	C / B	C / B	
$\mathbf{6}$	42nd Street at I-235 Ramp/Pleasant Street	A / C	B / C	B / C	
$\mathbf{7}$	43rd Street at Crocker Street	A / A	A / A	A / A	
$\mathbf{8}$	43rd Street at Chamberlain Avenue	B / A	A / A	A / A	

*AM/PM Peak Hour Intersection Level of Service
The significant improvements observed at many of the study area intersection can be attributed to the mitigation in traffic control at the intersection of $42^{\text {nd }}$ Street at Crocker Street as well as the limitations placed on existing $42^{\text {nd }}$ Street accesses. The most difficult movements to complete in

the existing roadway network are the left turns onto $42^{\text {nd }}$ Street from the side street movements. This issue was aided by reversing the direction of traffic in the Shops at Roosevelt parking lot and better channelizing the motorists to enter back onto $42^{\text {nd }}$ Street via the proposed traffic signal at Crocker Street. The proposed signal at Crocker Street also provides a dedicated movement to vehicles entering onto $42^{\text {nd }}$ Street from either side of $42^{\text {nd }}$ Street, which is not available on the existing roadway network.

The variations between Concept 1 and Concept 2 can be seen in the additional capacity available at the intersection of $42^{\text {nd }}$ Street at Center Street/ I- 235 Southbound Ramp. The dedicated southbound right turn lane paired with the two thru-lanes in Concept 2 allows for additional vehicles to pass through the intersection with identical phase lengths compared to the design in Concept 1. The queuing associated with the thru movements during the AM peak hour from Concept 1 to Concept 2 is anticipated to experience a reduction in average queue length from approximately 375 ' to 100 ' and a reduction in the maximum queue length from 540 ' to 150 '. The average left turn queue length is projected to decrease from 280' to 160 ' and the maximum queue from 430' to 340^{\prime} from Concept 1 to Concept 2 . With intersection spacing of approximately 425^{\prime} to Rollins Avenue, a safer environment could be created by eliminating the backed up vehicles from the Rollins Avenue intersection when maximum queues are present.

A traffic signal warrant analysis was also performed for the intersection of $42^{\text {nd }}$ Street at Crocker Street under existing conditions and with traffic redistributed based upon the redistribution of the Shops at Roosevelt exiting traffic. The results of this analysis can be seen in Appendix B of this document. The analysis shows that a traffic signal is warranted when vehicles are redistributed to Crocker Street from the Shops at Roosevelt.

IV. Pedestrian Analysis

Pedestrian counts were performed at select study intersections and mid-block crossing locations on December 7, 2012. Additional counts performed at study intersections were completed to ensure accuracy of previous pedestrian counts and to collect data at mid-block pedestrian crossing locations. It was determined that the majority of pedestrians are crossing study area roadways at intersections and designated locations. It is apparent that the corridor has taken measures to promote pedestrian safety within the corridor and the lack of any pedestrian crashes in the past three years fortifies this concept. Figure 4 illustrates the peak pedestrian volumes at both designated and mid-block crossing locations.

The design concepts also incorporate two design features that will allow the corridor to continue to efficiently accommodate pedestrians and improve safety. The expansion of green space and sidewalk on the east side of the roadway creates a safer and better established link between the traffic signal at Center Street and Chamberlain Avenue. It will also be necessary to ensure that the existing pedestrian signal and proposed signal at Crocker Street are coordinated to efficiently accommodate both motorists and pedestrians. Coordination between the signals would promote fluid northbound and southbound vehicle movements and ensure high compliance rates by ensuring that the signal at Crocker Street is at a stop condition when the pedestrian flasher is activated.

V. Safety Analysis

As an accompaniment to the traffic analysis, a safety analysis was performed for the study area. Six intersections were evaluated to determine whether the reported crash events from 2009 2011 reported as above the statewide average for a comparable intersection. Intersection crash rates are evaluated based upon the number of crashes occurring at an intersection as a function of daily traffic volumes and study period.

Crash data was attained using a program available through the Iowa Department of Transportation (IADOT) known as the Crash Mapping Analysis Tool (CMAT). This program provides an interactive format that allows users to isolate and identify intersection and segment crashes on all documented roadways throughout the state. Relevant data was attained through this program and analyzed for the years of 2009-2011. Intersection crash rates were then compared against averages attained from the 2007-2009 MnDOT average crash rates because current intersections crash rates could not be attained through IADOT. Table 4, below, provides a summary of the crashes recorded.

Table 4: Existing Crash Analysis (2009-2011)

Intersection	Total Crashes	Crash Rate	MnDOT Average
42nd Street at Pleasant Street	8	0.36	0.7
42nd Street at Center Street	22	$\mathbf{0 . 9 9}$	0.7
42nd Street at Rollins Avenue	7	$\mathbf{0 . 3 9}$	0.2
42nd Street at Chamberlain Drive	10	$\mathbf{0 . 5 2}$	0.2
42nd Street at Crocker Street	8	$\mathbf{0 . 4 3}$	0.2
42nd Street between Crocker \& Kingman	3	-	-
42nd Street at Kingman Avenue	13	0.63	0.7

*Crash rates based upon number of crashes per million entering vehicles (MEV)
The intersections in Table 3 displaying above average crash rates are further analyzed to determine the mitigation required to improve the overall operation and safety throughout the study area:

$42^{\text {nd }}$ Street at Center Street

The crashes documented at the intersection of $42^{\text {nd }}$ Street at Center Street are a factor of the high volumes of traffic utilizing the intersection as well as the irregularity of the existing intersection geometry. The most prevalent crash type occurring at the intersection over the study period is rear end crashes. This is common to nearly all signalized intersections due to varying traffic control messages paired with differing driver aggressiveness/behavior. Right angle crashes are the second most prevalent, which is irregular due to the ability of a signalized intersection to separate conflicting movements with different phases. These crashes appear to occur due to drivers intentionally running the red light and hitting a vehicle completing a legal movement.

$42^{\text {nd }}$ Street at Rollins Avenue

Proposed improvements could better safety by reassigning vehicles entering the Shops At Roosevelt to the Chamberlain Avenue intersection and vehicles exiting the Shops At Roosevelt to the proposed Crocker Street traffic signal via eastbound Rollins Avenue and northbound $41^{\text {st }}$

Street. The redesign of Shops At Roosevelt parking lot will reverse parking and the flow of traffic making the entrance at Chamberlain Avenue and the exit onto Rollins Avenue. The reconfiguration should reduce the number of vehicles attempting to enter $42^{\text {nd }}$ Street by way of the eastbound one-way roadway of Rollins Avenue. The signal at $42^{\text {nd }}$ Street at Crocker Street would also provide vehicles with a dedicated movement onto $42^{\text {nd }}$ Street, creating a much safer environment then attempting to enter from the side street stop control at Rollins Avenue.
$42^{\text {nd }}$ Street at Chamberlain Drive
The intersection of $42^{\text {nd }}$ Street at Chamberlain Drive currently operates as a near full access intersection. The improvements proposed in Concept 1 and Concept 2 limit the west leg of the intersection to one-way eastbound-right traffic. The mitigation reduces the overall access points at the existing intersection by seven and therefore could potentially have a positive impact on the overall safety of the intersection. With the removal of exiting westbound traffic on the west leg of the intersection, a combination of crossing, turning, and merging conflict points are eliminated.

$\underline{42^{\text {nd }} \text { Street at Crocker Street }}$

The proposed left-turn lanes remove vehicles from the through movement and could potentially reduce the number of rear end crashes occurring at the intersection. The proposed signal at $42^{\text {nd }}$ Street at Crocker Street would also provide vehicles with a dedicated movement onto $42^{\text {nd }}$ Street, creating a much safer environment then attempting to enter from the side street stop control from the minor approaches.
A comprehensive table of crashes occurring at study area intersection can be found in appendix C of this document.

VI. Conclusions and Recommendations

Based on the analysis, the following conclusions and recommendations have been developed for your consideration.

- The proposed improvements provide a positive impact to the overall study area traffic operations due to improved access management and the proposed traffic signal at the intersection of $42^{\text {nd }}$ Street at Crocker Street. The traffic signal provides a dedicated movement to local traffic that currently have difficulties entering onto $42^{\text {nd }}$ Street due to the constant stream of traffic during peak hours.
- The parking lot for the Shops At Roosevelt will no longer be able to accommodate northbound delivery vehicles due to reconfiguration, but will still be able to handle 30' single unit trucks in the southbound direction. Delivery trucks will then be expected to drop off items at the parking lot behind the Shops or a possible dedicated parking stall could be considered on Rollins Avenue to ensure a convenient drop off area is available.
- A traffic signal is justified at the intersection of $42^{\text {nd }}$ Street at Crocker Street due to the changes proposed at Chamberlain Avenue and reconfiguration of the Shops At Roosevelt parking lot. These improvements along with increased signage and enforcement are anticipated to better route traffic from the parking lot to eastbound Rollins Avenue and north to the Crocker Street signal.
- The proposed design concepts are anticipated to better accommodate pedestrian movements by coordinating the proposed Crocker Street traffic signal with the pedestrian signal and adding a sidewalk link from Center Street to Chamberlain Avenue east of $42^{\text {nd }}$ Street.
- The addition of an independent left-turn lane to the east leg improves the overall operations at $42^{\text {nd }}$ Street at I-235 SB Ramp/Center Street because less time is required to clear the westbound queue and a larger portion of the cycle length can be allocated to the primary northbound and southbound movements. The improvements on the southbound approach under Concept 2 are also projected to reduce vehicle queuing experienced by motorists and improve safety at Rollins by keeping stopped vehicles from backing up into the intersection.
- A reduction in study area crashes is anticipated with the proposed improvements due to:
- Improved traffic operation stemming from more defined travel paths on $42^{\text {nd }}$ Street traffic due to more defined lane designations.
- Additional turn lanes to remove slowing traffic from mainline $42^{\text {nd }}$ Street
- A dedicated movement available to eastbound and westbound traffic at the intersection of $42^{\text {nd }}$ Street at Crocker Street that provides the minor approaches with a dedicated movement to enter into the mainline flow of traffic.
- A reduction in conflict points at the intersection of $42^{\text {nd }}$ Street at Chamberlain Drive stemming from the elimination of westbound traffic onto the west leg of the intersection.

Appendix A Level of Service Tables

Table 5: Preliminary Design Concept 1 Build

Intersection	Intersection Control	Peak Hour	Intersection LOS	Side Street LOS	Unacceptable Movements
42nd Street at	Traffic	AM	16-B	-	
Kingman Boulevard	Signal	PM	11--	-	
42nd Street at	Traffic	AM	11-B	-	
Crocker Street	Signal	PM	13-B	-	
42nd Street at	Side Street	AM	-	35-D	
Chamberlain Avenue	Ston Signs	PM	-	15-B	
42nd Street at	Side Street	AM	-	1-A	
Rollins Avenue	Ston Signs	PM	-	1-A	
42nd Street at I-235	Traffic	AM	32-C	-	
Rambs/Center Street	Signal	PM	14-B	-	
42nd Street at I-235	Traffic	AM	11-B	-	
Ramo/Pleasant Street	Signal	PM	26-C	-	
43rd Street at	Side Street	AM	-	9-A	
Crocker Street	Ston Signs	PM	-	8--A	
43rd Street at	Side Street	AM	-	9-A	
Chamberlain Avenue	Ston Signs	PM	-	9-Ā	

Table 6: Preliminary Design Concept 2 Build

Intersection	Intersection	Peak Hour	Intersection	Side Street	Unacceptable
42nd Street at Kingman Boulevard	Traffic Signal	AM	16-B	-	
		PM	11-B	-	
42nd Street at Crocker Street	Traffic Signal	AM	11-B	-	
		PM	11-B	-	
42nd Street at Chamberlain Avenue	Side Street Stop Signs	AM	-	$35-\mathrm{D}$	
		PM	-	15-B	
42nd Street at Rollins Avenue	Side Street Stop Signs	AM	-	1-A	
		PM	-	1-A	
42nd Street at I-235 Ramps/Center Street	Traffic Signal	AM	23-C	-	
		PM	13-B	-	
42nd Street at I-235 Ramp/Pleasant Street	Traffic Signal	AM	11-B	-	
		PM	26-C	-	
43rd Street at Crocker Street	Side Street Stop Signs	AM	-	$9-\mathrm{A}$	
		PM	-	9-A	
43rd Street at Chamberlain Avenue	Side Street Stop Signs	AM	-	9-A	
		PM	-	9-A	

Appendix B
 Traffic Signal Warrants

SIGNAL WARRANTS ANALYSIS

2012 Existing Conditions

LOCATION: Des Moines
COUNTY: Polk
REF. POINT:
DATE: 12/8/2012
OPERATOR: JJB

Speed	Approach Description	Lanes
30	Major App1: 42nd Street Northbound	1
30	Major App3: 42nd Street Southbound	1
30	Minor App2: Crocker Street Eastbound	1
30	Minor App4: Crocker Street Westbound	1

0.70 FACTOR USED?	No
	NOPULATION < 10,000?
	No
EXISTING SIGNAL?	No

	Met (Hr)	Required (Hr)	
Warrant 1A	0	8	Not satisfied
Warrant 1B	1	8	Not satisfied
Warrant 2	0	4	Not satisfied
Warrant 3	0	1	Not satisfied
Warrant 7	4	8	Not satisfied

LOCATION: Des Moines
COUNTY: Polk
REF. POINT:
DATE: 12/8/2012

OPERATOR: JJB

Speed	Approach Description	Lanes
30	Major App1:	42nd Street Northbound
30	Major App3:	42nd Street Southbound
30	Minor App2:	Crocker Street Eastbound
30	Minor App4:	Crocker Street Westbound

0.70 FACTOR USED?	No
POPULATION < 10,000?	No
EXISTING SIGNAL?	No

Figure 1. Four Hour and Peak Hour Warrant Analysis
Note: For data points outside the graph range, check the minor street volume against the lower thresholds

Major	Warrant Criteria Warrant 2, F Warrant 3, Pea	Actual Major	Hourly Count Actual Hourly Count	
200			98	5
300	360	475	58	5
400	310	425	43	5
500	260	370	69	9
600	215	330	194	18
700	180	280	588	32
800	150	240	978	41
900	125	204	1061	46
1000	100	175	765	37
1100	85	150	894	30
1200	80	130	947	28
1300	80	100	838	62
1400	80	100	907	78
1500	80	100	104	70
1600	80		1084	62
1700	80		1337	54
1800	80		1132	49
			829	57
			710	46
			567	34
			195	17
				11
				11
				6

SIGNAL WARRANTS ANALYSIS

2012 Build Conditions

LOCATION: Des Moines
COUNTY: Polk
REF. POINT:
DATE: 12/8/2012
OPERATOR: JJB

Speed	Approach Description	Lanes
30	Major App1:	42nd Street Northbound
30	Major App3:	42nd Street Southbound
30	Minor App2:	Crocker Street Eastbound

$l\|l\|$	No
	70 FACTOR USED?
POPULATION < 10,000?	No
EXISTING SIGNAL?	No

THRESHOLDS	1B:			500/750			150/75	150/75	
HOUR	MAJOR APP. 1	MAJOR APP. 3	$\begin{gathered} \hline \text { TOTAL } \\ 1+3 \end{gathered}$	MAJOR 1A/1B	MINOR APP. 2	MINOR 2 1A/1B	MINOR APP. 4	MINOR 4 1A/1B	$\begin{gathered} \hline \text { MET SAME } \\ \text { 1A/1B } \end{gathered}$
0:00-1:00	68	30	98	/	5	/	5	/	/
1:00-2:00	46	12	58	/	5	/	5	/	1
2:00-3:00	26	7	33	/	5	/	5	/	/
3:00-4:00	27	12	40	/	9	/	9	/	/
4:00-5:00	22	47	69	/	18	/	18	/	/
5:00-6:00	88	106	194	1	32	/	42	1	1
6:00-7:00	161	427	588	X/	41	/	66	1	1
7:00-8:00	223	755	978	X/X	18	/	67	1	/
8:00-9:00	454	608	1061	X/X	14	/	52	/	1
9:00-10:00	395	369	765	X/X	12	1	58	1	1
10:00-11:00	523	371	894	X/X	11	1	62	1	/
11:00-12:00	558	389	947	X/X	16	1	102	/X	/X
12:00-13:00	441	397	838	X/X	20	1	112	/X	/X
13:00-14:00	483	424	907	X/X	26	1	98	/X	/X
14:00-15:00	525	450	975	X/X	33	/	101	/X	/X
15:00-16:00	567	477	1044	X/X	39	1	101	/X	/X
16:00-17:00	647	437	1085	X/X	16	1	104	/X	/X
17:00-18:00	884	453	1337	X/X	20	/	104	/X	/X
18:00-19:00	649	484	1132	X/X	16	/	79	/X	/X
19:00-20:00	423	406	829	X/X	12	/	62	/	/
20:00-21:00	376	334	710	X/	6	/	28	1	1
21:00-22:00	323	244	567	X/	4	1	11	1	1
22:00-23:00	204	147	351	/	4	1	11	1	1
23:00-24:00	116	83	199	1	4	1	6	1	1

Warrant 1A	0	8	Not satisfied
Warrant 1B	8	8	Satisfied
Warrant 2	3	4	Not satisfied
Warrant 3	0	1	Not satisfied
Warrant 7	11	8	Satisfied, check accident record

LOCATION: Des Moines
COUNTY: Polk
REF. POINT:
DATE: 12/8/2012

OPERATOR: JJB

Speed	Approach Description	Lanes
30	Major App1:	42nd Street Northbound
30	Major App3:	42nd Street Southbound
30	Minor App2:	Crocker Street Eastbound
30	Minor App4:	Crocker Street Westbound

0.70 FACTOR USED?	No
POPULATION < 10,000?	No
EXISTING SIGNAL?	No

Figure 1. Four Hour and Peak Hour Warrant Analysis
Note: For data points outside the graph range, check the minor street volume against the lower thresholds

Major	Warrant Criteria Warrant 2, F Warrant 3, Pea	Actual Major	Hourly Count Actual Hourly Count	
200			58	5
300	360		58	5
400	310	475	33	5
500	260	425	40	9
600	215	370	69	18
700	180	330	194	42
800	150	280	588	66
900	125	240	978	67
1000	100	204	1061	52
1100	85	175	765	58
1200	80	150	894	62
1300	80	130	947	102
1400	80	115	838	112
1500	80	100	907	98
1600	80	100	975	101
1700	80	100	1044	101
1800	80	100	1085	104
			1337	104
			1132	79
			829	62
			710	28
			567	11
			351	11
			199	6

Appendix C

Crash Analysis

Crash Summary

Intersection	Total Crashes	Year			Severity				
		2009	2010	2011	PDO	C	B	A	Fatal
42nd Street at Pleasant Street	8	3	1	4	5	3			
42nd Street at Center Street	22	9	6	7	19	3			
42nd Street at Rollins Avenue	7	3	0	4	5	2			
42nd Street at Chamberlain Drive	10	4	5	1	5	4	1		
42nd Street at Crocker Street	8	4	2	2	2	6	1		
42nd Street between Crocker \& Kingman	3	1	2	0	3				
42nd Street at Kingman Avenue	13	5	6	2	9	2	2		

Intersection	Crash Type						
	Rear End	Right Angle	Left-Turn	Sideswipe (Same)	Sideswipe (Passing)	Ran Off Road	Head On
42nd Street at Pleasant Street	6					2	
42nd Street at Center Street	8	6	2	1	1	4	
42nd Street at Rollins Avenue	6						1
42nd Street at Chamberlain Drive	4	2		2		2	
42nd Street at Crocker Street	3	3				1	2
42nd Street between Crocker \& Kingman	3						
42nd Street at Kingman Avenue	8	3				2	

Application for FY2017 Traffic Safety Funds Iowa Department of Transportation

(Site Specific)

Martin Luther King Jr. Pkwy and Prospect Rd

Traffic Signal Installation

Division of Traffic and Transportation Jennifer L. McCoy, P.E., P.T.O.E.

City Traffic Engineer

August, 2015

QIOWADOT Application for TRAFFIC SAFETY FUNDS

GENERAL INFORMATION	DATE: August 7, 2015
Location / Title of Project	Martin Luther King Jr Parkway \& Prospect Road Signal
Applicant City of Des	City of Des Moines
Contact Person Calvin M	ler Title Civil Engineer 1
Complete Mailing Address	400 Robert D Ray Drive
	Des Moines, lowa 50309
Phone 515-283-4748	E-Mail cbmiller@dmgov.org
(Area Code)	

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) N/A
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone \qquad E-Mail \qquad
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

Application Type

Site Specific
Traffic Control Device
Safety Study

Funding Amount

Total Project Cost	$\$ 290,000$
Safety Funds Requested	$\$ 120,000$

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the

Signed:

T. M. Franklin Comes

Roll Call Number
$-15-1230$

DateJuly 27, 2015 \qquad

APPROVING FISCAL YRAR 2017 TRAFFIC SAFETY FUND APPLICATIONS TO THE IOWA DEPARTMENT OF TRANSPORTATION

BE IT RESOLVED, BY THE CITY COUNCIL OF THE CITY OF DES MOINES, IOWA:

That the City Manager is hereby directed to submit applications to the Iowa Department of Transporiation for Traffic Safety Funds to cover a portion of the construction costs for the following projects:

1. $\quad 42^{\text {nd }}$ Street Streetscape
2. Maxtin Luther King Jr. Parkway and Prospect Road Traffic Signal Installation
3. Citywide Fixed-Time Signal Upgrade Project - Phase 2

The City further agrees that if these projects are funded and constructed, the City of Des Moines will provide adequate resources to maintain the improvements for their useful life.

$$
\text { (Council Communication Number } 15: 428 \text { Attached) }
$$

Moved by Q atto \qquad to adopt.

APPROVED AS TO FORM:

COUNCL ACTION	Yeas	NAYS	PASS	ABSENT
COWMIE	\rightarrow			
COLEMAN	\cdots			
Gatto	\cdots			
GRAY	L-			
HENSLEY	4			
MAHAFFEX	\checkmark			
MOORE	4			
TOTAL	1			

CERTIFICATE
I, DIANE RAUH, City Clerk of said City hereby certify that at a meeting of the City Council of said City of Des Moines, held on the above date, among other proceedings the above was adopted.

IN WITNESS WHEREOE, I have hereunto set my hand and affixed my seal the day and year first above written.

City Clerk

PROJECT DESCRIPTION

Martin Luther King Jr. Parkway and Prospect Road Intersection Signalization

Project Description:

The proposed improvement includes the installation of a traffic signal at the intersection of Martin Luther King Jr. Parkway (MLK Parkway) and Prospect Road. Pedestrian crossings would be provided at the intersection. A 10' clear zone will be established within the limits of the project.

New traffic signals with backplates and detection for fully-actuated operation would be installed. This signal will include pedestrian countdown heads and phasing, along with left turn phasing on MLK Parkway. The signals would be interconnected to the existing traffic signals along Martin Luther King Jr Parkway.
The total project cost is estimated to be $\$ 290,000$. A total of $\$ 120,000$ is being requested from State Traffic Safety Improvement Program funds.

Existing Conditions:

MLK Parkway is classified as a Principal Arterial Roadway. In this area it has a four lane crosssection with two-through lanes in each direction. Designated left-turn lanes are provided northbound and southbound at Prospect Road. The posted speed limit on this section of MLK Parkway is $35-\mathrm{MPH}$. Travel speeds show the $85^{\text {th }}$ percentile speed on MLK Parkway as 38 MPH with a $10-\mathrm{mph}$ pace speed of $32-41 \mathrm{MPH}$.

Prospect Road is a two-lane neighborhood street providing access to the Prospect Park Neighborhood. Prospect Road provides a direct connection from Hickman Road to MLK Parkway with access through Prospect Park which provides boating, playground, picnicking, and other amenities. The speed limit on this section of Prospect Road is 25 MPH.
The Des Moines Area Regional Transit (DART) has bus service along this section of MLK Parkway. There is a DART stop at this intersection creating pedestrian crossing traffic at this intersection.

A 48 hour weekday traffic count was collected by the City of Des Moines in May 2014 at this intersection. The approach traffic volume recorded on MLK Parkway was 21,890 vehicles per day in the area by Prospect Road. The approach traffic volume recorded on Prospect Road at MLK Parkway was 1,450 vehicles per day.

Project Justification:

A traffic study dated July 12, 2014, prepared by the City of Des Moines, is included in the application.

Traffic signals are warranted at this location based on Warrant No. 3B (Peak Hour Volume) and No. 6 (Coordinated Signal System).

Traffic signal warrants have been added in Exhibit J.
Of the nine reported crashes, there were four personal injury crashes. The majority of the crashes were right angle, left turn, and rear-end. Left-turning and right angle types would generally be considered correctible by the improvements planned as part of this project.
Based on current IDOT value factors, the total estimated loss from crashes during the described six-year period is $\$ 531,600$ (See Exhibit "L"). Assuming an overall crash reduction factor of 20 percent and an estimated project life of 15 years, the request for $\$ 120,000$ of Traffic Safety relates to a benefit-cost factor of 1.87:1.

DATE: July 9, 2014
FROM: Jennifer McCoy, City Traffic Engineer
SUBJECT: Signal Warrant Study - Prospect Rd and Martin Luther King Parkway

RECOMMENDATION:

The installation of a traffic signal at the intersection of Martin Luther King Parkway and Prospect Road is recommended.

Study:

Introduction

Traffic signals are valuable devices for the control of vehicle and pedestrian traffic. After extensive study and analysis, the Federal Highway Administration developed the eight traffic signal warrants contained within the MUTCD that define the minimum conditions under which the installation of a traffic control signal might be justified. The MUTCD states that traffic signals should not be installed unless one or more of the signal warrants are satisfied

Purpose

A petition was submitted by the residents in the Prospect Park Neighborhood Association on the west side of Martin Luther King Parkway (MLK Parkway) and Prospect Road intersection along with staff from the Des Moines Public Schools Bus Garage located to the east of the intersection stating that they wish to have this location examined for the installation of a signal. Letters of support for this signal and for the city to conduct a study were received from Des Moines Public Schools, Prospect Park Neighborhood Association, Chautauqua Park Neighborhood Association, former Des Moines Mayor Preston Daniels, and current Councilman Bill Gray.

Roadway Elements

Martin Luther King Parkway (MLK Parkway) is a Principal Arterial Roadway. In this area it has a four lane cross-section with two-through lanes in each direction. Designated left-turn lanes are provided northbound and southbound at Prospect Road. The posted speed limit on this section of MLK Parkway is $35-\mathrm{MPH}$. Travel speeds show an $85^{\text {th }}$ percentile speed on MLK Parkway as 38 MPH with a $10-\mathrm{mph}$ pace speed of 32-41 MPH.

Prospect Road is a two-lane neighborhood street providing access to the Prospect Park Neighborhood. Figure 1 shows the current intersection layout and surrounding land uses. Prospect Road provides a direct connection from Hickman Road to MLK Parkway with access through Prospect Park which includes boating, playground, picnicking, and other amenities. The posted speed limit on this section of Prospect Road by MLK Parkway is 25 MPH .

The nearest adjacent traffic signals are approximately $1 / 3$ mile to the south at Hickman Road and $1 / 3$ mile to the north at Urbandale Avenue.

Traffic Counts

A 48 hour weekday traffic count collected in May 2014 at this intersection was used for this study. The approach traffic volume measured on MLK Parkway was 21,890 vehicles per day in the area by Prospect Road. The approach traffic volume measured on Prospect Road at MLK Parkway was 1,450 vehicles per day.

The existing peak hour volumes for the MLK and Prospect intersection are shown below in table 1:
Table 1 -Existing Peak Hour Approach Volumes

Roadway	Movement	A.M. Peak Hour (vph)	P.M. Peak Hour (vph)
MLK	NB	513	1009
	SB	1211	931
Prospect	EB	21	18
	WB	104	155

Bus Routing

The Des Moines Public School Bus Transportation Facility is located in the northeast quadrant of this intersection, with access drives onto both MLK Parkway and Prospect Road. Currently, their bus drivers are not allowed to make a westbound left turn from Prospect Road onto MLK Parkway. Those drivers wishing to go south or west from the facility must make a right hand turn at the intersection of MLK and Prospect or travel south east on Prospect to Hickman Road and make a -ight turn. The alternative route detours were provided by drivers of the district's buses. These three different detours require that buses travel up to 16 blocks out of their way through a park or through a narrow residential street, Payne Road. Figures 2-4 show the location of these current detours. The school district has approximately 104 buses daily that leave the bus garage. If a signal were installed at MLK and Prospect Road, it could be assumed that at least 40 buses per day would turn left at the new
signal instead of using the detour routes they are currently taking. The schaol district estimates that these detours cost them approximately $\$ 10,000$ per year in extra fuel costs.

Signal Warrant Study- MLK \& Prospect Page 3

Warrant Analysis

The warrant study analysis was based on the signal warrants given in the 2009 Manual on Uniform Traffic Control Devices (MUTCD). Typically, a percentage of the vehicles turning right from the minor street (Prospect Road) are not considered in the signal warrant analysis because these vehicles experience very little delay and marginally benefit from the traffic signal. The analysis of the intersection conditions of MLK \& Prospect measured against the signal warrants indicates that the four-hour and peak hour warrant were met with no reduction for right turns.

However, based upon field observations and the understanding that buses now taking a right turn will likely take a left turn if a traffic signal were present, a 40% reduction for right turns was applied. This resulted in this location meeting one warrant, the peak hour warrant, as shown below in table 2 :

Table 2 - Signal Warrant Analysis Results

Warrant \#	Description	Satisfied?
1A	Eight-Hour Vehicular Volume - Condition A	No
1B	Eight-Hour Vehicular Volume - Condition B	No
2	Four-Hour Vehicular Volume	No
3	Peak Hour	Yes
4	Pedestrian Volume	N/A
5	School Crossing	N/A
6	Coordinated Signal System	Yes
7	Crash Experience	No
8	Roadway Network	Not Needed
Note: Warrant Study worksheets are contained in Appendix A.		

There are three scenarios for which Warrant 1 could be satisfied: the traffic volumes at the intersection could satisfy the Minimum Vehicular Volume criteria for a minimum of 8 hours - or - the traffic volumes at the intersection could satisfy the Interruption of Continuous Traffic criteria for a minimum of 8 hours - or - the Minimum Vehicular Volume criteria and the Interruption of Continuous Traffic criteria could

Signal Warrant Study- MLK \& Prospect
Page 4
be satisfied to 80% of the requirements for a minimum of 8 hours each. In this study, the Minimum Vehicular Volume criterion, Condition A and the Interruption of Continuous Traffic criterion, Condition B, were not satisfied for any hours.

Warrant 2 requires that for a minimum of four hours the plotted points representing the total volume on the major street and the corresponding volume on the higher volume minor street approach fall above the curve specified in Figure 4C-1 in the 2009 MUTCD. In this study, the Four Hour Vehicular Volume Warrant was not satisfied for any hour, therefore not satisfying Warrant 2.

There are two scenarios for satisfying Warrant 3: the measured delay, side street volume, and total intersection volume exceed the values specified in the MUTCD during the peak hour at the intersection - or - for a minimum of one hour the plotted point representing the total volume on the major street and the corresponding volume on the higher volume minor street approach falls above the curve specified in the MUTCD corresponding to the appropriate lane configuration and speed. The actual delay was not measured. Scenario B - the peak hour volume plotted point was met. Therefore, Warrant 3 was satisfied.

Warrant 4, the Pedestrian Volume warrant, was not evaluated at this intersection. There are pedestrian crosswalks at the intersection however observations of the intersection did not identify any significant amount of pedestrian activity. Warrant 5, the School Crossing warrant, was not evaluated at this intersection because this intersection is not a school crossing location. Warrant 6, the Coordinated Signal System warrant, and Warrant 8, the Roadway Network warrant, are not applicable to this intersection because the traffic signal is not needed to provide proper platooning of vehicles.

Warrant 6, Coordinated Signal System, allows for a traffic signal to be installed where the existing traffic control signals do not provide the necessary degree of vehicular platooning, and the proposed signals would provide good traffic signal progression. Because the existing signals are approximately 3,700 feet apart, there is poor platooning of vehicles. New traffic signals at Prospect Road, which is midway between the two existing signals, would allow for good platooning of traffic flow through this corridor.

Warrant 7, the Crash Experience warrant, requires that there have been five collisions of the type potentially preventable by signal installation in a recent 12 month-period at the intersection. Collision reports were reviewed for the intersection for the years 2004-2012. During this eight-year time period, there were 19 total collisions at the intersection. These crashes resulted in 21 injuries. There were not five or more crashes in a one-year period that could be prevented by installation of a traffic signal at this location therefore; the Crash Experience warrant is not satisfied.

Summary:

The 2009 Manual on Uniform Traffic Control Devices (MUTCD) outlines eight traffic signal warrants contained within the MUTCD that define the minimum conditions under which the installation of a traffic control signal might be justified.

The installation of the traffic signal at Martin Luther King Parkway and Prospect Road is recommended for the following reasons:

- The Peak Hour warrant and the Coordinated Signal System warrant are met
- Crashes are not excessive, but over half of the crashes that occurred have resulted in major or minor injuries
- A signal at this location would allow for more direct routing of large school buses instead of alternative routing through narrow residential streets and a city park

[^3]
Exhibit C

Opinion of Probable Cost
MLK Parkway \& Prospect Road Traffic Signalization
07/06/15

NO	ITEM	UNIT	UNIT COST	Quant.	TOTAL
1	TRAFFIC SIGNALIZATION	LS	\$175,000.00	1	\$175,000.00
2	FIBER OPTIC CABLE - 12 SM	LIN FT	\$2.50	2000	\$5,000.00
3	HANDHOLE - TYPE III	EACH	\$1,250.00	2	\$2,500.00
4	FIBER OPTIC CONNECTION (HICKMAN/MLK)	LS	\$7,500.00	1	\$7,500.00
5	PAINTED PAVEMENT MARKINGS	STA	\$150.00	6.5	\$975.00
6	CURB RAMP MODIFICATIONS	EACH	\$2,500.00	4	\$10,000.00
7	POLE/MAST ARM REMOVAL (ADVANCED)	EACH	\$1,500.00	2	\$3,000.00
8	TRAFFIC CONTROL	LS	\$2,500.00	1	\$2,500.00
9	MOBILIZATION	LS	\$7,500.00	1	\$7,500.00
10	CONSTRUCTION SURVEY	LS	\$4,500.00	1	\$4,500.00

SUBTOTAL	$\$ 218,475.00$
15\% Contingency	$\$ 32,772.00$
CONSTRUCTION TOTAL	$\$ 251,247.00$
Design / Bid / CA (15\% of Construction Costs)	$\$ 37,688.00$
TOTAL PROJECT COST	$\$ 288,935$

Project Description
New traffic signalization, fiber optic interconnection to the traffic signals at MLK \& Hickman Road, curb ramp improvements to provide E/W crosswalks

TIME SCHEDULE

MARTIN LUTHER KING JR PKWY AND PROSPECT RD TRAFFIC SIGNAL INSTALLATION

Project Approval:
Agreement Signed:
Project bid:
Construction completed:
Project Closeout:

December, 2015
April, 2016
March, 2017
October, 2017
June, 2018

VICINITY MAP

MLK Parkway looking South at Prospect Road

Prospect Rd looking West at MLK Parkway

Exhibit F

MLK Parkway looking North at Prospect Road

Prospect Road looking East at MLK Parkway

EXISTING AND PROPOSED CONDITIONS

AERIAL PHOTOGRAPH

400 Robert D. Ray Dr.
Des Moines, IA. 50309
(515) 283-4973

Site Code: \#23
Code: \#23
Station ID:
orth of Prospect Rd Southbound Traffic Latitude: $0^{\prime} 0.0000$ Undefined

Site Code: \#22 M.L. King Jr. Pkwy.-South of Prospect Rd Latitude: $0^{\circ} 0.0000$ Undefined

Latitude: $0^{\prime} 0.0000$ Undefined

Start	27-May-14		28-May-14		29-May-14		30-May-14		31-May-14		01-Jun-14		02-Jun-14		Week Average	
Time	EB	WB														
12:00 AM		*	7	9	4	4	9	5		*	*	*		*	7	6
01:00	*	*	8	2	8	3	8	4	*	*	*	*		*	8	3
02:00	*	*	3	2	4	4	5	7	*	*	*	*		*	4	4
03:00	*	*	2	2	3	1	6	4	*	*	*	*		*	4	2
04:00	*	*	9	4	13	2	6	1	*	*	*	*		*	9	2
05:00	*	*	63	13	58	12	60	13	*	*	*	*		*	60	13
06:00	*	*	81	59	88	56	73	56	*	*	*	*		*	81	57
07:00	*	*	133	36	114	47	121	54	*	*	*	*		*	123	46
08:00	*	*	84	55	97	72	77	59	*	*	*	*		*	86	62
09:00	*	*	61	86	60	79	75	98	*	*	*	*		*	65	88
10:00	*	*	62	92	64	88	73	104	*	*	*	*		*	66	95
11:00	*	*	95	82	67	90	*	*	*	*	*	*		*	81	86
12:00 PM	*	*	100	111	86	100	*	*	*	*	*	*		*	93	106
01:00	*	*	79	102	117	92	*	*	*	*	*	*		*	98	97
02:00	87	110	87	109	78	99	*	*	*	*	*	*		*	84	106
03:00	87	125	77	164	92	131	*	*	*	*	*	*		*	85	140
04:00	85	151	93	131	82	155	*	*	*	*	*	*		*	87	146
05:00	86	125	93	111	77	125	*	*	*	*	*	*		*	85	120
06:00	69	77	81	91	76	69	-	-	*	*	*	*		*	75	79
07:00	57	65	67	71	70	78	*	*	*	*	*	*		*	65	71
08:00	46	64	57	67	61	69	*	*	*	*	*	*		*	55	67
09:00	42	32	42	37	27	34	*	*	*	*	*	*		*	37	34
10:00	13	17	17	21	20	23	*	*	*	*	*	*		*	17	20
11:00	10	14	10	14	13	18	*	*	*	*	*	*		*	11	15
Total	582	780	1411	1471	1379	1451	513	405	0	0	0	0		0	1386	1465
Day																
AM Peak	-	-	07:00	10:00	07:00	11:00	07:00	10:00	-	-	-	-		-	07:00	10:00
Vol.	-	-	133	92	114	90	121	104	-	-	-	-		-	123	95
PM Peak			$12: 00$	15:00	13:00	16:00	-	-	-	-	-	-		-	13:00	16:00
Vol.	87	151	100	164	117	155	-	-	-	-	-	-		-	98	146
Comb. Total	1362		2882		2830		918		0		0		0		2851	
ADT	ADT 2,850		AADT 2,850													

SIGNAL WARRANT STUDY WARRANT SUMMARY

LOCATION:	N/S STREET		E/W STREET	DATE OF COUNT
	MLK Pkwy		Prospect	5/12/2014
APPROACH	\# OF LANES	MAJOR or MINOR?	PEAK HOUR:	16:00
NB THRU LANES	2	MAJOR	85TH \%TILE SPEED:	35
SB THRU LANES	2	MAJOR	PEDESTRIAN SPEED:	4
EB THRU LANES	1	MINOR	DISTANCE TO NEXT SIGNAL:	1760
WB THRU LANES	1	MINOR	MEDIAN WIDTH:	0

WARRANT	\# MET	\# REQUIRED	WARRANT MET?
\#1 EIGHT HOUR VEHICULAR VOLUME			NO
CONDITION A: MINIMUM VEHICULAR VOLUME			
HOURS	0	8	NO
CONDITION B: INTERRUPTION OF CONTINUOUS TRAFFIC			
HOURS	1	8	NO
CONDITION A + CONDITION B			
CONDITION A HOURS	0	8	
CONDITION B HOURS	3	8	NO
\#2 FOUR HOUR VEHICULAR VOLUME			
HOURS	1	>4	NO
\#3 PEAK HOUR			YES
CONDITION A: DELAY AND VOLUME PART 1. VEHICLE-HOURS DELAY			NO
VEHICLE-HOURS		4	NO
PART 2. MINOR STREET VOLUME			
VEHICLES PER HOUR	89	100	NO
PART 3. INTERSECTION VOLUME			
VEHICLES PER HOUR	1957	800	YES
CONDITION B: PLOTTED POINT			YES
HOURS	1	1	YES
\#4 PEDESTRIAN VOLUME			
HOURS	0	4 OR 1	Not Applicable
\#5 SCHOOL CROSSING			
GAPS			Not Applicable
PEDESTRIANS		>10	
\#6 COORDINATED SIGNAL SYSTEM			YES
\#7 CRASH EXPERIENCE			NO
*8 ROADWAY NETWORK CRASHES	1	5	
\#8 ROADWAY NETWORK			NO

WARRANT \#3

Peak Hour Volume: Condition B - Plotted Point

		MLK Pkwy \& Prospect	
WARRANT MET?	YES	NUMBER OF HOURS MEETING REQUIRED VOLUMES	1
	REQUIRED NUMBER OF HOURS	1	

TIME	MAJOR STREET VOLUME	MINOR APPROACH VOLUME	HIGHER VOLUME MINOR APPROACH	NUMBER OF LANES	TOTAL INTERSECTION VOLUME
$10: 00$	678	11	W	1	689
$12: 00$	812	14	W	1	826
$13: 00$	782	18	W	1	800
$16: 00$	1080	18	W	1	1098
$7: 00$	789	11	W	1	800
$14: 00$	862	16	W	1	878
$15: 00$	1001	13	W	1	1014
$16: 00$	1058	22	W	1	1080

The Peak Hour Volume warrant is intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the major street.
The Peak Hour Volume warrant is satisfied when the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour of the higher volume minor street approach (one direction only) for one hour (any four consecutive 15 -minute periods) of an average day falls above the curve described in the MUTCD corresponding to the appropriate lane configuration and speed.

Intersection or Spot Benefit / Cost Safety Analysis Iowa DOT Office of Traffic \& Safety

County: \qquad Prepared by: \qquad Date Prepared: \qquad Aug 11, 2015
Intersection: ML King Parkway and Prospect Road
Improvement
Proposed Improvement(s): Install Traffic Signals

\$ 120,000		Estimated Improvement Cost, EC 15			Est. Improvement Life, years, Y
		Other Annual Cost (after initial year), AC 20			Crash Reduction Factor (integer), CRF
\$	-	Present Value Other Annual Costs, OC 4.0\%			Discount Rate (time value of \$), INT
		$O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)$	\$	120,000	Present Value Cost, COST = EC + OC

Traffic Volume Data

Source: City of Des Moines
2014 Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

2.0\% Projected Traffic Growth (0\%-10\%), G

23,725 Current Daily Entering Vehicles, DEV

8,659,625 Current Annual Entering Veh., AEV = DEV * 365
31,931 veh / day, Final Year DEV, FDEV
149.75 MEV, Total Million Entering Veh. Over life of Project, TMEV
$T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}$

Crash Data

2009 F

First full year -->
2014 Last full year
6.0 years, Time Period, T

Additional months
values as of May 2014

0
4

Fatal Crashes
 Fatalities @ \$4,500,000 \$

$\$ 325,000$	$\$$	325,000
$\$ 65,000$	$\$$	-
$\$ 35,000$	$\$$	140,000
$\$ 7,400$	$\$$	66,600

\qquad Property Damage Only
-OR- enter all Property Costs of all crashes: \qquad
Total \$ Loss, LOSS \$ 531,600
1.50 Current Crashes / Year, AA = TA / T
0.17 Crashes / MEV, Crash Rate, CR
\$ 59,067 Cost per Crash, AVC = LOSS / TA $C R=T A \times 10^{\wedge} 6 /(D E V \times 365 \times T)$
25.9 Total Expected Crashes, TECR = CR x TMEV
\$ 223,881 Present Value of Avoided
0.30 Crashes Avoided First Year AAR = AA x CRF / 100 Crashes, BENEFIT
\$ 17,720 Crash Costs Avoided in First Year, AAR x AVC
5.2 Total Avoided Crashes, TECR x CRF/ 100

$$
B E N .=\frac{A V C \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)
$$

Benefit / Cost Ratio

$$
\text { Benefit }: \text { Cost }=\$ 223,881: \$ 120,000 \quad=\frac{1.87}{}: 1
$$

Application for FY2017 Traffic Safety Funds Iowa Department of Transportation
(Site Specific)

Citywide Fixed-Time Traffic Signal Upgrade Project Phase 2

(Install semi-actuated operation at 25 signalized locations)

Division of Traffic and Transportation Jennifer L. McCoy, P.E., P.T.O.E. City Traffic Engineer

QIOWADOT

Application for TRAFFIC SAFETY FUNDS

GENERAL INFORMATION

DATE: August 7, 2015

Location / Title of Project Citywide Fixed-Time Signal Upgrade Project - Phase 2
Applicant City of Des Moines
Contact Person Calvin Miller Title Civil Engineer 1
Complete Mailing Address 400 Robert D Ray Drive
Des Moines, Iowa 50309

Phone
$\frac{515-283-4748}{\text { (Area Code) }}$

E-Mail cbmiller@dmgov.org
(Area Code)

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) N/A
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone \qquad E-Mail \qquad
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

Application Type

Site Specific	$\boxed{ }$
Traffic Control Device	\square
Safety Study	\square

Funding Amount

Total Project Cost	$\$ 660,000$
Safety Funds Requested	$\$ 120,000$

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the

Signed:

T. M. Frantán Convict

Typed Name

Attest:

Diane Rauh
Typed Name

Roll Call Number
$15-1230$ \qquad
Date \qquad
\qquad

APPROVING FISCAL YEAR 2017 TRAFFIC SAFETY TUND APPLICATIONS TO THE IOWA DEPARTMENT OF TRANSPORTATION

BE IT RESOLVED, BY THE CITY COUNCIL OF THE CITY OF DES MOINES, IOWA:

That the City Manager is hereby directed to submit applications to the Iowa Department of Transportation for Traffic Safety Funds to cover a portion of the construction costs for the following projects:

1. $\quad 42^{\text {ad }}$ Street Streetscape
2. Martin Luther King Jr. Parkway and Prospect Road Traffic Signal Installation
3. Citywide Fixed-Time Signal Upgrade Project - Phase 2

The City further agrees that if these projects are funded and constructed, the City of Des Moines will provide adequate resources to maintain the improvements for their useful life.
(Council Communication Number 15:428 Attached)

Moved by

\qquad to adopt.

APPROVED AS TO FORM:

COUNCL ACTION	YEAS	NAYS	PASS	ABSENT
COWMIE	\cdots			
COLEMAN	\cdots			
GATto	\cdots			
GRAY	tam			
EENSLEY	4			
MAEAFFEX	\square			
MOORE	5			
total				

I, DIANE RAUH, City Clerk of said City hereby certify that at a meeting of the City Council of said City of Des Moines, held on the above date, among other proceedings the above was adopted.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my seal the day and year first above written.

PROJECT DESCRIPTION

CITYWIDE FIXED TIME SIGNAL UPGRADE PROJECT - PHASE 2

Proposed Project:

This project consists of upgrading the traffic signal operation at 25 existing intersections in Des Moines that currently operate as fixed- time signals. The proposed project would provide "semi-actuated" operation by installing vehicle detectors on the side-street and left-turning phases, along with adding pedestrian push-buttons and pedestrian signal indications.

The locations are along several of the city's heavy volume transportation corridors - E. $14^{\text {th }} /$ E. $15^{\text {th }}$ Street (U.S. 69), ML King Jr. Pkwy / $19^{\text {th }}$ Street, $6^{\text {th }}$ Avenue, and Ingersoll Avenue. The specific locations are listed below and also shown on Exhibit E:

1. E $14^{\text {th }}$ Street and Walker Street
2. E $14^{\text {th }}$ Street and Grand Avenue
3. E $14^{\text {th }}$ Street and Walnut Street
4. E $14^{\text {th }}$ Street at Court Avenue
5. E $15^{\text {th }}$ Street and Walker Street
6. E $15^{\text {th }}$ Street and Grand Avenue
7. E $15^{\text {th }}$ Street and Walnut Street
8. E $15^{\text {th }}$ Street and Court Avenue
9. $6^{\text {th }}$ Avenue and Holcomb Avenue
10. $6^{\text {th }}$ Avenue and Hickman Road
11. $6^{\text {th }}$ Avenue and College Avenue
12. $6^{\text {th }}$ Avenue and Forest Avenue
13. $6^{\text {th }}$ Avenue and University Ave.
14. $19^{\text {th }}$ Street and Carpenter Ave
15. $19^{\text {th }}$ Street and Forest Avenue
16. $19^{\text {th }}$ Street and Clark Street
17. ML King and Carpenter Ave
18. ML King and Forest Avenue
19. ML King and Clark Street
20. $25^{\text {th }}$ Street and Forest Avenue
21. $27^{\text {th }}$ Street and Forest Avenue
22. $17^{\text {th }}$ Street and Ingersoll Avenue
23. $18^{\text {th }}$ Street and Ingersoll Avenue
24. $8^{\text {th }}$ Street and Cherry Street
25. $9^{\text {th }}$ Street and Cherry Street

The total project cost is estimated to be $\$ 660,000$. FY2015 Iowa Clean Air Attainment (ICAAP) funds have been approved in the amount of $\$ 480,000$. State Traffic Safety funds in the amount of $\$ 120,000$ are being requested in order to complete the funding package for the construction portion of this project.

Existing Conditions:

The twenty-five traffic signal locations proposed to be upgraded on this project are all "fixed-time" signals. Since there is no side-street vehicle or pedestrian detection, the traffic signals must cycle through all of their phases on a pre-timed basis, regardless of the presence of vehicles or pedestrians. This operation results in the main-street vehicles stopping or waiting unnecessarily when no vehicles are present on the side street.

Traffic volumes vary on these streets. From lowa DOT 2012 traffic count data, the E $14^{\text {th }} / E 15^{\text {th }}$ Street (U.S. 69) corridor carries up to 40,000 vehicles per day (veh/day). The $19^{\text {th }} / \mathrm{ML}$ King Jr. Pkwy corridor volumes are 22,500 veh/day. The $6{ }^{\text {th }}$ Avenue corridor handles about 10,000 veh/day. Ingersoll Avenue volumes are approximately 10,500 veh/day, with Forest Avenue carrying 7,000 veh/day and Cherry Street carrying about 5,000 veh/day.

Speed limits also vary, but are generally in the $25-35 \mathrm{mph}$ range.

Project Justification:

Because of the fixed-time signal operation, drivers on the main street are exposed to more rear-end and sideswipe-same direction crashes than if the signals remained green for their approaches. When this new project is implemented, motorists on the main street will not be required to stop as often, thereby reducing the number of these rear-end and sideswipe conflicts.

Research numbers for the Crash Mitigation Factors (CMF) vary from 10-80 percent reduction. For our analysis, a very conservative approach was taken, in that ONLY rearend and sideswipe crashes were considered to be correctable, and then a 10\% CMF was applied. (All other types of crashes, including right-angle, were not considered to be "correctable" in this analysis.)
A review of the crash history for the 4-year period between 2011-2014 indicated a total of 406 crashes at the 25 subject intersections. The analysis of this crash information indicates the following:

Accident Type	Number
Broadside	
Rear End	111
Sideswipe - same direction	136
Left-Turning	90
Head-on	28
Non-Collision	10
Total Average per year per intersection:	

There were a total of 226 reported crashes that are considered correctable (Rear-end and Sideswipe-same direction- highlighted above). Of these, there were 66 personal injury crashes involving 73 injuries.
Based on current IDOT value factors, the total estimated loss from crashes during the described four-year period is $\$ 5,007,400$ (See Exhibit "L"). Assuming a crash reduction of 10 percent of the correctible crashes and an estimated project life of 15 years, the request for $\$ 120,000$ of Traffic Safety Funds relates to a benefit-cost factor of 12.36:1.

COST ESTIMATE

Citywide Fixed-Time Signal Upgrade Project - Phase 2

1. 6th Avenue at College Ave.	\$20,000
2. $6^{\text {th }}$ Avenue at Forest Ave.	\$20,000
3. $6^{\text {th }}$ Avenue at Hickman Rd.	\$30,000
4. $6^{\text {th }}$ Avenue at Holcomb Ave.	\$20,000
5. $6^{\text {th }}$ Avenue at University Ave.	\$30,000
6. Cherry St. at $8^{\text {th }}$ Street	\$15,000
7. Cherry St. at $9^{\text {th }}$ Street	\$15,000
8. East $14^{\text {th }}$ St. at Court Ave.	\$25,000
9. East $14^{\text {th }}$ St. at Walnut St.	\$20,000
10. East $14^{\text {th }}$ St. at Grand Ave.	\$25,000
11. East $14^{\text {th }}$ St. at Walker St.	\$20,000
12. East $15^{\text {th }}$ St. at Court Ave.	\$25,000
13. East $15^{\text {th }}$ St. at Walnut St.	\$20,000
14. East $15^{\text {th }}$ St. at Grand Ave.	\$25,000
15. East $15^{\text {th }}$ St. at Walker St.	\$20,000
16. Ingersoll Ave. at $17^{\text {th }} \mathrm{St}$.	\$20,000
17. Ingersoll Ave. at $18^{\text {th }} \mathrm{St}$.	\$20,000
18. $19^{\text {th }}$ St. at Carpenter Ave.	\$25,000
19. $19^{\text {th }}$ St. at Forest Ave.	\$25,000
20. $19^{\text {th }}$ St. at Clark St.	\$20,000
21. ML King at Clark St.	\$20,000
22. ML King at Forest Ave.	\$25,000
23. ML King at Carpenter Ave.	\$20,000
24. Forest Ave. at $25^{\text {th }} \mathrm{St}$.	\$20,000
25. Forest Ave. at $27^{\text {th }}$ St.	\$20,000
TRAFFIC SIGNAL MODIFICATIONS:	\$545,000
CONTINGENCY (10\%):	\$55,000
TOTAL CONSTRUCTION COST:	\$600,000
DESIGN/INCIDENTALS:	\$60,000
TOTAL PROJECT COST:	\$660,000

TIME SCHEDULE

CITYWIDE FIXED-TIME SIGNAL UPGRADE PROJECT - PHASE 2

Project Approval: December 2015

Agreement Signed:

Project bid:

Construction completed:
Project Closeout:
January 2017

Exhibit E

On Walnut Street, looking east toward E $14^{\text {th }}$ Street

On Walnut Street, looking west toward E $14^{\text {th }}$ Street

Exhibit F

On East $14^{\text {th }}$ Street, looking south toward Walnut Street.

On Ingersoll Avenue, looking west toward $17^{\text {th }}$ Street.

Exhibit F

On Ingersoll Avenue, looking east toward $17^{\text {th }}$ Street.

On $17^{\text {th }}$ Street, looking north toward Ingersoll Avenue

On $17^{\text {th }}$ Street, looking south toward Ingersoll Avenue

On $19^{\text {th }}$ Street, looking north toward Forest Avenue.

On Forest Avenue, looking west toward $19^{\text {th }}$ Street

On Forest Avenue, looking east toward $19^{\text {th }}$ Street

OFFICER CRASH REPORTS

REPAIRCOST	INJSTATUS
0	
4000	
2050	
2500	
4500	Posizble
1500	
8000	
2000	
1000	
2000	
0	
4000	
1500	
3000	
1500	
2000	
1500	
2500	
1500	

yains axoo jans

CSEVERITY
Property Damage Odly
Property Damage Only
Property Damage Only
Property Damage Ouly
Property Damage Owly
Property Damage Only
Property Damage Owly

Casenuaber	DAIE
2011654642	20111102
2011654642	
2012701216	20120904
2012701216	
2012706692	20121010
2012706692	
2012715530	20121204
2012715530	
2013749189	20130721
2013749189	
2013750077	20130724
2013750077	
2013750077	
2013750077	
2013757498	20130917
2013757498	

6th and college

$$
\begin{aligned}
& \text { vaction }
\end{aligned}
$$

2011631478	20110525	Property Damage Only	2500	Rear-nd	Dry	South	Movenment essentially straight	1000	
2011631478			0			South	Slowing/stopping	1500	
2012676882	20120313	Property Damage Only	2600	Rear-nd	Dry	South	Stopped for stop sign/signal	2500	
2012676882			0			South	Slowing/topping	100	
2012690786	20120519	Property Damage Only	4000	Rearend	Dry	North	Movement essentially straight	0	
2012690786			0			North	Stopped for stop sign/signal	4000	
2012710665	20121101	Property Damage Only	7000	Rearend	Dry	South	Movement essertially straight	4000	
2012710665			0			South	Legally Parked	3000	
2013755155	20130901	Property Damage Only	5000	Sideswipe - same direction	Dry	North	Movement essentially straight	1500	
2013755155			0			North	Changing lanes	3500	
2013758517	20130919	Minor Injury	4500	Rear-end	Wet	East	Stopped for stop sign/signal	4500	Non-incapacitaing
2013758517			0			North	Movement essemially straight	0	
2013763387	20131024	Property Damage Only	3500	Rear-end	Dry	South	Movement essentially straight	500	
2013763387			0			South	Movement essentially straight	3000	
6 th and Forest									
CASENUABER	DATE	CSEVERITY	PROPDMG	CRCOMANNER	SURF_COND	INIIDIR	VACTION	REPAIRCOST	INJSTATUS
2011625162	20110407	Property Damage Only	5500	Rear-end	Wet	South	Movement essentially straight	1500	
2011625162			0			South	Slowing/stopping	2500	
2011625162			0			South	Stopped for stop sign/signal	1500	
6th and University									
CASENUMBER	DATE	CSEVERITY	PROPDMG	CRCOMANNER	SURE_COND	ENIDIR	VACTION	REPAIRCOST	INJSTATUS
2011629468	20110430	Property Damage Only	6500	Rear-end	Dry	West	Movement essentially straight	1500	
2011629468			0			West	Slowing/stopping	3000	
2011629468			0			West	Slowing/stopping	1000	
2011629468			0			West	Slowing stopping	1000	
2011632344	20110501	Property Dumage Only	1500	Rearend	Dry	West	Changing lunes	0	
2011632344			0			West	Stopped for stop sig/signal	1500	
2011635910	20110627	Property Damage Only	2000	Sideswipe - same direction	Dry	North	Movement essentially straight	0	
2011635910			0			North	Turning right	2000	
2011654270	20111031	Property Damage Only	1500	Sideswipe - same direction	Dry	West	Changing lunes	500	
2011654270			0			West	Movement essentially straight	1000	
2012668707	20120110	Possible Unknown	1000	Rearend	Dry	West	Stopped for stop sign/signal	1000	Possible
2012668707			0			Wert	Movement essentially suraight	0	
2012669799	20120126	Property Damage Only	1500	Rear-end	Dry	East	Movement essentially straight	1500	
2012669799			0			East	UnkDown	0	
2012698996	20120817	Property Damage Only	3500	Sideswipe - same direction	Dry	South	Changing lanes	1500	
2012698996			0			South	Stopped for stop sign/signal	2000	
2012701640	20120906	Minor Injury	1000	Rearend	Dry	North	Movement essentially straight	250	Non-incapacitaing
2012701640			0			North	Tuming right	750	
2012703060	20120917	Property Damage Only	1600	Rear-end	Wet	South	Movement essentially straight	650	
2012703060			0			South	Slowing/stopping	950	
2013719895	20130103	Property Damage Only	1500	Sideswipe - same direction	Dry	South	Turningleft	0	
2013719895			0			South	Movenvent essentially straight	1500	

2012710678			0			South	Turing left	3000	
2012715467	20121206	Property Damage Only	2500	Rear-end	Wet	Norch	Movement essentially straight	500	
2012715467			0			Norch	Movement essentiolly straight	2000	
19th and Clark									
CASENUMBER	date	CSEVERITY	PROPDMG	CRCOMANNER	SURF_COND	EIIDIR	vaction	REPAIRCOST	nustatus
2011627979	20110401	Possible/Unknown	500	Rear-nd	Dry	West	Movement essentially straight	0	Unknown
2011627979			\bigcirc			west	Stopped for stop sign/signal	500	
2011647678	20110912	Property Damage Only	3000	Sideswipe - same direction	Dry	North	Turning left	2000	
2011647678			0			North	Movement essentially straight	1000	
2011659792	20111129	Minor Injury	4000	Sideswipe - same direction	Dry	North	Changing lanes	2000	Non-incapacitating
2011659792			0			North	Movement essentially straight	2000	
2011663623	20111220	Minor injury	7000	Angle - oncoming leff tum	Dry	East	Turning left	4000	Non-incapacitating
2011663623			0			west	Movement essentially straight	3000	
2012706650	20121011	Property Damage Only	1500	Rearend	Dry	North	slowing/stopping	1000	
2012706650			0			North	slowing/stopping	500	
2013724301	20130204	Property Damage Only	2500	Sideswipe - same direction	Wet	North	Movement essentially straight	1500	
2013724301			0			North	Changing lanes	1000	
2013735748	20130417	Minor Injury	7500	Sideswipe-same direction	wet	North	Turning left	4500	Non-incapacitating
2013735748			0			North	Movement essentially straight	2000	
2013761536	20131008	Possible/Unknown	2000	Sideswipe - 5ame direction	Dry	North	Movement essentially straight	0	Possible
2013761586			,			North	Turning left	2000	
MLK and Clark									
casenumber	date	CSEVERITY	PROPDMG	CRCOMANNER	SURF_COND	INIIDIR	vaction	REPAIRCOST	nustatus
2011637916	20110711	Property Damage Only	4500	Rear-nd	Dry	South	Stopped for stop sigu/siznal	1000	
2011637916			0			South	Sloaing/stopping	3500	
2011639992	20110727	Minor Injury	8500	Sideswipe - same direction	Dry	South	Movement essentially straight	5000	Non-incapacitaing
2011639992			-			South	Siowing/stopping	2500	
2011639992			0			South	Stopped for stop signsignal	1000	
2013721978	20130113	Property Damage Only	25000	Rear-ind	Dry	South	Movement essentially straight	10000	
2013721978			0			South	Stopped for stop signsignal	10000	
2013721978			0			South	Stopped for stop sign/signal	5000	
2013756194	20130906	Property Damage Only	2000	Rearend	Dry	South	Movement essentially straight	1500	
2013756194			0			South	Stopped for stop sign/signal	500	
MLK and Forest									
CASENUMBER	date	CSEVERITY	PROPDMG	CRCOMANNER	SURE_COND	INIIDIR	vaction	REPAIRCOST	nustatus
2011622213	20110314	Possible Conknown	7300	Rear-nd	Dry	South	Movement essertially straight	2500	Possibie
2011622213			0			South	Slowing/stopping	4000	
2011622213			0			South	Slowingitopping	500	
2011622213			0			South	Slowing'topping	300	
2011646648	20110906	Property Damage Only	7500	Sideswipe - 5ame direction	Dry	South	Turing left	3500	

2011646648			0			Sourt	Movement esseminilly stright	4000	
2012688666	20120120	Propety Damuge Oly	4300	Sideswipe-sme direcion	Dry	Sosth	Changing lines	1850	
2012688666			0			South	Movement essenemilly stright	2500	
2012603670	20120710	Property Damage Olly	2000	Reverend	Dry	Est	Morement essentidly stright	500	
2012683670			0			Esast	Stopped fors stop signs ispul	1500	
201374646	20130630	Propety Damage Only	5500	Sideswipe-smme direction	Dry	South	Tuning left	2000	
201374646			0			Sosth	Morement essentidly y sright	3500	
2013757210	20130913	Propery Damage Olly	5000	Sideswipe-smme direction	Dry	Sourh	Movement essentially stright	3000	
2013757210			0			Sosth	Turing let	2000	
MLK and Carpenter									
CASENTMBER	date	csevertiy	PROPDMG	crcomanmer	SURF_COND	INITDIR	vaction	repaircost	nustatus
201164396	20110825	Minor Ijury	10500	Rearend	Dry	Sosth	Movenent essemidly stright	4500	Nor-incapacitading
2011643396			0			South	Turing left	6000	
2012674091	2012023	Propaty Damage Only	2800	Sideswipe-smme direction	Wet	Sosth	Chunging anes	800	
2012674091			0			Sourth	Movement essentilly strieit	2000	
2012679295	20120324	Property Damaze Oaly	3000	Sideswipe-smme direcion	Dry	Sesth	Changing lines	1500	
201267295			0			Sosuth	Turing let	1500	
2012707892	20121018	Property Damge Oily	2400	Rearend	Wer	Sorith	Movement essentidlly stright	2000	
2012707892			0			Sosth	Movenent essenimilly strigit	400	
2013772803	20131212	Propery Damage Oily	4000	Sideswipe-smme direcion	Dry	South	Tuming lef	4000	
2013772803			,			South	Movement essentially stright	0	
$\underline{25}$ th and Forest									
CASENTMBER	date	CSEverty	Propdmg	CrCOMANSER	SURF_Cond		vaction	repaircost	njstatus
2012702867	20120914	Property Damage Oaly	2000	Revend		Norrh	Movement essentidly stright	1000	
2012702867			0			Norrh	Stopped for stop siens/izal	1000	
$\underline{27}$ th and Forest									
Casentuber	date	CSEverty	PROPDMG	crcomanner	SURF_COND	INTIDR	vaction	repaircost	nvstatus
2011639350 201659350	20110715	Property Damage Oaly	1700	Sideswipe-same direcion	Dry	West	$\xrightarrow{\text { Turing left }}$	0	
17th and Ingersoll									
none									
18th and Ingersoll									
casentuber	date	CSEvERTY	PROPDMG	CrComanner	SURF_COND	INTIDR	vaction	REPAIRCOST	njstatus
2013729002	20130226	M Minor Ifjury	200	Rearend	Ssow	West	Morement essemitill straight	${ }^{100}$	Non-incapacitaing
2013729002			0			West	Stopped for stop signsisuna	100	

SW 8th and Cherry
nvSTATUS
Possible
Possible

$\begin{array}{ccc}\text { CASENUMBER } & \text { DATE } & \text { CSEVERITY } \\ 2012043158 & 2001 \text { Officer Tracs } & \text { Property Damage Only }\end{array}$ 2012043158
$\frac{\text { SW 9th and Cherry }}{\text { none }}$

E 14th and Walker	
CASENUMBER	DATE
2011617317	20110210
2011617317	
2011626618	20110417
2011626618	
2011630945	20110521
2011630945	
2011639972	20110723
2011639972	
2011653571	20110926
2011653571	
2012701404	20120905
2012701404	
2012702262	20120904
2012702262	

曾茄荡

－

兵最
8888

nоцวva

REPAIRCOST
2500
2500

Turning right

 －

CASENUMBER
2011617317
201617317
2011617317
2011626618
2011626618
2011630955
2011630945
201639972
2011639972
2011653571
2011653571
2012701404
2012701404
2012702262
2012702262

2012698502	20120814	Minor Injury	6300	Sideswipe-same direction	Dry	South	Movement essentially straight	3000	Non-incapacitating
2012698502			0			South	Movement essentially straight	3000	
2012707149	20121012	Property Damage Only	2600	Rear-nd	Dry	South	Movement essentially straight	2500	
2012707149			0			South	Movement essentially straight	100	
2013726684	20130208	Property Damage Only	3000	Rear-end	Dry	South	Movement essentially straight	1500	
2013726694			0			south	Slowing/stopping	1500	
2013759519	20130928	Property Damage Only	2000	Rear-nd	Wet	South	Movement essentially straight	1000	
2013759519			0			South	Stopped for stop sign/signal	1000	
2013776646	20131231	Minor injury	7000	Rear-nd	Wet	south	Movement essentially straight	5000	Non-incapacitating
2013776646			0			South	Movement essentially straight	2000	
E 14th and court									
Casenumber	DATE	CSEVERITY	PROPDMG	CRCOMANNER	SURE_COND	EIIDIR	vaction	REPAIRCOST	injstatus
2011653779	20111022	Property Damage Only	5000	Rearend	Dry	South	Slowing/stopping	4000	
2011653779			0			South	Slowing/stopping	1000	
2011655156	20111104	Possible/Unknown	2500	Rear-end	Dry	South	Movement essentially straight	2000	Possible
2011655156			0			South	Movement essentially straight	500	
2012682276	20120419	Property Damage Only	3000	Rearend	Dry	south	Movement essentially straight	2000	
2012682276			0			South	stopped for stop sign/signal	1000	
2012692357	20120702	Property Damage Only	5000	Rear-nd	Dry	South	Movement essentially straight	3500	
2012692357			0			South	stopped for stop sign/signal	1500	
2012704249	20120924	Possible/Unknown	0	Rear-end	Dry	South	Movement essentially straight	0	Possible
2012704249			0			south	Movement essentially straight	0	
2012710997	20121103	Property Damage Only	1500	Sideswipe-same direction	Dry	South	Changing lanes	0	
2012710097			0			South	Movement essentially straight	1500	
2012711915	20121111	Property Damage Only	2000	Sideswipe - 5ame direction	Wet	South	Changing lanes	0	
2012711915			0			South	Movement essentially straight	2000	
2013721639	20130113	Property Damage Only	3700	Rearend	Dry	East	Movement essentially straight	200	
2013721639			0			East	stopped for stop sign/signal	3500	
2013740598	20130523	Property Damage Only	3000	Sideswipe-same direction	Dry	west	Turning left	1500	
2013740598			0			West	Movement essentially straight	1500	
2013749156	20130719	Minor Injury	4000	Sideswipe-same direction	Dry	South	Movement essentially straight	2000	Non-incapacitating
2013749156			0			South	Movement essentially straight	2000	
2013773304	20131213	Minor Injury	8000	Rear-end	Wet	South	Slowing/stopping	5000	Non-incapacitating
2013773304			0			South	stopped for stop sign/signal	3000	
2013775671	20131225	Property Damage Only	9000	Rear-ind	Wet	South	Movement essentially straight	5000	
2013775671			0			South	slowing/stopping	4000	
E 15th and Court									
CASENUABER	DATE	CSEVERITY	PROPDMG	CRCOMANNER	SURF_COND	LIIDIR	vaction	REPAIRCOST	injstatus
2011647657	20110915	Property Damage Only	1800	Sideswipe - same direction	Dry	North	Turning left	900	
2011647657			0			North	Movement essentially straight	900	
2012660906	20120118	Property Damage Only	1800	Rearend	Dry	North	Movement essentially straight	900	
2012668906			0			North	Movement essentially straight	900	
2012703059	20120917	Property Damage Only	1700	Rear-end	wet	North	Movement essentially straight	1200	

2012703059			0			North	Movement essentially straight	500	
2012709632	20121022	Property Damage Only	4000	Rear-end	Dry	North	Movement essentially straight	1000	
2012709632			0			North	stopped for stop sign/signal	3000	
2013726114	20130131	Property Damage Only	2500	Rearend	snow	North	stopped for stop sign/signal	1500	
2013726114			0			North	Slowing/stopping	1000	
2013733963	20130327	Minor injury	1800	Rear-nd	Dry	North	Movement essentially straight	300	Non-incapacitating
2013733963			0			North	stopped for stop sign/signal	1000	
E 15th and Wainut									
Casentaber	DAIE	CSEVERITY	PROPDMG	CRCOMANNER	SURF_COND	SIIDIR	vaction	REPAIRCOST	nvjstatus
2011659590	20111129	Property Damage Only	6000	Sideswipe - same direction	Dry	North	Turning left	3000	
2011659590			0			North	Movement essentially straight	3000	
2012676740	20120303	Minor Injury	10000	Sideswipe - same direction	Dry	North	Turning left	5000	Possible
2012676740			0			North	Movement essentially straight	5000	Non-incapacitating
2012696997	20120817	Property Damage Only	3500	Sideswipe-same direction	Dry	North	Changing lanes	1500	
2012698997			0			North	Movement essentially straight	2000	
2012706343	20121007	Possible/Unknown	5000	Sideswipe - same direction	Dry	North	Changing lanes	1900	Possible
2012706343			0			North	Movement essentially straight	3000	
2013726379	20130214	Property Damage Only	2500	Sideswipe - same direction	Dry	North	Changing lanes	1500	
2013726379			0			North	Movement essentially straight	1000	
2013735346	20130417	Property Damage Only	2000	Sideswipe - same direction	wet	North	Movement essentially straight	1000	
2013735346			0			North	Turning left	1000	
2013741328	20130524	Possible/Unknown	12000	Sideswipe-same direction	Dry	North	Turning left	6000	Possible
2013741328			0			North	Movement essentially straight	6000	
2013751076	20130731	Property Damage Only	6700	Sideswipe-same direction	Dry	North	Movement essentially straight	3500	
2013751076			0			North	Changing lanes	200	
2013751076			-			North	Movement essentially straight	3000	
E 15th and Grand									
CASENUMBER	DATE	CSEVERITY	PROPDMG	CRCOMANNER	SURF_COND	IIIDIR	vaction	REPAIRCOST	njustatus
2011613462	20110104	Property Damage Only	2000	Rearend	ory	North	Stopped for stop sign/signal	2000	
2011613462			0			North	Movement essentially straight	\bigcirc	
2011613729	20110123	Property Damage Only	9821	Sideswipe-same direction	Dry	North	Turning right	2500	
2011613729			0			North	Movement essentially straight	7321	
2011620930	20110508	Possible/Unknown	1501	Rearend	Dry	North	Movement essentially straight	0	Possible
2011628980			0			North	Stopped for stop sign/signal	1501	
2011634545	20110613	Property Damage Only	1600	Rear-nd	Dry	East	Movement essentially straight	1500	
2011634545			0			East	Other (explain in narrative)	100	
2011635902	20110626	Possible/Unknown	4500	Sideswipe-same direction	Dry	North	Turning left	2500	Possible
2011635902			0			North	Movement essentially straight	2000	Possible
2011639440	20110722	Property Damage Only	4500	Sideswipe - same direction	Dry	North	Turning left	2000	
2011639440			0			West	Movement essentially straight	2500	
2011656633	20111109	Minor injury	1000	Rear-nd	Wet	North	slowing/stopping	500	Non-incapacitating
2011656633			0			North	Stopped for stop sign/signal	200	
2011656633			0			North	Stopped for stop sign/signal	300	

Movement essentially straight
Turning right
Turning left
Movement essentially straight Turning left
Movement essentially straight Movement essentially straight
 Turning right
Movement essentially straight

 Movement essentially straight Movement essentialy straight
stopped for stop sign／signal
Changing lanes Movement essentially straight
Movement essentially straight Slowing／stopping
Movement essentially straight
 Movement essentially straight
Movement essentially straight
 Changing lanes
Movement essentially straigh
 Stopped for stop sign／signal Movement essentially straight

 Movement essentially straight
Turning left
Movement essentially straight Movement essentially straight Slowing／stopping
Movement essentially straig Movement essentially straight
Movement essentially straight

$$
\begin{aligned}
& \text { Property Damage Only }
\end{aligned}
$$

$$
\begin{aligned}
& 20111115
\end{aligned}
$$

$\begin{aligned} & \text { 을 } \\ & \text { 苐 }\end{aligned}$
$\begin{aligned} & \text { m } \\ & \text { 䓂 } \\ & \text { 呙 }\end{aligned}$
$\begin{aligned} & \text { 各 } \\ & \text { 高 } \\ & \text { 呙 }\end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0}\end{aligned}$
$\begin{aligned} & \text { त् } \\ & \text { O } \\ & \text { है }\end{aligned}$
20130830
茄

2013764835
2013764835
E 15th and Walker
CASENUMBER
20131101
2012700443

$$
\begin{aligned}
& \text { 6th and Hickman/Arlington } \\
& \text { Casmaverer Date }
\end{aligned}
$$

20116662
201270216
20121010
20125206
20130721
20130724
20130017
$\frac{\text { 6th and College }}{\text { CASENAEER }}$
nustatus
Powible
nustatus
会

 vaction

 PROPDAGG
4000
0
4500
0
6000
0
13000
0
0
0
4000
0
6000
0
0
3900
0
4000
0

 CSEVERITY

6th and Holcomb	
CASENTMBER	DATE
2011626368	20110416
2011626368	
2011637259	20110705
2011637259	
2012678545	20120323
2012678545	
2012686913	20120523
2012686913	
2012686913	
2012686913	
2012705455	20121002
2012705455	
2012709830	20121030
2012709830	
2012709830	
2012714780	20121128
2012714750	
2013743120	20130608
2013743120	

6th and Hickman／Arlington | CASENTMBER | DATE |
| :---: | :---: |
| 2011654542 | 20111102 | 2012701216 20120904 20121010 t

号
只 20130721志 2012706692
2012706592
2012715350
201275330
2013749189
2013749159
2013750077
2013750077
2013750077
2013750077
2013757458
2013757498

 REparct

nvwowrome	cancriome		\cdots	- .-.en		
2008054964	200647808420061215	Property Dowage Only	4500 Bew-end	1 North	Mowement essentily straighe	2000
2005054964	2008478084		0	2 North	Moverment essentilly straigh	2500
2006055945	200847911920081210	Property Danage Only	2000 Reswend	1 East	Mowement eisentily straighe	500
2006055945	2056470119		-	2 fat	Movement exsmbily straight	1500
2000509420	205647963420061210	Property Demage Only	2509 Reac-und	1 West	Movement esse-bily straight	1000
2005056420	2008479634		0	2 Wert	Turnigg ripht	1500
2005005224	200049076920000123	Property Danoge Orly	3000 Broadside	1 Soush	Stopped for stop simf/iignal	3080
2001005224	2000490768		0	2 Eait	Tumisg left	2000
2005005245	206949070820000119	majar inuiry	500\% Braedside	1 Soush	Turnizg left	2000 incapacitating
2005005245	2009490799		θ	2 tast	Movement exsentilly straight	3050
2005007026	200949239420090213	Property Danage Orly	1000 Resarend	3 Morth	Movement essentilly straight	0
2009007026	2009492394		\bigcirc	2 North	Stopped for stop sipl/sigral	1000
2000007527	200949346620090210	Preperty Damage Onily	4000 Rearend	1 South	Backing	1090
2000007527	2003 293466		0	2 South	Stopped for stop sighisignal	3000
2009009349	200309559520000225	Froperty Damage Orly	2000 Arar-and	1 East	Morement essentialy strsight	1000
2009009349	2009095595		0	2 East	Stopped for stop slevissial	1000
2009011053	200949758120090311	Possibie/Uninown	0 Non-colision	1 South	Tumaing right	of possible
2009020963	200950899220090527	Pasible/Uninown	6500 Rearend	1 West.	Mumertiont eniamialy straight	4000 Possible
2060000963	20035ces92		0	2 West	Sopped for stop sign/signal	2000
2059500963	2009568992		0	3 West	Sbopped for stop sics/signal	500
2009021718	200950883820090575	Property Damage Only	3000 Rear-end	1 East	Movensert essertially straight	2000
2009021718	2009609838		0	2 East	Movement essertially straight	1009
2000021922	200951005420010607	Property Damage Onty	Rear-end	1 West	Mopvemert essentisily stroight	
2009021922	2009510054		1	2. West	Stopped for stop sign/signal	1500
2009031810	200952118720050815	Property Damage Coly	1000 Rear-end	1 West	Turning right	500
2009031310	2009521187		0	2 Noith	Torving right	506
2009033735	200952333020050831	Property Damage Conly	2080 mear-End	1 West	Hovemame essemtialty struight	1009
2009033735	2000523390		0	2 West	Mopvement essentially straight	1000
2009036565	200952655820050022	Possible/latarown	2060 Non-odiniont	1 North	Movement essentialiy strajgit	2000 Possele
2009040664	200953110620091015	Misor Iruery	Broadside	1 East	Movement essentialiy straight	2005 Pogsite
2009040564	2009531106		0	2 West	Turring left	Non-incapactiting
2009041739	200953226520091026	Possidel	2000 Angle - ancoming left tum	1 South	Terring laft	1500 Possible
2009041739	2000532255		0	2 North	Movernent essentially strajght	500
2003048220	200953947420091031	Property Darmage Oely	Rear-End	1 Not Reported	Stopped for stop sign/signal	1000
2009048220	2009539474		0	2 Not Reported	Not Reported	
2003049220	2009539474		0	2 Not Reported	Not Reported	
2601043220	20095314774		0	2 Not Meported	Not heported	
2005048220	2008535974		0	2 Not Meported	Not Reported	
2005043220	2009539474		0	2 Not Reported	Not Reported	
2005043220	2009539474		0	2 Not Reported	Not Reported	
2005043220	2009539474		0	2 Not Reported	Not Reported	
	E12th and Grand					
CRASH_KTY	castmumata batt	Cstueraty	PROPOMS CACOMANMER	VEPECLINITDIR	VACTION	mepaincost mustatus
2007017847	200730006 20070424	Property Damage Only	1500 Broasside	1 South	Movement essentially straight	1080
2007017847	2007368046		0	2 West	Mowemett essertially straight	500
2007031376	200738335220070724	Property Camage Only	6000 Broastide	1 East	Mowement assamelialy stratght	3000
	E9th and Grand					
CRASH_KEY	Casendumer Date	CSEVERATY	PRACPDREG CACCMASNIER	VEHKCLIRITDIA	Vacnow	RtPancost ingTatus
2007022375	200737374520070524	Propertr Damage Only	2000 Arosithide	1 West	Movement essentially straight	1200
2007022875	2007373745		0	2 South	Movement essentialy strajgt	1200

Movement asientialy strajete

Moremest essemialy straigh
Morement essentily straight
Morenet essentialy siraight

 Torring left

Mavemam essentiality strieght
Movement essentialy straidett Movememt essentiall strijght Movement essentially straidit Turming loft

Movement essertialy strajeft
 Movement essentiolly serriegt Turning ieft Movamant ensemia Movement esseataly straight Tuming left

关

$$
\frac{\pi}{5}
$$

Propety Damaze Only

\qquad

 Property Damege Onhy
Property Damage Conly
合
4
$\frac{1}{2}$
8
$\frac{2}{2}$
$\frac{0}{2}$

 $\frac{5}{5}$
$\frac{8}{5}$
$\frac{8}{5}$亲
$\frac{3}{8}$
$\frac{3}{8}$

> 9th and University CASENUMBER DATE
营

蕅

 200953456720091205
 N
M
N
学
13th and University
CSENLMMEER DATE

空萘 2007001395 2007016565
2007016685
2007016695 2007016666
2007016565 2003012790 2008012796
2008022484管落 2003032939 2003043075 2003043076
䚈
萨茀高歌辇

旁箬
CRASH＿KEY
2057502225
2007002235
2007002250
2007002230
2007003100

2007003100	2007203204		0	2 South	Ravement essertially stroight
2007013238	200721378920070116	Property Damage Orily	3080 Atgle-atcoming left tarn	1 East	Tarnirg left
2007013238	2007213789		0	2 West	Movement essentially straight
2007018369	200736363720070424	Property Damage Only	1100 Irocathide	1 West	Movement essentially straight
2007018369	2007369637		0	2 North	Movement essentially straight
2007029094	200738076620070702	Property Damage Only	s060 sideswipe-same direction	1 East	Changing lanes
2007029094	2507369766		0	2 East	Mavemert essentially straight
2007029095	200738076720070702	Possibie/Unknowa	Sear-end	1 East	Mavement essentially straight
2007029095	2007360767		0	2 East	Stopped for stop sign/isignal
2007029095	2007300767		0	0	
2007041172	200739443320071001	Property Damage Onty	Bear-end	1 tast	Movement essentialhy stright
2007041172	2007394633		0	2 test	Movemert essentially straght
2007044011	200739760420071015	Mapor Injury	18000 Brosdside	1 South	Movement essentially straght
2007044011	2007397604		0	2 Ent	Movement essentialiy straght
2007044011	2007397604		0	0	
2007044035	200739763120071013	Property Domoge Onty	3500 Rear-end	1 East	Mowement essentially straight
2007044035	2007397631		0	2 East	Mowement essentialy straighe
2007053254	200740774520571202	Property Danage Only	1400 Rearend	1 East	Mowement essentially straighe
2007053254	2007407745		0	2 East	Mowtment essentially straighe
2005033448	200845402120090804	Property Damage Only	3500 Rear end	1 East	Turning left
2006033448	2008454021		\bigcirc	2 Eait	Mowement eisentally itraigh
2008042646	200846454520081010	Property Damage Only	9000 Broadside	1 Weas	Movement essentially straighe
2006042646	2008464545		\bigcirc	2 50uth	Movement aisentialy straighe
2006042646	2008454545		0	3 March	Maroument eisentialy straight
2099026144	2009516767 20090706	Posuitu/Uriknown	Brambuta	1 tast	Mowement essentisly straight
2009026144	2009514767		0	2 South	Mrvement essentialy straight
2009027545	200951647120090715	Major injury	7000 Angle-oncoming left turn	1 Morth	Tuming left
2009027645	2009516471		0	2 South	Morement espentialy straizht
2009034935	200952473320090911	Mnor lijury	3500 Broastide	1 West	Tunning let
2009034935	2005524733		0	2 East	Movement esiemtialy straight
2000038259	200562844520031002	Property Damage Only	Eroackide	1 West	Tursing left
2000038259	2005628445		0	2 East	Movement essentialy straight
2009036253	2009528445		0	3 Noeth	Stocped foe stop sigivignal
	19th and University				
CNASCIEY	casemumier date	cseveratr	Pncernag crictennintr	VEMCAINITDIR	vaction
2007001500	200720157620070115	Property Damage Only	4000 Irocadride	1 North	Mavement essentialy strajht
2007001500	2007201576		0	2 East	Movement essentiaily straight
2007003005	200720309720070422	Major isiury	10000 Broadside	1 East	Movement essentially straight
2007003605	2007203097		0	2 Narth	Mavamant essentielly streipht
2007069605	2007203097		0	3 West	Stopped for stop sigrvisignal
2007004205	200720436120070130	Property Demage Orly	1500 Rear-end	1 North	Movement essentially stright
2007004207	2007204361		0	2 North	Slowing/stopping
2007017264	200736738220070415	Property Damage Daly	Braaduide	1 Not heported	Movement ensertialy straght
2007017264	2097367318		\bigcirc	2 Not Reported	Not Reported
2007018028	200736825120070425	Property Damage Orly	2500 Rear-end	1 Worth	Movement essentialy straight
2007018028	2007368251		\bigcirc	2 Unimowe	Legaly Parked
2007013481	200736877020070428	Propeety Darnage Orily	2105 heariend	1 Nierth	Slowing/stopeitg
2007013981	2007888770		0	2 North	slowing/stopeing
2007018481	2007358770		0	3 North	Unknown
2007035427	200738794020070322	Procerty Camage Only	Broastible	1 Not freported	Not Reported
2007635427	2007387940		0	2 Werth	Movement essemially straight

Movement essencaly straight Movement essestially straight Mowement exsentialy straght
 Movernent esseatialy straight
Turnieg left Tumiog left
Uniknown

Novement esseatialy straght曾
 Movement esseetaily straight Stopoped for stog sigis／ievial $\frac{3}{3}$
$\frac{3}{3}$
$\frac{2}{7}$
$\frac{2}{3}$
$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$ Moreement exsentialy straight
 Movemest essencialy straight $\frac{5}{2}$
$\frac{2}{2}$
$\frac{3}{4}$
$\frac{1}{4}$
$\frac{1}{4}$
$\frac{1}{2}$ $\frac{1}{5}$
$\frac{5}{5}$
$\frac{2}{4}$
$\frac{2}{4}$
$\frac{2}{5}$
$\frac{5}{4}$
$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$ Turnirg right

Moremenk essemtially straight Sopped for stop yevorest Movemens assomitally stright
 Movemert essumtially straight

Movement essentielly strigit

 Stopped for stop sien／siegral

 $\frac{4}{4}$
$\frac{1}{2}$
$\frac{1}{4}$
$\frac{1}{4}$
$\frac{1}{3}$ Movement essertialy straisht

 stopped for itop sero／signal
 Movement exsertialy ytraghth
vacnon
Mowemert
等薷

落若岩 | 5 |
| :--- |
| $\frac{8}{2}$ |咅会 ${\underset{\sim}{5}}_{\substack{5 \\ 2}}^{5}$朝令

 Vericus intoik
1 West

名膏
 3000 Nion iacapocizating
7500 Poarble $\frac{1}{3} \frac{0}{6}$
$\frac{8}{5} 8$
8.8
8 3800 Non－incapaciating 0 Pocsilde
500 Ponsible 5000 Pariside
 늘
咅
8
8
8 1000 Possible a
$\frac{3}{3}$
$\frac{3}{3}$
$\frac{1}{1}$
$\frac{8}{8}$
8 $\frac{\pi}{4}$
$\frac{3}{2}$
$\frac{8}{8}$
8咅
首 8

ement essentisily straig	
	ent
ovement essentially straight	
ovemem essentially straight	
tovemert essentially straight	
oning／istopping	
Slowing／stopping	
	Mowement essentially straight
avemamt essemtially straight	
Moverment essentisily straight	
	for stop
Changing lanes	
－	
	Stopsed for stop sign／signal
Hovement essentially straight	
	bovement Essentialty st
Chinging leas	
	et Peported
Turning left	
	Turniag lef
Stopped for stop siendsienal Movement maustialy straight	
Slowing／stopping	
	Slowing／stopping
Mouement etsentily suraight	
Meramment esiantialy straight	
ovement essencialy straight．	
Morement essentially straish：	
	orementat assertitialy st
overnent essemtialy straig	
dvement essertialy straight	
Movenent essemtialy straight	
Muvermant ascermially strsight	
Avvemert essertisily straigit	
Movement essentialy straight	
Movement essentialy straidht	
	fovememt essemtially strajdt
Movemamt wisemtially struight	
Movement essentizily strajght	
Mowamant essentiaily stra	
Acomem sembery traght	
Movement essentially strajht	
sovement essertialy straght	
Mowement misetialy straght	
Stopped for stop sigrisignal	
Movement essentialy straigh	
Moviment essestally itralght	
Movement exsertsaly stra	
Movernert essentigly straight	
－	

20070121	Minor injury
20030129	Praparsy Damage Conly
2000314	Property Damage Coly
20070507	Proparty Damage Colly
20070524	Property Damuge Coht
20070719	Property Damage Corih
20070055	Mapor injury
20070915	Posside／Uibioun
2097113	Property Demise OH （ry
20071201	Property Damse Only
20071130	Passitse／Linktawn
20080307	Fropety Damage Oniy
20680303	Fassibie／Uninoun
20030323	Property Damage Oniy
20090719	Proserty Damage Cris
20080719	Proserty Damape Onlv
200s0506	Fatal
200toge	Passtie／Linknown
20081017	Mhor ingury
20051112	Miear ifenty
20000191	Possidefluekaiom
20090207	Minor inumy
20090008	Posility／urbeiom
20590368	Passible／Undmown
20090015	Property Damaye Orly
20090405	Fossible／Uninown

[^4]3000
2000
7500 Possible
7500 Posselle
5000
3500
Possble
50 Possible
100
1500
1500
1000
1000
1500
3000
2500
3000 Possible
3000
3000 Nion－incapacirating
4000

snuwisent
各各名名名 sojumded
咅

200950385720050529

登
8
8
8
8
量量
n
学
知

त
2009020835
2009020935 2009020835
2009021541 2000021541 2009024116
2009024116 2003027101 2003027461
2009027461 2009027461 2009028254 2009028254 2009033015 200903423s 2009036132 2009036132 2009042471
2009042471 2003042471

2009047137

Movement essentially straight

jeuals/uas doms rof paddous
nourven

CSEVERTTY

Property Damage Conly

CRASH_REY
2007016214 2007016214
2007016214 2005002159
2005002159 2005057265
20001057265
2008057265
2005017375
2005017375
2005021710
2009021710
2009021710
20021710
2009021710
2000024117
2000024117
28th and Unluersity

2007372161
200739379320070920
200739379320070920
2007393793
2007393793
200845333920060625

	Polk and University	
CRASH_kEY	CASENUMBER DATE	
2007027259	2007378709	
200070026		
200027750	2008447464	
20000027750	2008447465	
2005053118	2009544779	
2000053138	2009544779	

19th and Grand
LTHOCOOR ZTOLSELOOX TSEATOLOOT

E 14 ${ }^{\text {th }} /$ E 15 ${ }^{\text {th }}$ Street Corridor-2012 IDOT Counts

ML King $/$ 19 $^{\text {th }}$ Street Corridor - 2012 IDOT Counts

Forest Avenue Corridor-2012 IDOT Counts

Cherry Street Corridor - 2008 IDOT Counts

[There were no recent counts available for the Cherry Street corridor, although it is estimated to be approximately 5,000 vehicles/day.

Ingersoll Avenue Corridor - 2012 IDOT Counts

$6^{\text {th }}$ Avenue Corridor-2012 IDOT Counts

Intersection or Spot Benefit / Cost Safety Analysis Iowa DOT Office of Traffic \& Safety

County: \qquad Prepared by: \qquad Date Prepared: Aug 11, 2015
Intersection: Citywide Fixed-Time Traffic Signal Upgrade - Phase 2 (25 intersections)
Improvement
Proposed Improvement(s): Upgrade existing fixed-time signals to semi-actuated
Note: Only "correctable" crashes are included in the analysis (sideswipe-same direction, rear-end on main st)

\$ 120,000		Estimated Improvement Cost, EC			Est. Improvement Life, years, Y
		Other Annual Cost (after initial year), AC		10	Crash Reduction Factor (integer), CRF
\$	-	Present Value Other Annual Costs, OC		4.0\%	Discount Rate (time value of \$), INT
		$O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)$	\$	120,000	Present Value Cost, COST = EC + OC

Traffic Volume Data

Source: lowa DOT
2012
Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

1.0\% Projected Traffic Growth (0\%-10\%), G

19,000 Current Daily Entering Vehicles, DEV
6,935,000 Current Annual Entering Veh., AEV = DEV * 365
22,058 veh / day, Final Year DEV, FDEV
111.63 MEV, Total Million Entering Veh. Over life of Project, TMEV
$T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}$

Crash Data

Benefit / Cost Ratio

$$
\text { Benefit : Cost }=\$ 1,482,838: \$ 120,000 \quad=1
$$

August 14, 2015

Donna Matulac, P.E.
Office of Traffic and Safety
lowa Department of Transportation
800 Lincoln Way
Ames, lowa 50010

Dear Donna,

Included is the Traffic Safety Improvement Application for a Site Specific improvement in the City of Urbandale, lowa. The intersection identified for the improvements is $142^{\text {nd }}$ Street \& Douglas Parkway. The Benefit/ Cost spreadsheet is submitted in PDF and excel format. If you have any questions regarding the material submitted in the application please feel free to contact me by phone or e-mail.

Michael Anthony, PE
Civil Engineer
(515) 422-5523
manthony@shive-hattery.com

Traffic Safety Improvement Program Application

$142{ }^{\text {nd }}$ Street and Douglas Parkway
Urbandale, Iowa
August 14, 2015

Application for TRAFFIC SAFETY FUNDS

GENERAL INFORMATION
DATE: 08/14/2015
Location / Title of Project $\quad 142^{\text {nd }}$ St and Douglas Ave Roudabout Improvements
Applicant City of Urbandale
Contact Person David J. McKay, P.E.
Title Public Works Director
Complete Mailing Address $360086^{\text {th }}$ Street
Urbandale, IA 50322
Phone \qquad E-Mail dmckay@urbandale.org
(Area Code)

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \qquad
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone \qquad E-Mail \qquad
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

Application Type

Site Specific	$\boxed{ }$
Traffic Control Device	\square
Safety Study	\square

Funding Amount

Total Project Cost	$\$ 502,000$
Safety Funds Requested	$\$ 500,000$

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the City of Urbandale

Signed:

David J. McKay, P.E.
Typed Name

$\frac{\text { John B. Larson, P.E. }}{\text { Typed Name }}$
Typed Name

A RESOLUTION AUTHORIZING THE CITY OF URBANDALE, IOWA, TO MAKE AN APPLICATION TO THE IOWA DEPARTMENT OF TRANSPORTATION TRAFFIC SAFETY IMPROVEMENT PROGRAM FOR THE FUNDING OF GEOMTERTIC MODIFICATIONS AT THE $142^{\text {ND }}$ STREET AND DOUGLAS PARKWAY ROUNDABOUT AND FURTHER APPROVING THE APPLICATION WHICH OBLIGATES THE CITY TO MAINTAIN THE FUNDED IMPROVEMENTS.

WHEREAS, the Iowa Department of Transportation Traffic Safety Improvement operates under the rules of the Iowa Administrative Code 761 - Ch.164; and

WHEREAS, said program allows for the distribution of traffic safety funds to cities, counties and the Iowa DOT for roadway safety improvements, research, studies, or public information initiatives.; and

WHEREAS, the City of Urbandale has determined that by constructing geometric improvements at the $142^{\text {nd }}$ Street and Douglas Parkway roundabout there will be improved safety at the intersection;

NOW THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF

 URBANDALE, IOWA, THAT:1. The City Council supports and approves the attached application for Iowa Department of Transportation Traffic Safety Improvement Program funding.
2. The City Council hereby commits to accepting and maintaining these improvements.
3. The Mayor is hereby authorized to execute the application on behalf of the City.

PASSED AND APPROVED this $4^{\text {th }}$ day of August, 2015.

Attest:

Dofor Naim

Debra Mains, City Clerk

Background / Existing Conditions

The City of Urbandale is proposing to make improvements to the intersection of $142^{\text {nd }}$ Street and Douglas Parkway. The existing intersection is a four (4) leg roundabout that was originally constructed in 2004 prior to more modern roundabout design criteria being established. Each approach of the roundabout is perpendicular to the inscribed circle and passes through the center of the roundabout. This type of geometry creates large speed differentials between entering and circulating traffic. The design does not meet current roundabout design guidelines due to the lack of entrance and departure angles which naturally limit the speed of vehicles entering the roundabout. With minimal side friction to limit speed along Douglas Parkway, traffic entering the roundabout is forced to abruptly reduce their speed in order to navigate the roundabout. The increased speed of entering traffic also results in a decreased reaction time to evaluate gaps and ability to merge into circulating traffic.

The of Douglas Parkway corridor from $142^{\text {nd }}$ Street to $128^{\text {th }}$ Street was a completely new eastwest connection from Interstate $35 / 80$ to existing gravel roads serving the development to the west. As development in these western suburbs exploded, traffic volumes along the east-west arterials of University Avenue, Hickman Road and Douglas Parkway skyrocketed. The subject corridor along Douglas Parkway which saw no traffic in 2004, was first measured for traffic in 2008, more than doubled in traffic by 2012 and has continued to see an increase as more and more development is added to the west. In 2008, the Douglas Parkway corridor was expanded west to $156^{\text {th }}$ Street. By 2010, it was expanded and extended all of the way to Waukee creating a parallel route to Hickman Road for commuting traffic from the west. With the continued development to the north and west of the Douglas Parkway corridor, traffic numbers will continue to rise on this important east-west arterial to Interstate 35/80.

Douglas Parkway is a divided, four lane arterial. Recent improvements to $142^{\text {nd }}$ Street south have expanded the roadway to four lanes from Douglas Parkway to Hickman Road. $142^{\text {nd }}$ Street north is built out to four lanes for 300 ' at which point it is reduced to two lanes up to Aurora Avenue. $142^{\text {nd }}$ Street is currently classified as a minor arterial to the south and collector to the north. The posted speed limit of both roadways is 35 mph . See Exhibit \mathbf{H} for existing conditions.

Crash Analysis

Crash history for this intersection was collected from both lowa DOT CMAT software and actual officer reports from the Urbandale Police Department. The evaluation period is from 2005 to 2014 to identify trends and safety issues with the current intersection geometry and operations. In the past 7 years 31 crashes have been reported resulting in 1 major injury, 2 minor injuries, and 4 possible injuries. The majority of crashes (65\%) are sideswipe collisions due to failure to yield or improperly merging upon entry/exiting of the roundabout. Approximately 65% of these collisions occurred with one or both vehicles traveling westbound. Other recorded causes of crashes include striking a pole or median, running off the road, and rear end collisions.

In the past four years, the frequency of crashes has more than doubled from the previous four years. This is directly attributed to the increased traffic from development and the build-out of the Douglas Parkway corridor to support the surrounding area. Roundabouts, by their design, result in crashes that are often less severe due to speed and manner of the collision. This is reinforced by the increased number of sideswipe and "Property Damage Only" collisions. However, although these crashes are less severe in nature still pose a major safety concern and significant financial loss. Refer to Section I for crash history, officer accident reports, and crash details.

Proposed Improvements

Due to the amount and manner of crashes at the intersection, it is proposed to reconstruct the roundabout using modern design guidelines for increased safety. The majority of crashes are sideswipe upon entering or exiting the roundabout. It is proposed to reconstruct all four legs of the roundabout in order to increase the deflection angle for the traffic entering the roundabout. This revised geometry will naturally slow motorists down, providing them with more time to judge gaps of circulating traffic and greater control of their vehicle when entering the roundabout. The outside circulating radii of the roundabout will also be widened allowing for a better defined path to navigate the roundabout. The existing fishhook pavement marking will also be removed and replaced with standard lane designation arrows. Lastly, the pedestrian crossings will be reconstructed and additional lighting will be installed to eliminate backlighting
of the roundabout and pedestrians. Refer to Exhibit G for the proposed improvements.

Safety Justification

Currently there no crash modification factor(s) (CMF) in place that are directly related to converting an existing roundabout with geometric and operational issues and modernizing it to the current guidelines. Of the 31 crashes in 7 years, at least 16 were related to failing to yield or making improper turns. A crash reduction factor (CRF) of 25 was used for the justification as follows:

- Path overlap - Each approach and exit has the condition where the motorists upon entry and exit are not directed into the proper lane. This creates unnecessary and additional conflict points. By removing these conflict points, sideswipe and improper turn crashes will be reduced.
- Deflection - Each approach has no deflection which causes motorists to approach and enter the roundabout at higher speeds. Reconstructing the approaches to create deflection will help reduce entering motorist's speed to those of the circulating traffic. Additionally, this allows motorists to enter and navigate the roundabout at a more reasonable speed to maintain control and maintain proper lane assignments. By adding deflection, failure to yield and high speed entry crashes will be reduced.

Roundabout design is focused on achieving consistent speed through an intersection; something the existing design does not allow. Vehicles are forced to greatly reduce their speed just prior to entering the roundabout; similar to navigating a traditional intersection when making a right turn. There are four major safety issues to this design:

- Requires greater gap between circulating traffic when entering due to abruptly reduced approach speeds
- Increased queuing of traffic at approach legs
- Decreases reaction time when analyzing surrounding traffic and proper lane assignment
- Promotes path overlap for vehicles navigating straight through the roundabout due to lack of deflection angle

The proposed improvements focus on addressing these safety issues by reducing the confusion of
navigating the roundabout. Natural path of a vehicle is determined by the speed and orientation of the vehicle at the yield line. By decreasing the entry angle through the approach legs, motorists are allowed time to analyze gaps of circulating traffic prior to entering the roundabout. This creates a more clearly defined path and allows motorists to focus more on surrounding traffic and proper lane assignment and less on navigating the roundabout. Most importantly these improvements will result in a safer roundabout and a reduced frequency of crashes.

SHIVEHIATTERY
 ARCHITECTURE+ENGINEERING

Proposed Roundabout Modernization Douglas Parkway \& 142nd Street
 Urbandale, Iowa
 Opinion of Probable Construction Costs
 August 14, 2015

**TOTAL PROJECT COSTS AND CONSTRUCTION COSTS PROVIDED HEREIN ARE MADE ON THE BASIS OF ENGINEER'S EXPERIENCE AND QUALIFICATIONS AND REPRESENT THE ENGINEER'S BEST JUDGMENT. HOWEVER, THE ENGINEER CANNOT AND DOES NOT GUARANTEE THAT BIDS OR ACTUAL TOTAL PROJECT OR CONSTRUCTION COSTS WILL NOT VARY FROM THE ESTIMATE OF PROBABLE CONSTRUCTION COST. THIS ESTIMATE IS INTENDED TO ASSIST IN BUDGETARY ASSESSMENT AND DOES NOT GUARANTEE THAT ACTUAL PROJECT COSTS WILL NOT EXCEED OR BE LOWER THAN THE AMOUNTS STATED IN THIS ESTIMATE.

Improvements to the $142^{\text {nd }}$ Street and Douglas Parkway Roundabout are to be funded through Traffic Safety Improvement Fund. The schedule proposed for the safety improvements is as follows:

- August 15, 2015 - Submit for 2015 TSIP Funds
- Mid-December 2015 - TSIP Funds are awarded
- July 1, 2016 -TSIP funds are available for the intersection improvements
- August 2016 - Proceed with design of improvements
- February 2017 - Let intersection project
- 2017 Construction Season - Construction begins / Completed

Looking South/West along Douglas Parkway (East Approach)

Looking West along Douglas Parkway (East Approach)

SHIVㅌIATTERY
 ARCHITECTURE + ENGINEERING

Looking South/East on Douglas Parkway

Looking South on $142^{\text {nd }}$ Street (North Approach, WB Exit)

SHIVEIATTERY

ARCHITECTURE + ENGINEERING

Looking North on $142^{\text {nd }}$ Street (South Approach)

Looking North on $142^{\text {nd }}$ Street (South Approach)

SHIVEFIATTERY
 ARCHITECTURE+ENGINEERING

SHIVEHIATTERY
ARCHITECTURE+ENGINEERING

Note: Police reports available upon request. Police reports have been verified against CMAT Data.

Crash Detail Report

2008432221	$03 / 13 / 2008$
County:77	City:Urbandale

Major Cause: Equipment failure
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Non-collision
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Surface Conditions: Dry
Light Conditions: Dark - roadway lighted

Possible Injuries: 0
Weather Conditions: Clear

Unknown Injuries: 0
Drug/Alc Involved: none indicated

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	East	0	0
Veh Action:	Essentially straight	0	0
Configuration:	Passenger car	0	0
Driver Age:	18	0	0
Driver Gender:	M		
Driver Cond:	Normal	0	0
Drivr Contr 1:	none	0	0
Drivr Contr 2:	not reported	0	0
Fixed Object:	Curb/island/raised median	0	0

2008435723	$04 / 05 / 2008$ 06:30
County:77	City:Urbandale

		nditio inters of Crash nditions nditions nditions Involved Damage	Number of Vehicles: 1		
		Unit 2 0 0 0 0 0 0 0 0 0	Unit 3 0 0 0 0 0 0 0 0 0		
8/11/2015		sh Map		Page:	1 of 16

Crash Detail Report

2008458223	09/03/2008 15:25
County: 77	City:Urbandale

Major Cause: FTY at uncontrolled intersection
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Partly cloudy
Possible injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: $\$ 3000$
Number of Vehicles: 2

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	North	North	0
Veh Action:	Turning right	Turning right	0
Configuration:	Passenger car	4-tire light truck	0
Driver Age:	29	37	0
Driver Gender:	F	M	
Driver Cond:	Normal	Normal	0
Drivr Contr 1:	FTY uncontrolled inters	none	0
Drivr Contr 2:	not reported	not reported	0
Fixed Object:	none	none	0

2008460617	09/18/2008 07:02
County:77	City:Urbandale

Crash Detail Report

2008478590	12/15/2008 06:43		
County:77	City:Urbandale	\quad	BLK OF DOUGLAS EB
:---			

Major Cause: Other: No improper action
Roadway Type:Intersection: Other intersection
Severity:PDO Manner of Crash:Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Dawn

Possible Injuries: 0
Weather Conditions: Cloudy
Possible injuries: 0
Drug/Alc Involved: none indicated

Unknown Injuries: $0 \quad$ Property Damage: $\$ 3000$				Number of Vehicles: 2
	Unit 1	Unit 2	Unit 3	
Init Trav Dir:	East	East	0	
Veh Action:	Changing lanes	Essentially straight	0	
Configuration:	Sport utility vehicle	Passenger car	0	
Driver Age:	38	25	0	
Driver Gender:	F			
Driver Cond:	Normal	Normal	0	
Drivr Contr 1:	not reported	none	0	
Drivr Contr 2:	not reported	not reported	0	
Fixed Object:	none	none	0	

2009510600	06/06/2009 18:23
County:77	City:Urbandale

Crash Detail Report

2010551672	$01 / 25 / 201016: 59$
County:77	City:Urbandale

Major Cause: Driving too fast for conditions
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Rear-end
Fatalities: 0
Major Injuries: 0
Surface Conditions: Snow

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Snow
Possible Injuries: $0 \quad$ Drug/Alc Involved:none indicated

Number of Vehicles: 2

Property Damage: \$4000				Number of Vehicles: 2
	Unit 1	Unit 2	Unit 3	
Init Trav Dir:	West	West	0	
Veh Action:	Essentially straight	Slowing/stopping	0	
Configuration:	Sport utility vehicle	Passenger car	0	
Driver Age:	54	54	0	
Driver Gender:	M			
Driver Cond:	Normal	Normal	0	
Drivr Contr 1:	Too fast for conditions	none	0	
Drivr Contr 2:	Followed too close	not reported	0	
Fixed Object:	none	none	0	

2010571088	$05 / 06 / 2010$ 15:12
County:77	City:Urbandale

Crash Detail Report

2010574927	$05 / 31 / 2010 \quad 08: 58$
County:77	City:Urbandale

Major Cause: Driving too fast for conditions
Roadway Type:Non-intersection: No special feature

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash: Non-collision
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage: $\$ 5000$
Number of Vehicles: 1

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	North	0	0
Veh Action:	Essentially straight	0	0
Configuration:	Motorcycle	0	0
Driver Age:	20	0	0
Driver Gender:	M		
Driver Cond:	Normal	0	0
Drivr Contr 1:	Too fast for conditions	0	0
Drivr Contr 2:	Lost control	0	0
Fixed Object:	Curb/island/raised median	0	0

Major Cause:Driving too fast for conditions
Roadway Type:Non-intersection: No special feature

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash: Non-collision

Surface Conditions: Dry

Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:Alcohol: Statutory
Property Damage: \$5000
Number of Vehicles: 1

Unit 3	
0	
0	
0	
0	
0	
0	
0	
0	
0	

Crash Detail Report

2010581904	$07 / 16 / 2010$ 16:47
County:77	City:Urbandale

Major Cause: Animal
Roadway Type:unknown
Severity:Major Manner of Crash: Non-collision
Fatalities: $0 \quad$ Surface Conditions: Dry
Major Injuries: $1 \quad$ Light Conditions: Daylight
Minor Injuries: $0 \quad$ Weather Conditions: Clear
Possible Injuries: $0 \quad$ Drug/Alc Involved:none indicated

2010587072	08/23/2010 14:15
County:77	City:Urbandale

Major Cause: unknown
Roadway Type:Intersection: Other intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$5500
Number of Vehicles: 2

| Unit 3 |
| :--- | :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

Crash Detail Report

2010598475	$11 / 02 / 2010 \quad 20: 45$
County:77	City:Urbandale

Major Cause: FTY other
Roadway Type:Non-intersection: No special feature
Severity:PDO Manner of Crash: Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Dark - roadway lighted
Weather Conditions: Clear
Possible Injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: $\$ 2500$
Number of Vehicles: 2

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	West	West	0
Veh Action:	Turning left	Essentially straight	0
Configuration:	Passenger car	Passenger car	0
Driver Age:	31	41	0
Driver Gender:	F		
Driver Cond:	Normal	Normal	0
Drivr Contr 1:	FTY other	none	0
Drivr Contr 2:	not reported	not reported	0
Fixed Object:	none	none	0

Major Cause: FTY from yield sign
Roadway Type:Intersection: Other intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$3500
Number of Vehicles: 2

Unit 3	
0	
0	
0	
0	
0	
0	
0	
0	
0	

Crash Detail Report

2012695055	$07 / 19 / 2012$ 17:52
County:77	City:Urbandale

Major Cause: FTY other
Roadway Type:Intersection: Other intersection
Severity:PDO Manner of Crash: Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$7000
Number of Vehicles: 2

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	West	West	0
Veh Action:	88	88	0
Configuration:	Passenger car	Sport utility vehicle	0
Driver Age:	25	34	0
Driver Gender:	M	M	
Driver Cond:	Normal	Normal	0
Drivr Contr 1:	Made improper turn	none	0
Drivr Contr 2:	FTY other	not reported	0
Fixed Object:	none	none	0

Major Cause:Made improper turn
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Wet
Light Conditions: Dark - roadway lighted
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Property Damage: \$2500
Number of Vehicles: 2

Unit 2	Unit 3
North	0
Essentially straight	0
Passenger car	0
31	0
F	
Normal	0
none	0
not reported	0
none	0
0	

Crash Detail Report

2013743130	$06 / 10 / 2013$ 07:55
County:77	City:Urbandale

Major Cause: unknown
Roadway Type:Intersection: Other intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: $0 \quad$ Surface Conditions: Dry
Major Injuries: $0 \quad$ Light Conditions: Daylight
Minor Injuries: $0 \quad$ Weather Conditions: Cloudy
Possible Injuries: 1 Drug/Alc Involved:none indicated

Unknown Inju	uries: 0	Property Damage: \$5000		Number of Vehicles: 2
	Unit 1	Unit 2	Unit 3	
Init Trav Dir:	North	East	0	
Veh Action:	Turning left	Turning left	0	
Configuration:	Passenger car	Sport utility vehicle	0	
Driver Age:	55	unknown	0	
Driver Gender:	F	NR		
Driver Cond:	Normal	unknown	0	
Drivr Contr 1:	none	unknown	0	
Drivr Contr 2:	not reported	not reported	0	
Fixed Object:	none	none	0	

2013743231	$06 / 10 / 2013$ 18:48
County:77	City:Urbandale

Major Cause: Other improper action
Roadway Type:Intersection: Other intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$4000
Number of Vehicles: 2

Unit 2	Unit 3
West	0
Essentially straight	0
4-tire light truck	0
37	0
NR	0
Normal	0
none	0
not reported	0
none	

Crash Detail Report

Major Cause: Ran off road - straight
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Non-collision
Fatalities: $0 \quad$ Surface Conditions: Dry
Major Injuries: $0 \quad$ Light Conditions: Dark - roadway lighted
Minor Injuries: 0
Weather Conditions: Clear
Possible Injuries: $0 \quad$ Drug/Alc Involved:Alcohol: Statutory

Unknown Inju	uries: $0 \quad$ Property Damage: $\$ 3300$		Number of Vehicles: 1	
	Unit 1	Unit 2	Unit 3	
Init Trav Dir:	West	0	0	
Veh Action:	Turning right	0	0	
Configuration:	Passenger car	0	0	
Driver Age:	49	0	0	
Driver Gender:	M			
Driver Cond:	Infl by alc/drugs/meds	0	0	
Drivr Contr 1:	Lost control	0	0	
Drivr Contr 2:	not reported	0	0	
Fixed Object:	Curb/island/raised median	0	0	

2013772586	$09 / 17 / 201316: 14$
County:77	City:Urbandale

Major Cause: FTY other
Roadway Type:Intersection: Four-way intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Property Damage: \$7000
Number of Vehicles: 2

Unit 2	Unit 3
West	0
Essentially straight	0
Passenger car	0
52	0
M	0
Normal	0
none	0
not reported	0
none	0
0	

Crash Detail Report

$\begin{array}{cl} 2013757940 & 09 / 18 / 201317: 12 \\ \text { County:77 } & \text { City:Urbandale } \end{array}$	142 ND ST AND DOUGLAS PKWY

Major Cause: Other improper action
Roadway Type:Intersection: Other intersection
Severity:PDO Manner of Crash: Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: $\$ 3000$
Number of Vehicles: 2

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	West	West	0
Veh Action:	88	88	0
Configuration:	Van or mini-van	Sport utility vehicle	0
Driver Age:	35		0
Driver Gender:	F		
Driver Cond:	Normal	Normal	0
Drivr Contr 1:	none	Other improper action	0
Drivr Contr 2:	not reported	not reported	0
Fixed Object:	none	none	0

2013778726	12/30/2013 12:45
County:77	City:Urbandale

Major Cause: Other improper action
Roadway Type:Intersection: Other intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Snow
Light Conditions: Daylight
Weather Conditions: Snow
Drug/Alc Involved: none indicated
Property Damage: $\$ 8000$
Number of Vehicles: 2

Unit 2	Unit 3
West	0
Essentially straight	0
Passenger car	
42	
F	
Normal	
Other improper action	
not reported	
none	0
0	
0	
0	

Crash Detail Report

2014779285	01/13/2014 18:11
County:77	City:Urbandale

Major Cause: Animal

Roadway Type:Not reported
Severity:PDO Manner of Crash: not reported
Fatalities: $0 \quad$ Surface Conditions: not reported
Major Injuries: 0
Minor Injuries: 0
Light Conditions: not reported

Possible Injuries: 0
Weather Conditions: not reported
Possible injuries: 0
Drug/Alc Involved: none indicated

Crash Detail Report

2014806416	07/02/2014 17:55		
County:77	City:Urbandale	\quad	142ND ST \& DOUGLAS PKWY INTERSECTION
:---			

Major Cause: Made improper turn
Roadway Type:Intersection: Other intersection
Severity:PDO Manner of Crash: Non-collision
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Partly cloudy
Possible Injuries: $0 \quad$ Drug/Alc Involved: none indicated

Number of Vehicles: 1

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	not reported	0	0
Veh Action:	not reported	0	0
Configuration:	Tractor/semi-trailer	0	0
Driver Age:	unknown	0	0
Driver Gender:	NR		
Driver Cond:	unknown	0	0
Drivr Contr 1:	Made improper turn	0	0
Drivr Contr 2:	Other improper action	0	0
Fixed Object:	Pole: utility/light/etc	0	0

2014814960	08/28/2014 07:59
County:77	City:Urbandale

Major Cause: FTY other
Roadway Type:Intersection: Other intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Sideswipe, same direction
Surface Conditions: Wet
Light Conditions: Daylight
Weather Conditions: Rain
Drug/Alc Involved: none indicated
Property Damage: \$3000
Number of Vehicles: 2

Unit 3	
0	
0	
0	
0	
0	
0	
0	
0	
0	

Crash Detail Report

2014815620	$09 / 05 / 2014$ DOUGLAS PKWY AND 0742 ND
County: 77	City:Urbandale

Major Cause: Other improper action
Roadway Type:Intersection: Other intersection
Severity:PDO Manner of Crash:Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Wet

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Rain
Possible injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: $\$ 4000$
Number of Vehicles: 2

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	South	West	0
Veh Action:	Essentially straight	Turning right	0
Configuration:	Passenger car	Passenger car	0
Driver Age:	33	33	0
Driver Gender:	F	M	
Driver Cond:	Normal	Normal	0
Drivr Contr 1:	Other improper action	none	0
Drivr Contr 2:	not reported	not reported	0
Fixed Object:	none	none	0

2014832322	12/04/2014 18:09 14200BLK DOUGLAS PKWY
County:77	City:Urbandale

Major Cause: Animal
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Non-collision
Surface Conditions: Dry
Light Conditions: Dark - roadway lighted
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$5000
Number of Vehicles: 1

Unit 3	
0	
0	
0	
0	
0	
0	
0	
0	
0	

Crash Detail Report

2015854319	$04 / 09 / 201514: 25$
County:77	City:Urbandale

Major Cause: Other: No improper action
Roadway Type:Intersection: Other intersection
Severity:PDO Manner of Crash: Sideswipe, same direction
Fatalities: 0
Major Injuries: 0
Surface Conditions: Wet

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: $\$ 2100$
Number of Vehicles: 2

	Unit 1	Unit 2	Unit 3
Init Trav Dir:	West	West	0
Veh Action:	Essentially straight	Essentially straight	0
Configuration:	4-tire light truck	Passenger car	0
Driver Age:	69	60	0
Driver Gender:	M		
Driver Cond:	Normal	Normal	0
Drivr Contr 1:	none	none	0
Drivr Contr 2:	not reported	not reported	0
Fixed Object:	none	none	0

Crash Detail Report

Report Version 1.3 Aug 2006

2015863018	
County: 77	06/08/2015 17:55
City:Urbandale	

Major Cause: FTY from yield sign
Roadway Type:Intersection: Other intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Broadside
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage: $\$ 6500$
Number of Vehicles: 2

Unit 3	
0	
0	
0	
0	
0	
0	
0	
0	

2012 Iowa DOT Traffic Map

Road Name	2012 lowa DOT AADT
Douglas Parkway	5600 (West), 9000 (East)
$142^{\text {nd }}$ Street	8000^{*} (South), 4000* (North)

*Estimated Traffic volumes based off of surrounding area growth factor applied to 2008 DOT Traffic Volumes.

Intersection or Spot Benefit / Cost Safety Analysis

Iowa DOT Office of Traffic \& Safety

County: \qquad Prepared by: \qquad David Fliehler Date Prepared: \qquad
Intersection: 142nd Street and Douglas Parkway: Urbandale, Iowa
Improvement
Proposed Improvement(s): Increase roundabout entry angles, increase radius to improve exit speeds,
Roadway lighting, updated pavement symbols.

\$	502,000	Estimated Improvement Cost, EC		20	Est. Improvement Life, years, Y
\$	-	Other Annual Cost (after initial year), AC		25	Crash Reduction Factor (integer), CRF
\$	-	Present Value Other Annual Costs, OC		4.0\%	Discount Rate (time value of \$), INT
		$O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)$	\$	502,000	Present Value Cost, COST = EC + OC

Traffic Volume Data

Source: Iowa Dot Traffic Maps
2012, 2008 Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

10.0\% Projected Traffic Growth (0\%-10\%), G

13,300 Current Daily Entering Vehicles, DEV
4,854,500 Current Annual Entering Veh., AEV = DEV * 365
89,476 veh / day, Final Year DEV, FDEV
278.04 MEV, Total Million Entering Veh. Over life of Project, TMEV
$T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}$

Crash Data

Benefit / Cost Ratio

$$
\text { Benefit : Cost }=\$ 935,844 \quad: \quad \$ 502,000 \quad=\frac{1.86}{}: 1
$$

CIOWADOT

Application for TRAFFIC SAFETY FUNDS

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \qquad
Contact Person \qquad Title

Complete Mailing Address \qquad
\qquad

Phone
E-Mail \qquad
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

Application Type

Site Specific	$\boxed{ }$
Traffic Control Device	\square
Safety Study	\square

Funding Amount

Total Project Cost
Safety Funds Requested
\$ \$450,000
\$ \$450,000

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the City of Ames

Signed:

TRAFFIC SAFETY IMPROVEMENTS PROGRAM TRAFFIC SIGNAL INSTALLATION SOUTH DUFF AVENUE AMES, IOWA

The City of Ames, lowa is applying for Traffic Safety Improvement Program (TSIP) funding for safety improvements at a proposed intersection along South Duff Avenue, and a raised, concrete median along South Duff Avenue from South $5^{\text {th }}$ Street to the new signal location (see Exhibit A). The proposed signal will be located approximately 725 feet south of the intersection of South $5^{\text {th }}$ Street and South Duff Avenue. This new signal and raised median would allow access to frontage roads which will connect the commercial properties, and alleviate the existing congestion along South Duff Avenue. This project is an opportunity to make a significant traffic safety improvement in the South Duff Avenue corridor that will have mutual benefit for both the adjacent businesses and the Ames community

The current posted speed limit between the Squaw Creek bridge and South $5^{\text {th }}$ Street is 35 mph . The 2011 traffic volumes obtained from the lowa DOT's website indicate that almost 27,000 vehicles per day (vpd) use this segment of South Duff Avenue. Crash data from 2004 to 2013 show 103 crashes within the proposed project area. It is estimated the proposed improvements would decrease that number by approximately 40%. The existing signal at South $5^{\text {th }}$ Street and South Duff Avenue operates at a Level of Service (LOS) 'D' with approximately 46 seconds of delay. The approaches at this existing intersection are rated as follows: eastbound is LOS ' D ' (45 seconds), westbound is LOS ' F ' (85 seconds), northbound is LOS ' D ' (45 seconds), and southbound is LOS ' D ' (45 seconds). The peak hours of traffic through this area are documented as between 7:40 AM and 8:20 AM, and 5:15 PM and 6:00 PM. The proposed traffic signal and raised median would improve the level of service of the signal at South $5^{\text {th }}$ Street and South Duff Avenue to a LOS ' C ' with approximately 21 seconds of delay.

Exhibit 'A'

City of Ames, lowa
South Duff Avenue
Traffic Signal and Raised Median
TSIP Application

		Engineer's Estimate				
		Unit	Qty.	Unit Price	Total	
1	New Traffic Signal	1	LS	$\$ 290,000$	$\$ 290,000$	
2	Raised Concrete Median	1	LS	$\$ 160,000$	$\$ 160,000$	
	Total				$\$ 450,000$	
	TSIP Grant Request				$\$ 450,000$	

City of Ames, Iowa
 South Duff Avenue
 Traffic Signal and Raised Median
 TSIP Application

Project Schedule

Notification of Funding Award	December '15/January '16
Traffic Signal Design	February - March '16
Project Bidding	May '16
Begin Construction	July '16
End Construction	August '16

PROJECT LOCATION - Ames, lowa

New traffic signal and raised median along South Duff Avenue

Item H

Item J

TRAFFIC SAFETY IMPROVEMENTS PROGRAM TRAFFIC SIGNAL INSTALLATION SOUTH DUFF AVENUE AMES, IOWA

2011 ADT Data - South Duff Avenue between Hwy 30 \& Lincoln Way (Iowa DOT)

Iowa Department of Transportation

Turning Movement Traffic Count Summary
Annualized Daily Traffic For All Vehicles

Station Number: 85217573099
Count Date:
Wednesday, March 23, 2011
County:
Story
Location Description:
US 69 \& 5TH ST

Volume Factor: 1.948
Pass Class Factor: 1.956
SU Class Factor: 1.914
Combo Class Factor: 1.710

Raw Data-All Vehicles:

	N Leg			E Leg			S Leg			W Leg		
	L	T	R									
07:00	33	331	18	33	8	40	46	595	14	14	9	124
08:00	79	449	16	40	4	36	65	619	17	23	15	117
11:00	200	667	28	141	13	138	111	792	47	22	41	194
12:00	304	730	37	240	42	172	191	878	48	27	54	291
15:00	264	696	29	198	28	176	107	796	31	21	56	270
16:00	326	663	25	305	54	193	208	678	43	19	74	384
17:00	312	783	30	326	30	185	225	876	51	29	59	361

Iowa DOT Office of Traffic \& Safety

County:

> Story

Prepared by: Mark A. Crawford, P.E. Date Prepared: Aug 11, 2014
Intersection: South Duff Avenue between South 5th Street and Squaw Creek Bridge

Improvement

Proposed Improvement(s): Installation of new traffic signal approximately 725 feet south of South 5th St. along South Duff Avenue, and construction of a raised concrete median from South 5th St. to new signal

$\$ 450,000$	Estimated Improvement Cost, EC
	Other Annual Cost (after initial year), AC
$\$$	

```
25 Est. Improvement Life, years, Y 50 Crash Reduction Factor (integer), CRF
``` 4.0\% Discount Rate (time value of \$), INT \begin{tabular}{|l|l|}
\hline\(\$ 450,000\) & Present Value Cost, COST = EC + OC
\end{tabular}

\section*{Traffic Volume Data}

Source:
Iowa DOT - South Duff AADT
2011 Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

\section*{Crash Data}

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 1,624,277 \quad: \quad \$ 450,000 \quad=\frac{3.61}{}: 1
\]

\section*{Application for TRAFFIC SAFETY FUNDS}

\section*{GENERAL INFORMATION}

Location / Title of Project
P59 S. of \(340^{\text {th }}\) Street / Pave Shoulders and Improve
Applicant Webster County
Contact Person Ryan Weidemann Title Asst. to Engineer
Complete Mailing Address 703 Central Avenue, Suite 3, Fort Dodge, IA 50501

Phone
\(\frac{515-576-3281}{\text { (Area Code) }}\)

E-Mail rweidemann@webstercountyia.org

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title
Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)
(Area Code)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type
Site Specific \(\boxtimes\)
Traffic Control Device \(\quad \square\)
Safety Study \(\square\)

\section*{Funding Amount}

Total Project Cost
Safety Funds Requested
\$ 190,000
\$ 190,000

\section*{RESOLUTION}

\section*{RESOLUTION AUTHORIZING APPLICATION FOR TRAFFIC SAFETY IMPROVEMENT PROGRAM (TSIP) FUNDING ON P59 (PARAGON AVENUE) APPROXIMATELY TWO MILES NORTH OF FORT DODGE, IOWA}

WHEREAS, the Iowa Department of Transportation administers the Traffic Safety Improvement Program (TSIP), which provides funding for locations where vehicular safety is a concern and documented, and

WHEREAS, Webster County desires to submit a Site Specific Traffic Safety Improvement Fund Application on Route P59 (Paragon Avenue) to improve a horizontal curve on a 1150 foot long corridor commencing 300 feet south of \(150^{\text {th }}\) Street, and

WHEREAS, the total estimated cost of proposed project is \(\$ 190,000\) and the amount of safety funds requested for the proposed project is \(\$ 190,000\).

NOW, THEREFORE, BE IT RESOLVED that the Webster County Board of Supervisors fully endorses this proposed project and authorizes the County Engineer to sign and submit all necessary application documents to the Iowa Department of Transportation.

BE IT FURTHER RESOLVED that the Webster County Board of Supervisors hereby commits to accept and maintain these improvements, if the application is approved by the Iowa Department of Transportation.

PASSED AND APPROVED this \(31^{\text {st }}\) day of March, 2015.

Keith Dencklau, Chairperson
Webster County Board of Supervisors

ATTEST:

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the Webster County Secondary Road Department

Signed:

Randall J. Will
Typed Name

Attest:

Carol Miserly
Typed Name

\title{
WEBSTER COUNTY ENGINEER'S OFFICE
}

Randall J. Will, P.E. \& P.L.S.
County Engineer
Jamie Johll, P.E.
Assistant County Engineer
Angela Roderick
Office Manager

703 Central Avenue, Suite 3 \(4^{\text {th }}\) Floor Courthouse
Fort Dodge, lowa 50501-3895
515-576-3281 Fax 515-576-0415
Email: engineer@webstercountyia.org
Web site: www.webstercountyia.org

Brian Henderson, P.E.
Assistant to Engineer
Ryan Weidemann, P.E., L.S.I.
Assistant to Engineer

March 23, 2015
Steven Schroder
Office of Traffic and Safety
Iowa Department of Transportation
800 Lincoln Way
Ames, IA 50010
Dear Steven:
The Webster County Engineer's Office is applying for Traffic Safety Improvement Program (TSIP) Funds to improve a horizontal curve on route P59, approximately 2 miles north of the City of Fort Dodge. This road connects the City of Fort Dodge with the City of Badger and the surrounding rural area. The current 2011 Traffic Count is 2100 VPD. The posted advisory speed for this curve is 45 MPH, while the rest of P59 in this area is 55 MPH .

The project area is a corridor \(1,150^{\prime}\) long, commencing 300 ' south of \(150^{\text {th }}\) Street. The current roadway is a \(24^{\prime}\) wide paved asphalt surface with \(8^{\prime}\) granular shoulders, a \(2 \%\) traditional crown with no superelevation, and \(4: 1\) foreslopes. There currently is 120 of Right of Way, and clear zone is adequate. The horizontal curve radius meets current design standards for 55 MPH , however the \(2 \%\) crown does not.

This segment of P59 was resurfaced in 2007. The horizontal alignment of the road immediately north of this curve was realigned and widened with the 2007 resurfacing project. There have been 9 reported accidents on the curve since 2004, 5 of which came after the realignment to the north. According to the resident of the acreage adjacent to the curve, many more accidents go unreported. The crash history, field evidence, and resident's testimony shows southbound drivers are loosing control of their vehicle to the right, overcorrecting, and crossing the centerline left, ending up in the east ditch. The lack of superelevation and paved shoulder contrasts to the curves immediately north of the project area.

The project would include adjusting the cross section by adding superelevation to the curve and adding 2 ' wide paved shoulders through the curve and the tangents coming in and out of the curve. Some minor grading will be required to maintain adequate foreslope and clear zone. Additional right of way will not be necessary. We believe making these improvements to the curve will provide motorists with a consistent roadway, thus greatly reducing the number of accidents on this curve.

Attached you will find all of the required submittals outlined in the TSIP Site Specific Application Requirements. Please contact us if any additional information is required. Thank you for considering this application.

Sincerely,

Asst. to Webster County Engineer

\title{
TRAFFIC SAFETY IMPROVEMENT PROGRAM APPLICATION PROJECT \#FM-TSF-CO94(P59)- -5B-94
}

\section*{Time Schedule}
- TSIP Application
- TSIP Funding Award
- Preliminary Project Design
- Final Design
- Contract Turn In to Iowa DOT
- Project Letting
- Project Construction

August 15, 2015
January 2016
August 2015 - December 2015
January 2016
February 2016
April 2016
July-December 2016

TRAFFIC SAFETY IMPROVEMENT PROGRAM APPLICATION PROJECT \#FM-TSF-CO94(P59)- -5B-94

\section*{P59 CURVE LOOKING SOUTHBOUND}

\section*{P59 CURVE LOOKING NORTHBOUND}

\section*{TRAFFIC SAFETY IMPROVEMENT PROGRAM APPLICATION PROJECT \#FM-TSF-CO94(P59)- -5B-94}

\section*{P59 SOUTH OF CURVE, LOOKING AT AREA OF LANE DEPARTURE}

P59 SOUTH OF CURVE, AREA OF LANE DEPARTURE

\title{
TRAFFIC SAFETY IMMRROVEMENT PROGRAM APPLICATION PROJECT \#FM-TSF-CO94(P59)- -5B-94
}

P59 SOUTH OF CURVE, CRASH EVIDENCE

owa Department of Transportation

\section*{Major Cause Summary \\ PART I. P59 Curve S. of 150th Street}
Recetverion 11 an 205
Analysis Years: 2004 [1], 2005 [1], 2006 [2], 2010 [1], 2011 [2], 2014 [2]
\begin{tabular}{|r|l|}
\hline Crash Summary: & \\
Fatal & 1 \\
Major Injury & 2 \\
Minor Injury & 1 \\
Possible/Unknown & 1 \\
PDO & 4 \\
\hline Mary Summary: \\
Matal Injury & 1 \\
\hline Minor Injury & 1 \\
Possible & 2 \\
Total Crashes & 9
\end{tabular}
TOT Property Damage: \(\$ 67,270\)
AVG Property Damage: \$7,474
\begin{tabular}{|rc|}
\hline Surface Condition Summary: & \\
Dry & 9 \\
Wet & - \\
Ice & - \\
Snow & - \\
Slush & - \\
Sand/Dirt/Oil/Gravel & - \\
Water & - \\
Other & - \\
Unknown & - \\
Not Reported & - \\
\hline Total Crashes & 9 \\
\hline
\end{tabular}
Major Cause Summary:

\section*{Animal \\ Ran Traffic Signal \\ Ran Stop Sign}

Crossed Centerline
FTYROW: At Uncontrolled Intersection
FTYROW: Making Right Turn on Red Signal
FTYROW: From Stop Sign
FTYROW: From Yield Sign
FTYROW: Making Left Turn
FTYROW: From Driveway
FTYROW: From Parked Position
FTYROW: To Pedestrian
FTYROW: Other (explain in narrative)
Traveling Wrong Way or on Wrong Side of Rd
Driving Too Fast for Conditions
1 Exceeded Authorized Speed
Made Improper Turn
Improper Lane Change
Followed Too Close
Disregarded Railroad Signal
Disregarded Warning Sign
Operating Vehicle in Reckless/Aggressive Manner

Improper Backing
Illegally Parked/Unattended
2 Swerving/Evasive Action
1 Over-Correcting/Over-Steering
Downhill Runaway
Equipment Fallure
Separation of Units
2 Ran Off Road - Right
Ran Off Road - Straight
3 Ran Off Road - Left
Lost Control
Inattentive/Distracted By: Passenger Inattentive/Distracted By: Use of Phone or Other Inattentive/Distracted By: Fallen Object Inattentive/Distracted By: Fatigued/Asleep Other: Vision Obstructed Oversized Load/ Oversized Vehicle Cargo/Equipment Loss or Shift
Other: Other Improper Action
Unknown
Other: No Improper Action
None Indicated

Selection Filter:
None
\begin{tabular}{|l|l|l|}
\hline \hline Analyst: Ryan Weidemann & Notes: & \\
\hline \(03 / 17 / 2015\) & Crash Mlapping Analysis Tool & Page: 1 of 1
\end{tabular}

\title{
TRAFFIC SAFETY IMPROVEMENT PROGRAM APPLICATION PROJECT \#FM-TSF-CO94(P59)- -5B-94
}

\section*{BENEFIT/COST ANALYSIS}

Per the lowa DOT TSIP Road Segment Benefit / Cost Safety Analysis instructions, the following assumptions were used to calculate a Benefit / Cost Ratio:
1. Estimated improvement life \((Y)=20\) Years
- TSIP B/C Approximate Improvement Service Life
2. Crash Reduction Factor \((C R F)=37\),
- 30, for widening paved shoulder from 0 to 2 feet (Li, et al., Safety Effects of Shoulder Paving for Rural and Urban Interstate, Multilane, Two-Lane Highways)
- 10, for upgrading superelevation on existing horizontal curves with superelevation rates less than recommended design values (Hughes, Warren \& Daily, K, Effect of Highway Standards on Safety, Issue 374)

The cumulative factor of simultaneous improvements of CRF values of 30 and 10 equals 37. Note that the factor for upgrading superelevation did not come from the CMF Clearinghouse because no studies of improvement to superelevation could be found on that site. We believe the factor of 10 is extremely conservative, based on the fact the study assumed correcting some existing superelevation to a more appropriate grade. In this case, there is no superelevation, the curve has a standard crown, and that correcting the superelevation to the required standard will greatly improve curve navigability.

The county is requesting \(\$ 190,000\) in TSIP funding assistance for this project, and the resulting Benefit / Cost Ratio is 1.61:1.

Road Segment Benefit / Cost Safety Analysis

\title{
lowa DOT Office of Traffic \& Safety
}

County: Webster
Prepared by: \(\qquad\) Date Prepared: \(\qquad\)
Location: P59 Curve

\section*{Improvement}

Proposed Improvement(s): Pave Shoulders and add superelevation
\begin{tabular}{|c|c|c|c|c|}
\hline \$ & 190,000 & Estimated Improvement Cost, EC & & Est. Improvement Life, years, Y \\
\hline \$ & - & Other Annual Cost (after initial year), AC & 37 & Crash Reduction Factor (integer), CRF \\
\hline \$ & - & Present Value Other Annual Costs, OC & 4.0\% & Discount Rate, INT \\
\hline & & \[
O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)
\] & \$ 190,000 & Present Value All Costs,
COST = EC + OC \\
\hline
\end{tabular}

\section*{Traffic Volume Data}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Source:} & Iowa DOT 2011 Count \\
\hline & Two-way \\
\hline Length (mi.) & veh/day Description \\
\hline 0.22 & 2,100 \\
\hline & \\
\hline & \\
\hline & \\
\hline 0.22 & iles total \\
\hline
\end{tabular}
2011 Date of traffic count

462 Current Vehicle Miles / Day, VM
564 End of Life Veh. Miles / Day
168,630 Current Veh. Miles / Year, AM
3,713,065 Total Projected Veh. Miles Over Life of Project, TVMIT
\(T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)\)

0.73 Current Crashes / Year, AA = TA / T
\$ 76,775 Cost per Crash, AVCR = LOSS / TA
16.0 Total Expected Crashes, \(\mathrm{TCR}=\mathrm{CR} \times \mathrm{TVMT} / 10^{\wedge} 8\)
0.27 Crashes Avoided First Year AAR = AA x CRF / 100
\$ 20,659 Crash Costs Avoided in First Year, AAR x AVCR
5.9 Total Avoided Crashes, TCR x CRF/ 100
431.3 Crashes / HMVM, Crash Rate, CR
\[
C R=T A \times 10^{\wedge} 8 /(A M \times T)
\]
\$ 305,155
Present Value of Avoided Crashes, BENEFIT
\(B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)\)

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 305,155 \quad: \quad \$ 190,000 \quad=\quad 1.61 \quad 1
\]

\section*{District 2}

\title{
CIOWADOT Application for TRAFFIC SAFETY FUNDS
}

Location / Title of Project University Avenue and Cedar Heights Drive intersection
Applicant City of Cedar Falls
Contact Person \(\qquad\) Title City Engineer
Complete Mailing Address 220 Clay Street
Cedar Falls, Iowa 50613

Phone
\(\frac{319-268-5176}{\text { (Area Code) }}\)

E-Mail Randy.Lorenzen@cedarfalls.com

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

Funding Amount

Total Project Cost
Safety Funds Requested
\$ \$2,100,000
\$ \$500,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the
City of Cedar Falls, Iowa

Ron Gaines
Typed Name

Attest:

Michelle Sweeney
Typed Name

\section*{Existing Conditions}

Deteriorated pavement over sixty years old; high speeds; safety deficiencies; no pedestrian or bicycle accommodations; overbuilt; no connectivity to limited transit options; inefficient traffic operations. These statements summarize the University Avenue corridor in Cedar Falls today. The University Avenue Corridor Reconstruction Project is an ambitious effort to transform University Avenue between Iowa Highway 58 and Midway Drive in Cedar Falls from a vehiclecentric, six-lane, highway into a revitalized, four-lane, multimodal, urban roadway guided by one of the nation's best complete street policies. The objective of this project is to design and construct a corridor that is safe and accommodating and moves all forms of traffic as safely and efficiently as possible.

University Avenue is a six-lane, divided highway with a posted speed of 45 mph . The corridor includes 17 at-grade intersections, 60 commercial and residential driveway access points, and intermittent frontage roads paralleling University Avenue. The corridor currently carries up to 20,000 vehicles per day. Corridor improvements have been under consideration and study since 2008.

\section*{University Avenue \& Cedar Heights Road Drive Intersection}

Cedar Heights Drive is one of the major intersections along the corridor and is the highest crash location on University Avenue. The current Average Daily Traffic through this intersection is 15,515 vehicles. The most frequent type of crash at the Cedar Heights Drive intersection is eastbound or westbound left-turning traffic colliding with oncoming vehicles. Rear-end collisions are also prevalent at this intersection. Several factors contribute to the crashes at this intersection, including:
- Limited sight distance for westbound left-turning traffic due to the horizontal curve in University Avenue at this location
- High traffic volumes due to the proximity of commercial properties at this intersection, including a car dealership, banks and a motel.
- Skewed intersection results in a sharper left-turn angle
- Proximity of frontage road access points
- High speeds along corridor
- Split phase traffic signal operation increases delay and causes driver impatience.

In addition, this location lacks adequate pedestrian facilities to safely cross this busy intersection.

\section*{Crash History}

This intersection has the highest crash rate along the 2 mile long project corridor. An overbuilt roadway, high speeds, and intersection geometrics are factors contributing to the safety issues at this intersection. Between 2004 and 2014, there were 97 crashes at this intersection, a rate of 1.55 crashes per million entering vehicles (above the statewide average during this time).
\begin{tabular}{|c|c|c|c|c|c|}
\hline of Transportation & \multicolumn{4}{|c|}{\begin{tabular}{l}
Major Cause Summary \\
Univeristy Ave \& Cedar Heights Dr - Major Cause
\end{tabular}} & \\
\hline \multicolumn{6}{|l|}{Analysis Years: 2010 (101. 2011 [5]. 2012 [5]. 2013 [7], 2014 [5]} \\
\hline \multicolumn{2}{|l|}{Crash Summary:} & \multicolumn{2}{|l|}{Injury Summary:} & \multicolumn{2}{|l|}{Surface Condition Summary:} \\
\hline Fatal & - & Fatal & - & \multicolumn{2}{|l|}{Dry 26} \\
\hline Major Injury & 1 & Major Injury & 1 & Wet & 3 \\
\hline Minor Injury & 5 & Minor Injury & 6 & Ice & - \\
\hline Possible/Unknown & 12 & \multirow[t]{2}{*}{Possible Unknown} & 13 & Snow & 3 \\
\hline PDO & 15 & & Unknown & & 1 \\
\hline Total Crashes & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Total Injuries} & 22 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sand/Dirt/Oil/Gravel}} \\
\hline & & & & & \\
\hline \multicolumn{4}{|c|}{\multirow[b]{3}{*}{TOT Property Damage: \$179, 850}} & \multicolumn{2}{|l|}{Other} \\
\hline & & & & \multirow[t]{2}{*}{Unknown Not Reported} & \\
\hline & & & & & - \\
\hline \multicolumn{3}{|c|}{AVG Property Damage: \$5,450} & & Total Crashes & 33 \\
\hline \multicolumn{6}{|l|}{Major Cause Summary:} \\
\hline Animal & \multicolumn{5}{|c|}{Improper Backing} \\
\hline \multicolumn{2}{|l|}{\({ }^{9}\) Ran Traffic Signal} & \multicolumn{4}{|c|}{Illegally Parked/Unattended} \\
\hline \multicolumn{2}{|l|}{Ran Stop Sign} & \multicolumn{4}{|c|}{1 Swerving/Evasive Action} \\
\hline \multicolumn{2}{|l|}{Crossed Centerline} & \multicolumn{4}{|c|}{Over-Correcting/Over-Steering} \\
\hline \multicolumn{3}{|l|}{FTYROW: At Uncontrolled Intersection} & \multicolumn{3}{|l|}{Downhill Runaway} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1 FTYROW: Making Right Turn on Red Signal}} & \multicolumn{3}{|l|}{Equipment Fallure} \\
\hline \multicolumn{2}{|l|}{FTYROW: From Stop Sign} & & \multicolumn{3}{|l|}{Separation of Units} \\
\hline \multicolumn{3}{|l|}{FTYROW: From Yield Sign} & \multicolumn{3}{|l|}{Ran Off Road - Right} \\
\hline \multicolumn{3}{|l|}{10 FTYROW: Making Left Turn} & \multicolumn{3}{|l|}{Ran Off Road - Straight} \\
\hline \multicolumn{3}{|l|}{FTYROW: From Driveway} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Ran Off Road - Left}} \\
\hline \multicolumn{3}{|l|}{FTYROW: From Parked Position} & & & Lost Control \\
\hline \multicolumn{3}{|l|}{FTYROW: To Pedestrian} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Passenger} \\
\hline \multicolumn{3}{|l|}{FTYROW: Other (explain in narrative)} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Use of Phone or Other} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Travelling Wrong Way or on Wrong Side of Rd
1 Driving Too Fast for Conditions}} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Fallen Object} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1 Driving Too Fast for Conditions}} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Fatigued/Asleep} \\
\hline & & & \multicolumn{3}{|l|}{Other: Vision Obstructed} \\
\hline \multicolumn{3}{|l|}{Exceeded Authorized Speed
Made Improper Turn} & \multicolumn{3}{|l|}{Oversized Load/ Oversized Vehicle} \\
\hline \multicolumn{3}{|l|}{Made Improper Turn
Improper Lane Change} & \multicolumn{3}{|l|}{Cargo/Equipment Loss or Shift} \\
\hline \multicolumn{3}{|l|}{2 Followed Too Close} & Oth & Improper Action & \\
\hline \multicolumn{3}{|l|}{Disregarded Railroad Signal} & \multicolumn{3}{|l|}{2 Unknown} \\
\hline \multicolumn{3}{|l|}{Disregarded Warning Sign} & \multicolumn{3}{|l|}{Other: No Improper Action} \\
\hline \multicolumn{3}{|l|}{Operating Vehicle in Reckless/Aggressive Manner} & \multicolumn{2}{|l|}{None Indicated} & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Selection Filter: \\
(\((\) YEAR \(=2010\) or YEAR \(=2011\) or YEAR \(=2012\) or YEAR \(=2013\) or YEAR \(=2014)\))
\end{tabular}} \\
\hline Analyst: & & otes: & & & \\
\hline 8/11/2015 & & Crash Mapping Analy & & Page: & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline of Transportation & \multicolumn{4}{|c|}{\begin{tabular}{l}
Major Cause Summary \\
Univeristy Ave \& Cedar Heights Dr - Major Cause
\end{tabular}} & \\
\hline \multicolumn{6}{|l|}{Analysis Years: 2010 (101. 2011 [5]. 2012 [5]. 2013 [7], 2014 [5]} \\
\hline \multicolumn{2}{|l|}{Crash Summary:} & \multicolumn{2}{|l|}{Injury Summary:} & \multicolumn{2}{|l|}{Surface Condition Summary:} \\
\hline Fatal & - & Fatal & - & \multicolumn{2}{|l|}{Dry 26} \\
\hline Major Injury & 1 & Major Injury & 1 & Wet & 3 \\
\hline Minor Injury & 5 & Minor Injury & 6 & Ice & - \\
\hline Possible/Unknown & 12 & \multirow[t]{2}{*}{Possible Unknown} & 13 & Snow & 3 \\
\hline PDO & 15 & & Unknown & & 1 \\
\hline Total Crashes & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Total Injuries} & 22 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sand/Dirt/Oil/Gravel}} \\
\hline & & & & & \\
\hline \multicolumn{4}{|c|}{\multirow[b]{3}{*}{TOT Property Damage: \$179, 850}} & \multicolumn{2}{|l|}{Other} \\
\hline & & & & \multirow[t]{2}{*}{Unknown Not Reported} & \\
\hline & & & & & - \\
\hline \multicolumn{3}{|c|}{AVG Property Damage: \$5,450} & & Total Crashes & 33 \\
\hline \multicolumn{6}{|l|}{Major Cause Summary:} \\
\hline Animal & \multicolumn{5}{|c|}{Improper Backing} \\
\hline \multicolumn{2}{|l|}{\({ }^{9}\) Ran Traffic Signal} & \multicolumn{4}{|c|}{Illegally Parked/Unattended} \\
\hline \multicolumn{2}{|l|}{Ran Stop Sign} & \multicolumn{4}{|c|}{1 Swerving/Evasive Action} \\
\hline \multicolumn{2}{|l|}{Crossed Centerline} & \multicolumn{4}{|c|}{Over-Correcting/Over-Steering} \\
\hline \multicolumn{3}{|l|}{FTYROW: At Uncontrolled Intersection} & \multicolumn{3}{|l|}{Downhill Runaway} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1 FTYROW: Making Right Turn on Red Signal}} & \multicolumn{3}{|l|}{Equipment Fallure} \\
\hline \multicolumn{2}{|l|}{FTYROW: From Stop Sign} & & \multicolumn{3}{|l|}{Separation of Units} \\
\hline \multicolumn{3}{|l|}{FTYROW: From Yield Sign} & \multicolumn{3}{|l|}{Ran Off Road - Right} \\
\hline \multicolumn{3}{|l|}{10 FTYROW: Making Left Turn} & \multicolumn{3}{|l|}{Ran Off Road - Straight} \\
\hline \multicolumn{3}{|l|}{FTYROW: From Driveway} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Ran Off Road - Left}} \\
\hline \multicolumn{3}{|l|}{FTYROW: From Parked Position} & & & Lost Control \\
\hline \multicolumn{3}{|l|}{FTYROW: To Pedestrian} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Passenger} \\
\hline \multicolumn{3}{|l|}{FTYROW: Other (explain in narrative)} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Use of Phone or Other} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Travelling Wrong Way or on Wrong Side of Rd
1 Driving Too Fast for Conditions}} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Fallen Object} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1 Driving Too Fast for Conditions}} & \multicolumn{3}{|l|}{Inattentive/Distracted By: Fatigued/Asleep} \\
\hline & & & \multicolumn{3}{|l|}{Other: Vision Obstructed} \\
\hline \multicolumn{3}{|l|}{Exceeded Authorized Speed
Made Improper Turn} & \multicolumn{3}{|l|}{Oversized Load/ Oversized Vehicle} \\
\hline \multicolumn{3}{|l|}{Made Improper Turn
Improper Lane Change} & \multicolumn{3}{|l|}{Cargo/Equipment Loss or Shift} \\
\hline \multicolumn{3}{|l|}{2 Followed Too Close} & Oth & Improper Action & \\
\hline \multicolumn{3}{|l|}{Disregarded Railroad Signal} & \multicolumn{3}{|l|}{2 Unknown} \\
\hline \multicolumn{3}{|l|}{Disregarded Warning Sign} & \multicolumn{3}{|l|}{Other: No Improper Action} \\
\hline \multicolumn{3}{|l|}{Operating Vehicle in Reckless/Aggressive Manner} & \multicolumn{2}{|l|}{None Indicated} & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Selection Filter: \\
(\((\) YEAR \(=2010\) or YEAR \(=2011\) or YEAR \(=2012\) or YEAR \(=2013\) or YEAR \(=2014)\))
\end{tabular}} \\
\hline Analyst: & & otes: & & & \\
\hline 8/11/2015 & & Crash Mapping Analy & & Page: & \\
\hline
\end{tabular}

\section*{Proposed Concept}

The goals of the Cedar Heights Drive intersection improvements and the University Avenue Reconstruction Project are to:
- Enhance safety
- Improve pavement conditions
- Support and revitalize economic growth throughout the corridor
- Provide for bicycle and pedestrian access and mobility
- Improve traffic flow

The City of Cedar Falls recognized the transportation challenges of the University Avenue corridor years ago and, through various efforts over the last decade, has developed a multimodal transportation project that will completely transform the operations and functionality of the corridor. The complete streets design includes a road diet, reduced lane widths, reduced speed, roundabouts, sidewalks, trails, bus stops/shelters, street lighting, and streetscaping. This project will increase mobility and connectivity for residents, visitors, and students.

The intersection of University Avenue and Cedar Heights Drive will be improved by:
- Installation of a roundabout
- Reducing the corridor from six lanes to four lanes
- Reducing the lane widths from 12 feet to 11 feet
- Reduction of speed through intersection
- Addition of pedestrian facilities

\section*{Safety Justification}

The reductions in the number and width of travel lanes - often called a "road diet" - will have multiple benefits. The road diet will reduce lane capacity and slow the speed of traffic. In addition, the posted speed of the corridor will be reduced from 45 miles per hour to 35 miles per hour. Road diets improve speed limit compliance, which improves safety - for all users. Lower speeds decrease the severity when crashes do occur. The slower traffic speeds require less time for a vehicle to stop, reducing the chance of striking a pedestrian. If a pedestrian crash does occur, the severity is drastically reduced with the lower speeds. A pedestrian struck at 40 mph has an \(85 \%\) chance of being killed. At 30 mph , that chance is nearly cut in half to \(45 \%\).

These lower speeds benefit bicyclists sharing the road with vehicles in the same way. Road diets also benefit pedestrians in that the decreased number of vehicle travel lanes for pedestrians to cross reduces the exposure time for pedestrians, reducing their crash risk.

A roundabout will be constructed at this intersection. Lower speeds and reduced number of vehicle and pedestrian conflicts points at roundabouts minimize the severity and number of overall crashes. These factors also reduce the number of injury crashes at roundabout intersections versus other types of intersections. According to the Federal Highway Administration (FHWA) Proven Safety Countermeasures, converting a signalized intersection to a roundabout a location can experience:
- \(78 \%\) reduction in severe (injury/fatal) crashes
- \(48 \%\) reduction in overall crashes

A five-foot wide sidewalk will be constructed on the north side of the intersection and a ten-foot wide multi-use trail will be constructed on the south side. These new facilities will benefit transit riders, pedestrians and bicyclists. ADA compliant ramps will be constructed at the intersection.

Manual on Uniform Traffic Control Devices (MUTCD) Requirements
All proposed intersection and traffic safety improvements will be consistent with the 2009 MUTCD.

\section*{Clear Zones}

All proposed intersection and traffic safety improvements will be consistent with accepted engineering design practice and will include adequate clear zones adjacent to the roadway.

\section*{Itemized Breakdown of Costs}

\section*{Anticipated Funding Sources}
\begin{tabular}{|l|l|l|}
\hline Funding & Total & Percent \\
\hline Local & \(\$ 1,600,000\) & \(76 \%\) \\
\hline TSIP & \(\$ 500,000\) & \(24 \%\) \\
\hline Total & \(\mathbf{\$ 2 , 1 0 0 , 0 0 0}\) & \\
\hline
\end{tabular}

\section*{Project Schedule}

University Avenue Corridor Study
Completed in August 2010
Environmental Assessment
FONSI
Traffic Analysis and Conceptual Design
Public Involvement and Right-of-Way Acquisition
Final Design
Completed in October 2013
February 2014
Completed February 2015

Construction

February 2015 to May 2016
December 2015 to May 2016
July 2016 to December 2017

\section*{Project Map}

\section*{Color Pictures}

\section*{Plan View}

\section*{Aerial Photograph}

\section*{Officer Reports}

See Appendix for Officer Reports from 2010 to 2015.

\section*{Traffic Volumes and Turning Movements}

2015 AM Traffic

2015 PM Traffic

\begin{tabular}{|c|}
\hline \multicolumn{21}{|c|}{Groups Printed - Lights} \\
\hline Street Name & \multicolumn{4}{|r|}{Cedar Heights Dr--Southbound} & \multicolumn{5}{|r|}{University Ave--Westbound} & \multicolumn{5}{|l|}{Cedar Heights Dr--Northbound} & \multicolumn{6}{|c|}{University Ave--Eastbound} \\
\hline Start Time & Left & Thru & Right & Peds \({ }^{1}\) & & eft & Thru & Right & Peds \({ }^{2}\) & & Left & Thru & Right & Peds \({ }^{3}\) & & eft & Thru & Right & Peds \({ }^{4}\) & \\
\hline 6:00 AM & 2 & 9 & 5 & & & 6 & 22 & 0 & & & 5 & 2 & 3 & & & 3 & 21 & 5 & & \\
\hline 6:15 AM & 6 & 8 & 4 & & & 9 & 31 & 2 & & & 2 & 2 & 1 & & & 4 & 27 & 5 & & \\
\hline 6:30 AM & 7 & 12 & 4 & & & 7 & 28 & 0 & & & 8 & 4 & 9 & & & 6 & 56 & 8 & & \\
\hline 6:45 AM & 12 & 9 & 12 & & & 15 & 43 & 6 & & & 12 & 2 & 11 & & & 4 & 46 & 16 & & \\
\hline 7:00 AM & 4 & 9 & 12 & & & 14 & 41 & 1 & & & 19 & 10 & 8 & & & 8 & 42 & 18 & & \\
\hline 7:15 AM & 6 & 23 & 15 & & & 27 & 74 & 5 & & & 21 & 4 & 11 & & & 13 & 48 & 30 & & \\
\hline 7:30 AM & 7 & 20 & 17 & & & 28 & 68 & 7 & & & 21 & 14 & 10 & & & 11 & 70 & 35 & & \\
\hline 7:45 AM & 6 & 27 & 5 & & & 30 & 78 & 7 & & & 28 & 9 & 14 & & & 14 & 103 & 37 & & \\
\hline 8:00 AM & 6 & 27 & 9 & & & 18 & 47 & 3 & & & 17 & 9 & 24 & & & 15 & 59 & 31 & & \\
\hline 8:15 AM & 3 & 18 & 6 & & & 26 & 84 & 6 & & & 16 & 17 & 12 & & & 10 & 40 & 25 & & \\
\hline 8:30 AM & - 9 & 16 & 21 & & & 20 & 74 & 8 & & & 18 & 4 & 22 & & & 13 & 69 & 31 & & \\
\hline 8:45 AM & 11 & 28 & 17 & & & 13 & 87 & 9 & & & 19 & 12 & 13 & & & 19 & 90 & 24 & & \\
\hline 9:00 AM & \\
\hline 9:15 AM & \\
\hline 9:30 AM & \\
\hline 9:45 AM & \\
\hline 10:00 AM & \\
\hline 10:15 AM & \\
\hline 10:30 AM & \\
\hline 10:45 AM & \\
\hline 11:00 AM & \\
\hline 11:15 AM & \\
\hline 11:30 AM & 9 & 13 & 15 & & & 37 & 101 & 13 & & & 32 & 25 & 35 & & & 22 & 89 & 19 & & \\
\hline 11:45 AM & 13 & 19 & 17 & & & 31 & 99 & 12 & & & 31 & 32 & 27 & & & 21 & 110 & 15 & & \\
\hline 12:00 PM & 18 & 20 & 13 & & & 31 & 105 & 19 & & & 37 & 23 & 27 & & & 31 & 135 & 22 & & \\
\hline 12:15 PM & 21 & 24 & 16 & & & 36 & 115 & 18 & & & 35 & 19 & 22 & & & 19 & 100 & 37 & & \\
\hline 12:30 PM & 16 & 22 & 14 & & & 21 & 80 & 8 & & & 29 & 37 & 17 & & & 21 & 111 & 21 & & \\
\hline 12:45 PM & 13 & 18 & 13 & & & 39 & 122 & 16 & & & 25 & 18 & 20 & & & 28 & 118 & 29 & & \\
\hline 1:00 PM & 19 & 20 & 14 & & & 30 & 99 & 11 & & & 21 & 29 & 17 & & & 32 & 118 & 24 & & \\
\hline 1:15 PM & 13 & 13 & 13 & & & 32 & 87 & 13 & & & 18 & 17 & 14 & & & 22 & 98 & 22 & & \\
\hline 1:30 PM & \\
\hline 1:45 PM & \\
\hline 2:00 PM & \\
\hline 2:15 PM & \\
\hline 2:30 PM & \\
\hline 2:45 PM & \\
\hline 3:00 PM & \\
\hline 3:15 PM & \\
\hline 3:30 PM & \\
\hline 3:45 PM & \\
\hline 4:00 PM & 17 & 23 & 21 & & & 31 & 109 & 22 & & & 34 & 30 & 18 & & & 29 & 135 & 26 & & \\
\hline 4:15 PM & 18 & 20 & 27 & & & 27 & 118 & 15 & & & 38 & 35 & 25 & & & 17 & 109 & 22 & & \\
\hline 4:30 PM & 17 & 26 & 17 & & & 33 & 130 & 17 & & & 43 & 30 & 36 & & & 21 & 132 & 20 & & \\
\hline 4:45 PM & 10 & 20 & 30 & & & 34 & 162 & 21 & & & 33 & 22 & 23 & & & 28 & 140 & 17 & & \\
\hline 5:00 PM & 18 & 18 & 15 & & & 21 & 135 & 13 & & & 30 & 34 & 35 & & & 34 & 162 & 32 & & \\
\hline 5:15 PM & 15 & 29 & 19 & & & 30 & 147 & 17 & & & 49 & 41 & 32 & & & 20 & 159 & 28 & & \\
\hline 5:30 PM & 8 & 19 & 16 & & & 31 & 127 & 19 & & & 26 & 29 & 19 & & & 26 & 134 & 23 & & \\
\hline 5:45 PM & 8 & 19 & 15 & & & 32 & 134 & 15 & & & 25 & 27 & 11 & & & 18 & 111 & 19 & & \\
\hline 6:00 PM & 6 & 12 & 13 & & & 35 & 132 & 21 & & & 15 & 18 & 15 & & & 26 & 116 & 14 & & \\
\hline 6:15 PM & 11 & 16 & 9 & & & 32 & 131 & 12 & & & 17 & 14 & 18 & & & 24 & 95 & 14 & & \\
\hline 6:30 PM & 5 & 9 & 11 & & & 25 & 104 & 13 & & & 13 & 21 & 15 & & & 17 & 109 & 11 & & \\
\hline 6:45 PM & 7 & 14 & 10 & & & 20 & 96 & 11 & & & 18 & 28 & 9 & & & 14 & 108 & 15 & & \\
\hline AM Subtotals: & 79 & 206 & 127 & & & 213 & 677 & 54 & & 0 & 186 & 89 & 138 & & 0 & 120 & 671 & 265 & & 0 \\
\hline Noon Subtotals: & 122 & 149 & 115 & & 0 & 257 & 808 & 110 & & 0 & 228 & 200 & 179 & & 0 & 196 & 879 & 189 & & 0 \\
\hline PM Subtotals: & 140 & 225 & 203 & & 0 & 351 & 1525 & 196 & & 0 & 341 & 329 & 256 & & 0 & 274 & 1510 & 241 & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{} & & & & \\
\hline Street Name & & & & & \multicolumn{4}{|r|}{University Ave--Westbound} & \multicolumn{4}{|l|}{Cedar Heights Dr--Northbound} & \multicolumn{4}{|c|}{University Ave--Eastbound} \\
\hline Start Time & Left & Thru & Right - & - & Left & Thru & Right & - & Left & Thru & Right - & - & Left & Thru & Right - & - \\
\hline 6:00 AM & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 6:15 AM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 1 & 0 & \\
\hline 6:30 AM & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 6:45 AM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 1 & 1 & \\
\hline 7:00 AM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & \\
\hline 7:15 AM & 0 & 0 & 0 & & 0 & 2 & 0 & & 0 & 0 & 0 & & 0 & 2 & 0 & \\
\hline 7:30 AM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 7:45 AM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 1 & 0 & \\
\hline 8:00 AM & 1 & 0 & 0 & & 2 & 0 & 0 & & 0 & 0 & 0 & & 0 & 2 & 0 & \\
\hline 8:15 AM & 0 & 0 & 0 & & 0 & 2 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 8:30 AM & 0 & 0 & 0 & & 0 & 0 & 1 & & 0 & 3 & 0 & & 1 & 2 & 0 & \\
\hline 8:45 AM & 2 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 9:00 AM & & & & & & & & & & & & & & & & \\
\hline 9:15 AM & & & & & & & & & & & & & & & & \\
\hline 9:30 AM & & & & & & & & & & & & & & & & \\
\hline 9:45 AM & & & & & & & & & & & & & & & & \\
\hline 10:00 AM & & & & & & & & & & & & & & & & \\
\hline 10:15 AM & & & & & & & & & & & & & & & & \\
\hline 10:30 AM & & & & & & & & & & & & & & & & \\
\hline 10:45 AM & & & & & & & & & & & & & & & & \\
\hline 11:00 AM & & & & & & & & & & & & & & & & \\
\hline 11:15 AM & & & & & & & & & & & & & & & & \\
\hline 11:30 AM & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 11:45 AM & 1 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 12:00 PM & 0 & 0 & 0 & & 1 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 12:15 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 12:30 PM & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 1 & 0 & \\
\hline 12:45 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 1:00 PM & 0 & & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 1:15 PM & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 1:30 PM & & & & & & & & & & & & & & & & \\
\hline 1:45 PM & & & & & & & & & & & & & & & & \\
\hline 2:00 PM & & & & & & & & & & & & & & & & \\
\hline 2:15 PM & & & & & & & & & & & & & & & & \\
\hline 2:30 PM & & & & & & & & & & & & & & & & \\
\hline 2:45 PM & & & & & & & & & & & & & & & & \\
\hline 3:00 PM & & & & & & & & & & & & & & & & \\
\hline 3:15 PM & & & & & & & & & & & & & & & & \\
\hline 3:30 PM & & & & & & & & & & & & & & & & \\
\hline 3:45 PM & & & & & & & & & & & & & & & & \\
\hline 4:00 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 4:15 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 4:30 PM & 0 & 0 & 0 & & 0 & 1 & 1 & & 0 & 0 & 0 & & 0 & 2 & 0 & \\
\hline 4:45 PM & 1 & 0 & 0 & & 0 & 1 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 5:00 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 5:15 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 5:30 PM & 0 & 0 & 0 & & 0 & 1 & 0 & & 0 & 1 & 0 & & 0 & 1 & 0 & \\
\hline 5:45 PM & 0 & , & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 6:00 PM & 1 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline 6:15 PM & 0 & 0 & 0 & & 0 & 1 & 0 & & , & 0 & 0 & & 0 & 0 & 0 & \\
\hline 6:30 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 1 & 0 & \\
\hline 6:45 PM & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & & 0 & 0 & 0 & \\
\hline AM Subtotals: & 3 & - 1 & 0 & 0 & 2 & 6 & - 1 & 0 & 0 & 4 & 0 & 0 & 1 & - 9 & - 1 & 0 \\
\hline Noon Subtotals: & & 0 & 0 & - & 1 & 4 & 0 & - & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline PM Subtotals: & 2 & 0 & 0 & 0 & 0 & 4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 4 & 0 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Street Name & \multicolumn{4}{|c|}{Cedar Heights Dr--Southbound} & \multicolumn{4}{|c|}{University Ave--Westbound} & \multicolumn{4}{|c|}{Cedar Heights Dr--Northbound} & \multicolumn{4}{|c|}{University Ave--Eastbound} \\
\hline Start Time & Left & Thru & Right & Peds \({ }^{1}\) & Left & Thru & Right & Peds \({ }^{2}\) & Left & Thru & Right & Peds \({ }^{3}\) & Left & Thru & Right & Peds \({ }^{4}\) \\
\hline 6:00 AM & 2 & 9 & 5 & 0 & 6 & 23 & 0 & 0 & 5 & 2 & 3 & 0 & 3 & 22 & 5 & 0 \\
\hline 6:15 AM & 6 & 8 & 4 & 0 & 9 & 31 & 2 & 0 & 2 & 2 & 2 & & 4 & 28 & 5 & 0 \\
\hline 6:30 AM & 7 & 12 & 4 & 0 & 7 & 30 & 0 & 0 & 8 & 4 & 9 & 0 & , & 57 & 8 & 0 \\
\hline 6:45 AM & 12 & 9 & 12 & 0 & 16 & 44 & 6 & 0 & 12 & 2 & 11 & 0 & 4 & 47 & 18 & 0 \\
\hline 7:00 AM & 4 & 9 & 12 & 0 & 14 & 41 & 1 & 0 & 19 & 11 & 8 & 0 & 8 & 42 & 18 & 0 \\
\hline 7:15 AM & 6 & 23 & 15 & 0 & 27 & 76 & 5 & 0 & 21 & 4 & 11 & 0 & 16 & 50 & 30 & 0 \\
\hline 7:30 AM & 7 & 20 & 17 & 0 & 28 & 69 & 7 & 0 & 21 & 14 & 10 & 0 & 11 & 70 & 35 & 0 \\
\hline 7:45 AM & 6 & 27 & 5 & 0 & 31 & 79 & 7 & 0 & 28 & 9 & 14 & 0 & 14 & 104 & 38 & 0 \\
\hline 8:00 AM & -7 & 28 & 9 & 0 & 20 & 48 & 3 & 0 & 17 & 9 & 24 & 0 & 15 & 61 & 31 & 0 \\
\hline 8:15 AM & 3 & 18 & 6 & \(\square\) & 27 & 86 & 6 & 0 & 17 & 17 & 14 & 0 & 11 & 42 & 25 & 0 \\
\hline 8:30 AM & - 9 & 16 & 21 & 0 & 20 & 76 & 9 & 0 & 18 & 7 & 22 & 0 & 14 & 71 & 32 & 0 \\
\hline 8:45 AM & 13 & 32 & 17 & 0 & 14 & 88 & 10 & 0 & 20 & 13 & 14 & 0 & 19 & 90 & 25 & 0 \\
\hline 11:00 AM & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 11:15 AM & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 11:30 AM & -9 & 13 & 15 & 0 & 37 & 104 & 13 & 0 & 32 & 25 & 35 & 0 & 22 & 91 & 19 & 0 \\
\hline 11:45 AM & 14 & 19 & 17 & 0 & 31 & 102 & 12 & 0 & 31 & 32 & 27 & 0 & 21 & 110 & 16 & 0 \\
\hline 12:00 PM & 18 & 20 & 13 & 0 & 32 & 107 & 19 & 0 & 38 & 24 & 28 & 0 & 31 & 137 & 22 & 0 \\
\hline 12:15 PM & 21 & 24 & 16 & 0 & 37 & 115 & 18 & 0 & 35 & 20 & 22 & 0 & 19 & 101 & 38 & 0 \\
\hline 12:30 PM & 16 & 22 & 14 & - 0 & 21 & 81 & 8 & 0 & 31 & 38 & 17 & 0 & 21 & 115 & 22 & 0 \\
\hline 12:45 PM & 13 & 18 & 13 & 0 & 40 & 123 & 16 & 0 & 25 & 18 & 22 & 0 & 28 & 119 & 31 & 0 \\
\hline 1:00 PM & 19 & 20 & 14 & 0 & 30 & 101 & 12 & 0 & 22 & 29 & 18 & 0 & 33 & 119 & 24 & 0 \\
\hline 1:15 PM & 13 & 13 & 13 & 0 & 32 & 90 & 13 & 0 & 19 & 17 & 14 & 0 & 22 & 99 & 23 & 0 \\
\hline 4:00 PM & 17 & 23 & 21 & 0 & 32 & 109 & 22 & 0 & 36 & 32 & 19 & 0 & 29 & 137 & 26 & 0 \\
\hline 4:15 PM & 19 & 20 & 27 & 0 & 27 & 118 & 16 & 0 & 38 & 35 & 25 & 0 & 18 & 109 & 22 & 0 \\
\hline 4:30 PM & 17 & 26 & 17 & - 0 & 33 & 132 & 19 & 0 & 43 & 31 & 36 & , & 21 & 136 & 20 & 0 \\
\hline 4:45 PM & 11 & 20 & 30 & 0 & 34 & 165 & 21 & 0 & 33 & 22 & 23 & 0 & 28 & 140 & 17 & 0 \\
\hline 5:00 PM & 18 & 18 & 15 & \(\square\) & 21 & 136 & 13 & 0 & 30 & 34 & 35 & 0 & 34 & 163 & 32 & 0 \\
\hline 5:15 PM & 15 & 31 & 19 & 0 & 30 & 147 & 17 & 0 & 53 & 41 & 32 & 0 & 20 & 160 & 28 & 0 \\
\hline 5:30 PM & 8 & 19 & 16 & 0 & 31 & 129 & 19 & 0 & 26 & 30 & 19 & 0 & 26 & 135 & 24 & 0 \\
\hline 5:45 PM & 8 & 19 & 15 & 0 & 32 & 134 & 15 & 0 & 25 & 27 & 11 & 0 & 18 & 111 & 19 & 0 \\
\hline 6:00 PM & 7 & 12 & 13 & 0 & 35 & 132 & 21 & 0 & 15 & 18 & 15 & 0 & 26 & 116 & 14 & 0 \\
\hline 6:15 PM & 12 & 16 & 9 & \(\square\) & 32 & 133 & 12 & 0 & 17 & 14 & 18 & 0 & 24 & 95 & 14 & 0 \\
\hline 6:30 PM & 5 & , & 11 & 0 & 25 & 104 & 13 & 0 & 13 & 21 & 15 & 0 & 17 & 110 & 11 & 0 \\
\hline 6:45 PM & 7 & 14 & 10 & 0 & 20 & 96 & 11 & 0 & 18 & 28 & 9 & 0 & 14 & 109 & 15 & 0 \\
\hline AM Subtotals: & 82 & 211 & 127 & 0 & 219 & 691 & 56 & 0 & 188 & 94 & 142 & 0 & 125 & 684 & 270 & 0 \\
\hline Noon Subtotals: & 123 & 149 & 115 & - 0 & 260 & 823 & 111 & 0 & 233 & 203 & 183 & 0 & 197 & 891 & 195 & 0 \\
\hline PM Subtotals: & 144 & 227 & 203 & 0 & 352 & 1535 & 199 & 0 & 347 & 333 & 257 & 0 & 275 & 1521 & 242 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{TRAFFIC DATA} \\
\hline Street Name & \multicolumn{4}{|c|}{Cedar Heights Dr--Southbound} & \multicolumn{4}{|c|}{University Ave--Westbound} & \multicolumn{4}{|c|}{Cedar Heights Dr--Northbound} & \multicolumn{4}{|c|}{University Ave--Eastbound} \\
\hline Start Time & Left & Thru & Right & Peds \({ }^{1}\) & Left & Thru & Right & Peds \({ }^{2}\) & Left & Thru & Right & Peds \({ }^{3}\) & Left & Thru & Right & Peds \({ }^{4}\) \\
\hline AM DHV (2014) & 26 & 98 & 46 & & 106 & 272 & 22 & & 87 & 36 & 59 & 0 & 56 & 285 & 134 & \\
\hline Noon DHV (2014) & 68 & 84 & 56 & 0 & 130 & 426 & 61 & 0 & 129 & 100 & 89 & 0 & 99 & 472 & 113 & \\
\hline PM DHV (2014) & 61 & 95 & 81 & & 118 & 580 & 70 & 0 & 159 & 128 & 126 & & 103 & 599 & 97 & \\
\hline AM DHV (2015) & 26 & 98 & 46 & & 106 & 272 & 22 & 0 & 87 & 36 & 59 & 0 & 56 & 285 & 134 & \\
\hline Noon DHV (2015) & 68 & 84 & 56 & & 130 & 426 & 61 & 0 & 129 & 100 & 89 & 0 & 99 & 472 & 113 & \\
\hline PM DHV (2015) & 61 & 95 & 81 & 0 & 118 & 580 & 70 & 0 & 159 & 128 & 126 & 0 & 103 & 599 & 97 & \\
\hline \multicolumn{17}{|c|}{TRUCK TRAFFIC DATA} \\
\hline Street Name & \multicolumn{4}{|c|}{Cedar Heights Dr--Southbound} & \multicolumn{4}{|c|}{University Ave--Westbound} & \multicolumn{4}{|c|}{Cedar Heights Dr--Northbound} & \multicolumn{4}{|c|}{University Ave--Eastbound} \\
\hline Start Time & Left & Thru & Right & Peds \({ }^{1}\) & Left & Thru & Right & Peds \({ }^{2}\) & Left & Thru & Right & Peds \({ }^{3}\) & Left & Thru & Right & Peds \({ }^{4}\) \\
\hline Total Trucks & 8 & 7 & 0 & & 10 & 39 & 6 & & 13 & 12 & 9 & & 7 & 36 & 12 & \\
\hline Total Vehicles & 349 & 587 & 445 & & 831 & 3049 & 366 & & 768 & 630 & 582 & & 597 & 3096 & 707 & \\
\hline \% TRUCKS & 2\% & 1\% & 0\% & & 1\% & 1\% & 2\% & & 2\% & 2\% & 2\% & & 1\% & 1\% & 2\% & \\
\hline
\end{tabular}

NOTE:
1. Pedestrians traveling North/South across the West leg of
2. Pedestrians traveling East/West across the North leg of
. Pedestrians traveling North/South across the East leg of
4. Pedestrians traveling East/West across the South leg of

University Ave--Eastbound
Cedar Heights Dr--Southbound
Cedar Heights Dr--Northbound

\title{
Intersection or Spot Benefit / Cost Safety Analysis
}

Crash Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2010 & First full year --> & 2014 & Last full year 5.0 & \multicolumn{3}{|l|}{.0 years, Time Period, T} \\
\hline & Additional months & & \multicolumn{4}{|c|}{values as of Mav 2014} \\
\hline & \multirow[t]{2}{*}{Fatal Crashes} & & Fatalities @ & \$4,500,000 & \$ & - \\
\hline \multirow[b]{2}{*}{18} & & & 1 Major Injuries @ & \$325,000 & \$ & 325,000 \\
\hline & \multirow[t]{2}{*}{Injury Crashes} & \(\rightarrow\) & 6 Minor Injuries @ & \$65,000 & \$ & 390,000 \\
\hline & & & 15 Possible Injuries @ & \$35,000 & \$ & 525,000 \\
\hline 15 & \multirow[t]{2}{*}{Property Damage Only} & & (assumed cost per crash) & \$7,400 & \$ & 244,200 \\
\hline & & & \multicolumn{4}{|l|}{-OR- enter all Property Costs of all crashes:} \\
\hline 33 & Total Crashes, TA & & \multicolumn{2}{|r|}{Total \$ Loss, LOSS} & \$ & 1,484,200 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { 6.60 Current Crashes } / \text { Year, } \mathbf{A A}=\mathrm{TA} / \mathrm{T} \\
& \text { \$ 44,976 Cost per Crash, AVC = LOSS / TA } \\
& \text { 145.3 Total Expected Crashes, TECR = CR x TMEV } \\
& \text { 4.85 Crashes Avoided First Year AAR }=A A \times C R F / 100 \\
& \text { 0.93 Crashes / MEV, Crash Rate, CR } \\
& C R=T A \times 10^{\wedge} 6 /(D E V \times 365 \times T) \\
& \text { \$ 218,118 Crash Costs Avoided in First Year, AAR x AVC } \\
& \text { 106.8 Total Avoided Crashes, TECR x CRF/ } 100 \\
& B E N .=\frac{A V C \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)
\end{aligned}
\]

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 3,221,757: \$ 500,000 \quad=\frac{6.44}{}: 1
\]

\title{
CIOWADOT Application for TRAFFIC SAFETY FUNDS
}

DATE: Aug 14, 2015

Phone
(319) 291-4440

E-Mail mohammad.elahi@waterloo-ia.org

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

Funding Amount

Total Project Cost
Safety Funds Requested
\$ 484,000
\$ 484,000

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT
To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the City of Waterloo

Signed: Mohamed Cuke/ Aug, 17-2015
\(\frac{\text { Mohommzd Elahi }}{\text { Typed Name }}\)

Attest:

\[
\frac{\text { Susan C. Holmes }}{\text { Typed Name }}
\]

\section*{Systemic Traffic Safety Improvements on \(5^{\text {th }}\) and \(6^{\text {th }}\) Streets}

\section*{B. Narrative}

Existing Situation: \(5^{\text {th }}\) and \(6^{\text {th }}\) Streets between Mulberry Street and Jefferson Street are a one-way pair and are about 2600 ' in length in downtown Waterloo. The speed limit is 30 MPH . There are 4 lanes (3 on the bridge) and 10 signalized intersections. These pretimed signals are well coordinated. This stretch experiences a high number of left turn from wrong-lane crashes. The errant drivers turn left and collide with the same direction vehicle on their left. Several factors contribute to this situation. The traffic signal design and layout is deficient. Signal layout is similar to a two-way design. Signal mast arms poles are installed on far right corners and cover only 2 lanes. There is only 1 signal head over the entire width of the street. There is little signage or clue for \(5^{\text {th }}\) Street and \(6^{\text {th }}\) Street approach traffic to clearly establish these are one way streets. This situation is confusing. It is particularly troublesome to out of town drivers who are not familiar with downtown Waterloo. There are no lane assignment signs enforcing the one-way nature of streets. There are no vertical signs and very little horizontal signs (pavement markings) to show the driver which lane is for making the turn movement.

Single Line Diagrams of 5th and 6th Streets Showing the Direction of the One Way Pair

A large percentage of all crashes on \(5^{\text {th }}\) and \(6^{\text {th }}\) Streets are caused by left turns from 2nd lane. There have been a total of 109 "cased" crashes. \(47 \%\) of the crashes, including a fatality, were caused by someone turning left from the middle lane. Almost all of the crashes involved vehicles on \(6^{\text {th }}\) Street or \(5^{\text {th }}\) Street. Table 1 shows the number and percentage of wrong lane left turn crashes by severity. There were 204 more crashes for which the police officers did not initiate a report.

Table 1: Total and Wrong Lane Left Turn crashes 1/1/2012-7/22/2015
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Crash Severity } & Total Number of Crashes & \begin{tabular}{c}
Wrong Lane Left Turn on \\
\(5^{\text {th }}\) St or 6 \(6^{\text {th }}\) St
\end{tabular} & \begin{tabular}{c}
\% Wrong Lane Left \\
Turn
\end{tabular} \\
\hline Property Damage Only & 90 & 44 & \(49 \%\) \\
\hline Injury & 17 & 6 & \(33 \%\) \\
\hline Fatal & 1 & 1 & \(100 \%\) \\
\hline Total & 109 & 51 & \(47 \%\) \\
\hline
\end{tabular}

Table 2: Fatal Crash on 5th and 6th Streets 1/1/2012-7/22/2015
\begin{tabular}{|l|l|l|}
\hline Location & Date Time Reported & Crash Type or Cause \\
\hline W 6TH ST/ COMMERCIAL ST & \(3 / 9 / 2014\) & Left Turn From Wrong Lane \\
\hline
\end{tabular}

Table 3: Solnjury Crashes on 5th and 6th Streets 1/1/2012-7/22/2015
\begin{tabular}{|c|c|c|c|}
\hline & Location & Date Time Reported & Crash Type or Cause \\
\hline 1 & 180 W 5TH ST & 9/24/2013 5:07:03 PM & bicycle on sidewalk \\
\hline 2 & 300-BLK E 5TH ST & 8/24/2012 9:24:58 AM & chocked on food \\
\hline 3 & 500-BLK W 5TH ST & 5/21/2015 8:05:37 PM & bicycle on sidewalk \\
\hline 4 & E 5TH ST/ SYCAMORE ST & 9/9/2013 9:03:08 PM & bicycle on sidewalk \\
\hline 5 & E 5TH ST/ SYCAMORE ST & 9/6/2012 6:50:23 AM & side street RRL \\
\hline 6 & E 5TH ST/ SYCAMORE ST & 5/19/2012 9:34:45 AM & RRL \\
\hline 7 & E 5TH ST/ SYCAMORE ST & 9/25/2012 3:44:57 PM & Left Turn From Wrong Lane \\
\hline 8 & E 5TH ST/ SYCAMORE ST & 2/26/2014 2:12:21 PM & Left Turn From Wrong Lane \\
\hline 9 & E 6TH ST/ MULBERRY ST & 5/2/2013 1:00:19 AM & RRL \\
\hline 10 & E 6TH ST/ SYCAMORE ST & 11/9/2012 4:09:08 PM & improper lane change \\
\hline 11 & E 6TH ST/ SYCAMORE ST & 2/21/2013 3:00:01 PM & right angle \\
\hline 12 & E 6TH ST/ SYCAMORE ST & 12/21/2014 7:26:11 PM & rearend \\
\hline 13 & W 5TH ST/ COMMERCIAL ST & 5/19/2014 1:10:04 PM & Commercial left turn \\
\hline 14 & W 5TH ST/ COMMERCIAL ST & 2/27/201 12:24 PM & Left Turn From Wrong Lane \\
\hline 15 & W 6TH ST/ COMMERCIAL ST & 6/12/2015 6:34:45 PM & Left Turn From Wrong Lane \\
\hline 16 & W 6TH ST/ COMMERCIAL ST & 2/18/2012 21:44 PM & Left Turn From Wrong Lane \\
\hline 17 & W 6TH ST/ JEFFERSON ST & 3/24/2013 2:50:55 PM & Left Turn From Wrong Lane \\
\hline
\end{tabular}

Table 4: Property Damage Only Crashes on 5th and 6th Streets 1/1/2012-7/22/2015
\begin{tabular}{|c|c|c|c|}
\hline & Location & Date Time Reported & Crash Type or Cause \\
\hline 1 & 0-BLK W 5TH ST & 5/3/2013 2:15:39 AM & fixed object \\
\hline 2 & 0-BLK W 5TH ST & 12/1/2014 6:09:28 PM & improper lane change \\
\hline 3 & 200-BLK W 6TH ST & 9/26/2014 12:18:53 PM & Left Turn From Wrong Lane \\
\hline 4 & 209 W 5TH ST & 12/15/2013 11:10:17 AM & broadside \\
\hline 5 & 224 W 6TH ST & 5/22/2012 11:18:26 AM & improper lane change \\
\hline 6 & 225 E 6TH ST & 7/19/2013 7:26:08 PM & back-out of parking \\
\hline 7 & 226 W 5TH ST & 12/19/2014 5:28:53 PM & back-out of parking \\
\hline 8 & 300-BLK W 5TH ST & 1/17/2015 7:45:29 PM & Left Turn From Wrong Lane \\
\hline 9 & 313 W 5TH ST & 6/2/2013 2:59:48 AM & parked car \\
\hline 10 & 316 W 5TH ST & 6/2/2013 3:02:45 AM & parked car \\
\hline 11 & 329 W 6TH ST & 5/16/2014 12:39:04 PM & parked car \\
\hline 12 & 400-BLK E 6TH ST & 2/24/2012 12:30:59 PM & Left Turn From Wrong Lane \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 13 & 400-BLK E 6TH ST & 11/12/2014 2:44:09 PM & rearend \\
\hline 14 & 425 LAFAYETTE ST ' 1715 W 6TH & 6/28/2013 5:34:21 PM & parked car \\
\hline 15 & 500-BLK W 5TH ST & 1/19/2012 4:16:11 PM & improper lane change \\
\hline 16 & 620 W 5TH ST & 7/31/2013 5:17:46 PM & Left Turn From Wrong Lane \\
\hline 17 & 820 W 5TH ST & 5/10/2012 11:11:03 AM & Left Turn From Wrong Lane \\
\hline 18 & E 5TH ST/ LAFAYETTE ST & 1/13/2012 3:36:33 PM & Left Turn From Wrong Lane \\
\hline 19 & E 5TH ST/ LAFAYETTE ST & 8/27/2013 8:07:31 AM & improper lane change \\
\hline 20 & E 5TH ST/ LAFAYETTE ST & 3/7/2014 12:35:48 PM & Left Turn From Wrong Lane \\
\hline 21 & E 5TH ST/ LAFAYETTE ST & 7/21/2014 4:27:35 PM & Left Turn From Wrong Lane \\
\hline 22 & E 5TH ST/ MULBERRY ST & 9/12/2012 3:32:56 PM & Left Turn From Wrong Lane \\
\hline 23 & E 5TH ST/ MULBERRY ST & 9/21/2012 2:37:25 PM & Left Turn From Wrong Lane \\
\hline 24 & E 5TH ST/ MULBERRY ST & 1/30/2014 12:12:54 PM & Left Turn From Wrong Lane \\
\hline 25 & E 5TH ST/ MULBERRY ST & 6/27/2014 2:25:13 PM & rearend \\
\hline 26 & E 5TH ST/ MULBERRY ST & 8/18/2014 11:46:07 AM & Left Turn From Wrong Lane \\
\hline 27 & E 5TH ST/ MULBERRY ST & 1/23/2015 2:51:34 PM & rearend \\
\hline 28 & E 5TH ST/ MULBERRY ST & 2/11/2015 11:22:29 AM & Left Turn From Wrong Lane \\
\hline 29 & E 5TH ST/ SYCAMORE ST & 9/4/2012 6:54:30 PM & RRL \\
\hline 30 & E 5TH ST/ SYCAMORE ST & 11/20/2012 12:14:21 PM & rearend \\
\hline 31 & E 5TH ST/ SYCAMORE ST & 2/24/2013 3:36:03 PM & out of parking \\
\hline 32 & E 5TH ST/ SYCAMORE ST & 12/21/2013 7:12:59 PM & rearend \\
\hline 33 & E 5TH ST/ SYCAMORE ST & 3/1/2014 1:30:52 PM & Left Turn From Wrong Lane \\
\hline 34 & E 5TH ST/ SYCAMORE ST & 4/15/2014 12:29:03 PM & back-out of parking \\
\hline 35 & E 5TH ST/ SYCAMORE ST & 7/3/2014 3:03:39 PM & back-out of parking \\
\hline 36 & E 5TH ST/ WATER ST & 7/20/2013 2:27:01 PM & Left Turn From Wrong Lane \\
\hline 37 & E 6TH ST/ LAFAYETTE ST & 4/16/2012 12:38:28 PM & Left Turn From Wrong Lane \\
\hline 38 & E 6TH ST/ LAFAYETTE ST & 8/8/2012 12:00:55 AM & parked car \\
\hline 39 & E 6TH ST/ LAFAYETTE ST & 4/2/2013 11:04:58 AM & Left Turn From Wrong Lane \\
\hline 40 & E 6TH ST/ LAFAYETTE ST & 6/22/2015 8:58:28 AM & Left Turn From Wrong Lane \\
\hline 41 & E 6TH ST/ MULBERRY ST & 10/10/2012 2:16:41 PM & rearend \\
\hline 42 & E 6TH ST/ MULBERRY ST & 12/27/2012 3:28:28 PM & improper lane change \\
\hline 43 & E 6TH ST/ MULBERRY ST & 6/25/2013 1:04:24 PM & Left Turn From Wrong Lane \\
\hline 44 & E 6TH ST/ MULBERRY ST & 2/5/2014 1:09:55 PM & Left Turn From Wrong Lane \\
\hline 45 & E 6TH ST/ SYCAMORE ST & 5/3/2012 7:54:09 AM & rearend \\
\hline 46 & E 6TH ST/ SYCAMORE ST & 9/10/2012 5:01:48 PM & rearend \\
\hline 47 & E 6TH ST/ SYCAMORE ST & 11/1/2012 9:54:33 AM & Left Turn From Wrong Lane \\
\hline 48 & E 6TH ST/ SYCAMORE ST & 3/12/2013 2:03:33 PM & rearend \\
\hline 49 & E 6TH ST/ SYCAMORE ST & 7/1/2013 9:38:59 AM & rearend \\
\hline 50 & E 6TH ST/ SYCAMORE ST & 5/12/2014 12:05:21 PM & Left Turn From Wrong Lane \\
\hline 51 & E 6TH ST/ SYCAMORE ST & 1/9/2015 8:29:56 AM & sycamore left turn \\
\hline 52 & E 6TH ST/ SYCAMORE ST & 1/9/2015 1:51:10 PM & Left Turn From Wrong Lane \\
\hline 53 & W 5TH ST/ COMMERCIAL ST & 11/8/2012 10:54:37 AM & RRL \\
\hline 54 & W 5TH ST/ COMMERCIAL ST & 12/8/2012 9:33:52 PM & Commercial left turn \\
\hline 55 & W 5TH ST/ COMMERCIAL ST & 11/21/2013 8:00:41 AM & improper lane change \\
\hline 56 & W 5TH ST/ COMMERCIAL ST & 4/13/2014 8:51:30 PM & Left Turn From Wrong Lane \\
\hline 57 & W 5TH ST/ COMMERCIAL ST & 2/17/2015 4:16:36 PM & Commercial left turn \\
\hline 58 & W 5TH ST/ COMMERCIAL ST & 10/20/2013 12:47:56 PM & Left Turn From Wrong Lane \\
\hline 59 & W 5TH ST/ JEFFERSON ST & 7/15/2012 3:39:05 AM & hit \&run backup \\
\hline 60 & W 5TH ST/ JEFFERSON ST & 1/22/2012 1:57:59 AM & Jefferson RRL \\
\hline 61 & W 5TH ST/ JEFFERSON ST & 6/3/2012 12:21:52 PM & wrong direction on one-way \\
\hline 62 & W 5TH ST/ JEFFERSON ST & 12/22/2013 2:17:04 PM & Left Turn From Wrong Lane \\
\hline
\end{tabular}

Proposed Solution: The proposed solution consists of typical improvements at all of the signalized intersections and possibly adding signs at 1 non-signalized intersection. The aim is to reduce the wrong lane left turn crashes. Establishing and enforcing the driver's cognition of the one-way operation and lane movement assignment will help. The proposed systemic improvements include installing 1 signal head over each lane. According to the 2009 MUTCD (4D.11.06) "On approaches with two or more lanes for the through movement, one signal face per through lane, centered over each through lane, has also been shown to provide safer operation." Another related proposed improvement is installing vertical signs and horizontal (arrow symbol) signs enforcing lane assignment and confirming one-way movement. The left turn movements are always permissive because of the pedestrian WALK indication for side streets. A flashing left yellow arrow (FYA) over the lane where left is allowed will identify the appropriate lane to make a turn from. FYA will also help improve pedestrian safety. In Waterloo, it is frequently observed that turning drivers do not yield to pedestrians with WALK indication. Other proposed improvements are addition of do not enter/wrong way signs and countdown pedestrian signal heads.

\section*{C. ITEMIZED BREAKDOWN OF ALL COSTS}
\begin{tabular}{|r|l|r|l|r|r|}
\hline & \multicolumn{1}{|c|}{ Item Description } & QNTY & UNIT & COST & \begin{tabular}{c}
TOTAL ITEM \\
COST
\end{tabular} \\
\hline 1 & Mast Arm Pole & 11 & Each & 14,000 & 154,000 \\
\hline 2 & Controller & 10 & Each & 12,500 & 125,000 \\
\hline 3 & Traffic Signal Heads & 20 & Each & 800 & 16,000 \\
\hline 4 & Countdown Pedestrian Heads & 80 & Each & 700 & 56,000 \\
\hline 5 & Pedestal Pole & 5 & Each & 1,000 & 5,000 \\
\hline 6 & Concrete Bases & 16 & Each & 2,000 & 32,000 \\
\hline 7 & High Durability Pavement Marking Symbols & 24 & Each & 625 & 15,000 \\
\hline 8 & Signs, Mast Arm Mounted & 40 & Each & 150 & 6,000 \\
\hline 9 & Signs, Post Mounted with Sign Post & 30 & Each & 100 & 3,000 \\
\hline 10 & Remove Existing Mast-arm Pole and Base & 10 & Each & 500 & 5,000 \\
\hline 11 & Traffic Control & 1 & LS & 10,000 & 10,000 \\
\hline 12 & Incidentals, Wiring, etc. & 10 & Each & 1,000 & 10,000 \\
\hline 13 & Mobilization & 1 & Each & 3,000 & 3,000 \\
\hline 14 & Contingency/Possible Underground Work & 1 & Each & 44,000 & 44,000 \\
\hline TOTAL & & & & \(\$ 484,000\) \\
\hline
\end{tabular}
D. TIME SCHEDULE
\begin{tabular}{|c|l|c|c|}
\hline & & START & END \\
\hline 1 & START & Jan-2016 & \\
\hline 2 & DOT Agreement Exchange & Jan-2016 & Aug-2016 \\
\hline 3 & Plans \& Contract Documents & Aug-2016 & Dec-2017 \\
\hline 4 & Letting & Dec-2017 & Feb-2018 \\
\hline 5 & Construction & Feb-2018 & Dec-2018 \\
\hline 6 & END & & Dec-2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline & \multicolumn{11}{|c|}{2016} & \multicolumn{12}{|c|}{2017} & \multicolumn{11}{|c|}{2018} \\
\hline & 1 & 2 & 3 & 4 & 5 & 67 & 8 & 9 & | \(\begin{aligned} & 1 \\ & 0\end{aligned}\) & 1 1 & 1 & & 2 & 3 & 45 & 6 & & 7 & 8 & 9 & 1
0 & 1
1 & 1 & 1 & 2 & 3 & 5 & 6 & & 8 & 9 & , & \begin{tabular}{l|l}
1 \\
1
\end{tabular} & 1
2 \\
\hline 1 & - & \\
\hline 2 & & & & & & & \(\square\) & \\
\hline 3 & \\
\hline 4 & \\
\hline 5 & \\
\hline 6 & - \\
\hline
\end{tabular}
E. MAP identifying the location of the project.

E. 5th Street and Mulberry Street

E. 5th Street and Lafayette Street

E. 5th Street and Sycamore Street

E. 5th Street and Water Street

W. 5th Street and Commercial Street

W. 5th Street and Jefferson Street

W. 6th Street and Jefferson Street (W. 6th Street and Commercial Street Downstream)
E. 6th Street and Sycamore Street (Also Showing Lafayette and Mulberry Streets Downstream)

E. 6th Street and Lafayette Street

E. 6th Street and Mulberry Street

\section*{G. PLAN VIEW OF THE EXISTING CONDITIONS AND PROPOSED PROJECT}

All the intersections have the same signal layout design on \(5^{\text {th }}\) Street and \(6^{\text {th }}\) Street. The layout consists of 1 signal head overhead only. The mast arm extends only over two lanes. The proposed design will install one signal head over each lane. The typical existing plan of the signals and the typical proposed improvements is shown on the next 2 pages. The only variable is the number of approach lanes. The number of approach lanes change based on the parking situation on some blocks. The proposed improvement layout will remain the same, i.e. 1 signal head over each approach lane.

\section*{I. ACCIDENT REPORTS (ATTACHED SEPARATELY)}

\section*{J. TRAFFIC VOLUMES}
(Iowa DOT Traffic Map 2014: www.iowadot.gov/maps/msp/traffic/2014/Cities/Waterloo.pdf)

5500 which is the average of 6 available readings is used.

\section*{K. TRAFFIC SIGNALS}

No new signals are proposed. Existing 2 phase operation with pedestrian phases will remain. There are no detectors. Existing timings will not change.

\section*{Only Target Crashes}

Reduction factor was applied to the target crash patterns only. Other types of crashes were assumed to remain unchanged. There were 17 injury crashes but only 6 target crashes were assumed to be improved by the countermeasures. Out of 90 pdo crashes only 44 crashes were assumed to be improved.

\section*{Crash Reduction Factor}

Install 1 signal head over each approach lane has a CRF of \(46 \%\) and applies to all crash types.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CMF & CRF(\%) & Quality & Crash Type & Crash Severity & \begin{tabular}{l}
Area \\
Type
\end{tabular} & Reference & Comments \\
\hline 0.54 & 46 & & Angle & All & Urban & McGee et al., 2002 & Author indicated that sites were ... [read more] \\
\hline
\end{tabular}

The following installations will additionally help reduce the target crash type but they are not included in the benefits calculations.
- Lane Control Signs
- Arrow Symbols on Pavement
- Flashing Yellow Arrow Signal Heads

\section*{Discount Rate}

Discount Rate is assumed to be \(1.2 \%\) for 20 years (OMB Circular A-94, President's Office of Management and Budget, January 21, 2015):

Real Discount Rates. A forecast of real interest rates from which the inflation premium has been removed and based on the economic assumptions from the 2016 Budget is presented below. These real rates are to be used for discounting constant-dollar flows, as is often required in costeffectiveness analysis.

\section*{Real Interest Rates on Treasury Notes and Bonds of Specified Maturities (in percent)}
3-Year
5-Year
\(\frac{7 \text {-Year }}{0.7}\)
\(\frac{10-\mathrm{Year}}{0.9}\)
\(\frac{20-\mathrm{Year}}{1.2}\)
\(\frac{30-\text { Year }}{1.4}\)

B/C \& Probability of Attaining CRF benefits: Even at \(50 \%\) success rate the b-c ratio stays above 1 .
\begin{tabular}{|c|c|c|}
\hline Probability of Attaining CRF 46 & CRF Value Used & B/C \\
\hline 1 & 46 & 21.19 \\
\hline 0.75 & 33 & 15.2 \\
\hline 0.50 & 23 & 10.59 \\
\hline
\end{tabular}

\title{
Road Segment Benefit / Cost Safety Analysis lowa DOT Office of Traffic \& Safety
}

County: \(\qquad\) Prepared by: \(\qquad\) Date Prepared: \(\qquad\) Aug 13, 2015

Location: \(\quad\) 5th and 6th Streets between Mulberry Avenue and Jefferson Street in Waterloo

\section*{Improvement}

Proposed Improvement(s): addition and replacement of signal equipment, pavement marking symbols, and signs
\begin{tabular}{|c|c|c|c|c|}
\hline \$ & 484,000 & Estimated Improvement Cost, EC & 20 & Est. Improvement Life, years, Y \\
\hline \$ & 4,000 & Other Annual Cost (after initial year), AC & 46 & Crash Reduction Factor (integer), CRF \\
\hline \$ & 70,749 & Present Value Other Annual Costs, OC & 1.2\% & Discount Rate, INT \\
\hline & & \(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\) & \$ 554,749 & Present Value All Costs,
\[
\operatorname{cost}=E C+O C
\] \\
\hline
\end{tabular}

\section*{Traffic Volume Data}

Source:
\(\begin{array}{ll} & \begin{array}{l}\text { Two-way } \\ \text { Length (mi.) } \\ \text { veh/day Description }\end{array}\end{array}\)
\begin{tabular}{|c|l|l|}
\hline 3.00 & 5,500 & average of 6 ADT points \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
3.00 miles total
\(1.0 \%\) Projected Traffic Growth (0\%-10\%),
_ Date of traffic count

16,500 Current Vehicle Miles / Day, VM
20,133 End of Life Veh. Miles / Day
6,022,500 Current Veh. Miles / Year, AM
132,609,452 Total Projected Veh. Miles Over Life of Project, TVMT
\[
T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
\]

Crash Data

11.33 Current Crashes / Year, AA = TA / T
\$ 116,224 Cost per Crash, AVCR = LOSS / TA
249.5 Total Expected Crashes, TCR = CR x TVMT/10^8
5.21 Crashes Avoided First Year AAR = AA x CRF / 100
\$ 605,912 Crash Costs Avoided in First Year, AAR x AVCR
114.8 Total Avoided Crashes, TCR x CRF/ 100
4.5 years, Time Period, T
values as of May 2014
\begin{tabular}{rlr}
\(\$ 4,500,000\) & \(\$\) & \(4,500,000\) \\
\(\$ 325,000\) & \(\$\) & 650,000 \\
\(\$ 65,000\) & \(\$\) & 260,000 \\
\(\$ 35,000\) & \(\$\) & 140,000 \\
\(\$ 7,400\) & \(\$\) & 377,400
\end{tabular}
188.2 Crashes / HMVM, Crash Rate, CR \(C R=T A \times 10^{\wedge} 8 /(A M \times T)\)
\$ 11,752,370 Present Value of Avoided Crashes, BENEFIT
\(B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)\)

\section*{Benefit / Cost Ratio}

Benefit : Cost \(=\$ 11,752,370 \quad\) : \(\$ 554,749 \quad=\quad 21.19: 1\)

\section*{District 3}

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION
DATE: 8/11/15

Location / Title of Project \(\quad 480^{\text {th }}\) street extension/paving
Applicant Cherokee County
Contact Person Brandon Billings Title Assistant Engineer
Complete Mailing Address 5074 Highway 3, Cherokee, Iowa 51012
Phone \(\frac{712-225-6712}{\text { (Area Code) }} \quad\) E-Mail bbillings@co.cherokee.ia.us

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s)
Contact Person \(\qquad\) Title \(\qquad\)
Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

\section*{Funding Amount}

\author{
Total Project Cost \\ Safety Funds Requested
}
\$ \$2,190,000
\$ \$750,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.
\(I\) understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the Cherokee County Secondary Roads

Signed:

Attest:
Aol Xhd
Signature
Joel Kohn
Typed Name
A) Attached
B) This road services an ethanol plant, the roads leading into the plant are gravel (except one stub) and traffic is having constant issues with side swipe accidents, off road accidents or roll overs. In my opinion, my boards opinion and the sheriff's department's opinion a fatality on the road is inevitable. To remedy this issue we want to re-align \(480^{\text {th }}\) street to pave a route intended to service the vehicle volume and types that are having issues, greatly improving safety. We are going to build a new road that has been added to the FM system in the last FM review board meeting. This road will be paved and connect the paved stub of F ave to state highway 143. This route will greatly improve the safety of the traffic going to the plant and anyone else traveling the area. This road will be designed for 55 mph traffic with turn lanes for the ethanol plant and the seed corn facility. We will have to stop traffic on E ave. This road will have 10ft shoulders (partially paved) and provide room the road system in the area has failed to provide. Currently trucks avoid Highway 3 because it turns into a traffic jam waiting for trucks to turn. That is one of the numerous reasons why they use the narrow gravel roads. This proposed road and paving project will save lives and dramatically improve the safety of the system.
C) for this project we will need to acquire land 5391 ft long and 120 ft wide totaling 12.5 acres (there is a wider section near 143 to accommodate the entrance). This land contains a portion of a seed corn business. The county would have to replace the building being taken. The remainder of the land is all agricultural land. \(\$ 190,000\) for ROW is anticipated with special compensation being made for the building in question. The assessment is going on now but we anticipate the building will cost \(\$ 200,000\) to purchase.

Attached is an itemized sheet showing the construction of this road to be near \$1.8 million. A total projected project cost with ROW and construction will be \$2,190,000.00.
D) We anticipate letting this project May of 2016 with grading being completed by September. The following year we are anticipating the pavement to be finished by September of 2017.
E) Attached
F) Attached
G) Attached
H) Attached
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline muel & iew y ellow ce & ruil oultens i/nv & & \multicolumn{2}{|l|}{Total of Bid Item Costs \$} & 1808091.86 \\
\hline ITEM \# & ITEM CODE & BID ITEM DESCRIPTION & QUANTITY & UNIT & RATE & TOTAL \\
\hline 1 & 2102-2710070 & EXCAVATION, CL 10, RDWY+BORROW & 88412 & CY & 7.00 & 618884.00 \\
\hline 2 & 2111-8174100 & GRANULAR SUBBASE & 31000 & SY & 5.21 & 161510.00 \\
\hline 3 & 2113-0001100 & SUBGRADE STABIL MAT'L, POLYMER GRID & 31000 & SY & 3.47 & 107570.00 \\
\hline 4 & 2301-1012090 & STD/S-F PCC PAV'T, CL A CL 2, 9" & 28500 & SY & 28.00 & 798000.00 \\
\hline 5 & 2415-2110404 & PRECAST CONC BOX CULV, 4'X4' & 75 & LF & 350.00 & 26250.00 \\
\hline 6 & 2518-6910000 & SAFETY CLOSURE & 2 & EACH & 250.00 & 500.00 \\
\hline 7 & 2527-9263109 & PAINTED PAV'T MARK, WATERBORNE/SOLVENT & 427 & STA & 12.87 & 5495.49 \\
\hline 8 & 2528-8445110 & TRAFFIC CONTROL & 1 & LS & 8314.37 & 8314.37 \\
\hline 9 & 2533-4980005 & MOBILIZATION & 1 & LS & 35000.00 & 35000.00 \\
\hline 10 & 2601-2634100 & MULCH & 7 & ACRE & 1500.00 & 10500.00 \\
\hline 11 & 2601-2634500 & OVERSEED+FERTILIZE & 7 & ACRE & 700.00 & 4900.00 \\
\hline 12 & 2602-0000020 & SILT FENCE & 6400 & LF & 1.72 & 11008.00 \\
\hline 13 & 2602-0000030 & SILT FENCE-DITCH CHECKS & 6400 & LF & 2.14 & 13696.00 \\
\hline 14 & 2602-0000090 & CLEAN-OUT OF SILT FENCE & 6400 & LF & 1.01 & 6464.00 \\
\hline
\end{tabular}

\section*{SECONDARY ROAD SYSTEM CHEROKEE COUNTY \\ AC PAVING OF 480th STREET Project \# X-XX--X-XX Location:}

From Marcus, IA go 2 miles East on IA Hwy 3 to \(F\) avenue, then one mile North on \(F\) avenue
to 480 th street.
The lowa Department of Transportation Standard Specifications for Highway and Bridge Construction, Series 2012, plus the applicable General Supplemental Specifications, Developmental Specifications Supplemental Specifications and Special Provisions, shall apply to construction work on this project.

\title{
Road Segment Benefit / Cost Safety Analysis \\ lowa DOT Office of Traffic \& Safety
}

County: Cherokee

Prepared by: \(\qquad\) Date Prepared: \(\qquad\) Location:

480th street between highway 143 and \(F\) ave

\section*{Improvement}

Proposed Improvement(s): Building a new road segment between E ave and 143 to improve the alignment and pave the section from the F ave stub to highway 143.
\begin{tabular}{|c|c|c|c|}
\hline \$2,180,000 & Estimated Improvement Cost, EC & 50 & Est. Improvement Life, years, Y \\
\hline \$ 5,000 & Other Annual Cost (after initial year), AC & 159 & Crash Reduction Factor (integer), CRF \\
\hline \$ 107,411 & Present Value Other Annual Costs, OC & 4.0\% & Discount Rate, INT \\
\hline
\end{tabular}
\[
O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)
\]
\$ 2,287,411 Present Value All Costs,
COST = EC + OC

\section*{Traffic Volume Data}
\begin{tabular}{|c|c|c|}
\hline Source: & \multicolumn{2}{|l|}{2011 DOT traffic counts} \\
\hline \multicolumn{3}{|c|}{Two-way} \\
\hline Length (mi.) & /day & Description \\
\hline 2.00 & 220 & 60\% trucks \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline 2.00 & es tot & \\
\hline
\end{tabular}
1.0\% Projected Traffic Growth (0\%-10\%), G
\begin{tabular}{cc}
440 & Current Vehicle Miles / Day, VI \\
724 & End of Life Veh. Miles / Day \\
160,600 & Current Veh. Miles / Year, AM \\
\(10,352,787\) & Total Projected Veh. Miles Ove \\
Life of Project, TVMT \\
& \\
&
\end{tabular}

\section*{Crash Data}

\section*{Benefit / Cost Ratio}

Benefit : Cost \(=\$ 7,405,571: \$ 2,287,411 \quad=1.24\)

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION
DATE: \(\qquad\)
Location / Title of Project
West 4th St / Co Rd B-24 Paved Shoulders
Applicant Clay County
Contact Person Scott Rinehart Title County Engineer

Complete Mailing Address 300 West 4th Street Suite \#5
Spencer, IA 51301

Phone
\(\frac{712-262-2825}{\text { (Area Code) }}\)

E-Mail srinehart@co.clay.ia.us

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) City of Spencer
Contact Person Mark White Title Public Works Director
Complete Mailing Address 418 nd Avenue West
Spencer, IA 51301

Phone
\(\frac{712-580-7200}{\text { (Area Code) }}\)

E-Mail mwhite@spenceriowacity.com

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

Funding Amount

Total Project Cost
Safety Funds Requested
\$ 620,000
\$ 500,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the City of Spencer, Iowa

Signed:

Theresa E. Reardon, City Clerk
Typed Name

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the County of Clay

Signed:
\(\frac{\operatorname{Sim}_{\text {Signature }} \sqrt{7-2 \delta-15}}{\text { Date Signed }}\)

Scott Rinehart
Typed Name

Attest:

Pamela S. Doran
Typed Name

Fax 712-262-4114

July 10, 2015

\author{
Office of Traffic \& Safety \\ IDOT \\ 800 Lincoln Way \\ Ames IA 50010
}

\section*{Dear Sir/Madam:}

We are applying for Traffic Safety Improvement Funds for a section of Clay County Road B-24(\(350^{\text {th }}\) St.) from M-38(\(190^{\text {th }}\) Ave) east 2.17 miles. We are proposing to pave the shoulders 6 feet wide on both sides of the road. After this is accomplished we propose to add centerline and edgeline rumble strips.

The current traffic maps show 1950-4900 vehicles per day.
\(\Rightarrow\) Since the 2011 traffic count, a complete re-design of the area occurred in 2012-2013 as part of our West Beltway Project.
\(\Rightarrow\) South from the intersection of 350 th \(\mathrm{St} / 200\) th Ave is now a paved road plus river crossing over the Ocheyedan River and links up to 360th Street.
North from the above intersection is now a regular 2-lane with a center turn lane along the entire mile.
- East and West is a normal 2-lane roadway.

The convenience of this new route around the West side of Spencer is starting to get found by truck traffic and regular car traffic heading to and from the South end of town. This route also is convenient for traffic turning onto adjacent streets such as West 18th Street and this route (West 4th Street).

We are anticipating this traffic to increase over the next few years and we feel we need to stay ahead of the extra volume. Between 2010 and 2013, we were averaging 3 crashes per year (before the re-design). In the year 2014, that number had jumped to 8 with one being a fatality (Graded and paved).

To come up with the Crash Reduction Factor for the Road Segment Benefit/Cost Safety Analysis sheet we used the cumulative crash reduction factor calculator. We used the counter measure of Add new paved shoulder with a correction factor of 35 and the countermeasure of Install centerline and shoulder rumble strips with a correction factor of 56 . The calculator shows a combined CRF of 71.4 or 71.

Clay County has this project scheduled to be let in March of 2016 and to be completed by November 2016.
If you have any questions please feel free to call.
Sincerely,

Scott Rinehart, P.E.
Clay County Engineer

\section*{SLR:JMW;psd}

Cost Estimate - Clay County/City of Spencer B-24(West 4th Street) Paved Shoulder Project
\begin{tabular}{|l|l|c|c|r|r|}
\hline \multicolumn{1}{|c|}{ Item Number } & \multicolumn{1}{|c|}{ Description } & Units & Quantity & Price per Unit & Total \\
\hline \(2102-2710070\) & Excavation Class 10 - Roadway and Borrow & C.Y. & 2,982 & \(\$ 6.00\) & \(\$ 17,892.00\) \\
\hline \(2122-5190007\) & Paved Shoulder, P.C. Concrete 7 in & S.Y. & 15,334 & \(\$ 36.00\) & \(\$ 552,024.00\) \\
\hline \(2548-0000200\) & Milled Shoulder Rumble Strips, P.C.C. Surface & STA & 230 & \(\$ 28.00\) & \(\$ 6,440.00\) \\
\hline \(2548-0000320\) & Milled Centerline Rumble Strips, P.C.C. Surface & STA & 115 & \(\$ 28.00\) & \(\$ 3,220.00\) \\
\hline \(2528-8445110\) & Traffic Control & L.S. & 1 & \(\$ 7,000.00\) & \(\$ 7,000.00\) \\
\hline \(2533-4980005\) & Mobilization & L.S. & 1 & \(\$ 30,000.00\) & \(\$ 30,000.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Week 1 \\
Day 1-5
\end{tabular} & \begin{tabular}{l}
Week 2 \\
Day 6-10
\end{tabular} & \begin{tabular}{l}
Week 3 \\
Day 11-15
\end{tabular} & \begin{tabular}{l}
Week 4 \\
Day 16-20
\end{tabular} & \begin{tabular}{l}
Week 5 \\
Day 21-25
\end{tabular} \\
\hline Excavation Class 10 - Roadway and Borrow & & & & & \\
\hline Paved Shoulder, P.C. Concrete 7 in & & & & & \\
\hline Milled Shoulder Rumble Strips, P.C.C. Surface & & & & & \\
\hline Milled Centerline Rumble Strips, P.C.C. Surface & & & & & \\
\hline
\end{tabular}

2005-2014* Reportable Crash History
B24 between M38 and 1200 ft . East of 355th St.
Spencer, Iowa
(*2014 data downloaded 5/19/2015)
Crashes
Injuries
Year County | Crashes Fatal Major Minor Poss/Unk PDO | Injuries Fatalities Major Minor Possible Unknown

Totals: \(\begin{array}{lllllllllllll} & 38 & 1 & 0 & 5 & 3 & 29 & 12 & 1 & 1 & 5 & 5\end{array}\)
meeting the following criteria:
(This feature currently not operational.)

Feature Count Report (Wednesday, July 8, 2015 2:30:42 PM Central Daylight Time)
produced using: Iowa's Safety Analysis, Visualization, and Exploration Resource (SAVER)
by:
Michael D. Pawlovich, Ph.D., P.E.
Traffic Safety/Crash Data Engineer
Iowa Department of Transportation
Highway Division, Engineering Bureau, Traffic and Safety 800 Lincoln Way Ames, Iowa 50010

\title{
Road Segment Benefit / Cost Safety Analysis Iowa DOT Office of Traffic \& Safety
}
County: Clay Prepared by:_Jeff Wiemann Date Prepared:._Jul 8, 2015

Location: West 4th St / B-24 - From Co. Road M-38 East to 1200 feet East of 355th Street
Improvement
Proposed Improvement(s): 6' Paved shoulders on both sides of road + add centerline/edgeline rumble strips
\begin{tabular}{|c|c|c|c|c|}
\hline \$ & 620,000 & Estimated Improvement Cost, EC & & Est. Improvement Life, years, Y \\
\hline \$ & - & Other Annual Cost (after initial year), AC & 71 & Crash Reduction Factor (integer), CRF \\
\hline \$ & - & Present Value Other Annual Costs, OC & 4.0\% & Discount Rate, INT \\
\hline & & \[
O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)
\] & \$ 620,000 & Present Value All Costs, COST = EC + OC \\
\hline
\end{tabular}

\section*{Traffic Volume Data}
Source: lowa DOT
2011 Date of traffic count

> Two-way

Length (mi.) veh/day Description
\begin{tabular}{|l|l|l|}
\hline 1.00 & 1,950 & \\
\hline 1.00 & 2,290 & \\
\hline 0.17 & 4,900 & \\
\hline & & \\
\hline 2.17 & miles total \\
\hline
\end{tabular}

Source: Date of traffic count
2.0\% Projected Traffic Growth (0\%-10\%), G
\[
\begin{array}{rc}
5,073 & \text { Current Vehicle Miles / Day, VM } \\
7,538 & \text { End of Life Veh. Miles / Day } \\
1,851,645 & \text { Current Veh. Miles / Year, AM } \\
44,990,103 & \text { Total Projected Veh. Miles Over } \\
\text { Life of Project, TVMT } \\
\text { TVMT }=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
\end{array}
\]
\(\qquad\)

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 6,182,696 \quad: \$ 620,000 \quad=\quad 9.97: 1
\]

\title{
CRAWFORD COUNTY ENGINEER'S OFFICE
}

\section*{Paul J. Assman, P.E. \& P.L.S., County Engineer}
P.O. Box 458 • Denison, lowa 51442-0458

August 6, 2015

Donna Matulac, P.E.
Office of Traffic and Safety
Iowa Department of Transportation
800 Lincoln Way
Ames, Iowa 50010

\section*{RE: Transportation Safety Improvement Program Application}

Crawford County, Iowa

Dear Donna:

Attached please find the original and three copies of a TSIP application to fund a portion of the safety improvements proposed for County Road M36 here in Crawford County.

We look forward to your favorable consideration of this application.

Yours truly,

Paul J. Assman, P.E. \& P.L.S.
Crawford County Engineer
Cc: file

\title{
CRAWFORD COUNTY \\ Application for \\ Transportation Safety Improvement Program COUNTY ROAD M36
}

August 4, 2015

\title{
Crawford County County Road M36 Widening, Shoulder Paving \& Resurfacing Project
}

\section*{Table of Contents}
Application Certifications Section A
Narrative Section B
Itemized Breakdown of Costs Section C
Map Section E
Color Pictures Section F
Existing Conditions Section G
Motor Vehicle Accident Reports Section I
Traffic Volumes Section J
Benefit/Cost Worksheet Section L

\section*{SECTION \(A\)}

\title{
Application for TRAFFIC SAFETY FUNDS
}

\section*{GENERAL INFORMATION}

Location / Title of Project
Donna Reed Road (a.k.a. Co. Rd M36) Resurfacing with Paved Shoulders and Milled Edgeline Rumble Strips

Applicant
Crawford County
Paul J. Assman, P.E. \&
Contact Person \(\qquad\) P.L.S

Title County Engineer
P.O. Box 458, 1202 Broadway, Denison, Iowa 51442

Phone \(\qquad\) E-Mail passman@crawfordcounty.org

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title \(\qquad\)
Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone
\(\overline{\text { (Area Code) }}\)

E-Mail \(\qquad\)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

\section*{Application Type}
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

\section*{Funding Amount}

Total Project Cost
Safety Funds Requested
\$ 1,734,740
\(\$\) 500,000

\section*{RESOLUTION NO. 2015-29}

WHEREAS, The Crawford County Board of Supervisors recognizes the need to incorporate safety features in pavement resurfacing projects, and

WHEREAS, Transportation Safety Improvement Program (TSIP) Funds are annually made available to qualifying local projects in amounts not to exceed \(\$ 500,000\) to facilitate the incorporation of said safety features, and

WHEREAS, application for said funds must be submitted to the Iowa Department of Transportation for review and approval, and

WHEREAS, as part of the application procedure, a commitment of funds and a commitment to maintain the facility for the useful life of the improvement must be made by the applicant,

THEREFORE, BE IT HEREBY RESOLVED, that the Board of Supervisors of Crawford County, Iowa, as part of the application for TSIP funds, resolve to commit to the additional funds needed above and beyond those granted to Crawford County by the Transportation Safety Improvement Program and to supply the Construction and Engineering cost for the County Road M36 Pavement Resurfacing and Widening Project (extending from US Highway 30 south and east to its intersection with County Road E53) from existing county funding and also resolve to maintain the facility for the useful life of the improvement.

Approved this 4th day of August, 2015

Crawford County Auditor

\section*{SECTION 1}

\title{
Application for High-Risk Rural Roads Funding August 2015
}

\section*{Date: August 5, 2015}

\section*{County Name: Crawford}

County Contact Person: Paul J. Assman, P.E. County Engineer

\section*{Project : Donna Reed Rd. (a.k.a.Co. Rd. M36) Base Widening, Shoulder Paving and Resurfacing}

Location: Commencing near the intersection with US Hwy 30 on the north end thence south and east to the intersection with Co. Rd. E53.

Existing Conditions: the proposed project represents a roadway typical to many rural areas in lowa. The pavement, completed in 1960, is one of the first paved roadways in Crawford County. Copies of the original grading and paving cross sections as a well as the overlay cross section is included herewith. The original grading was completed within a 66 foot right- of- way. The fore-slopes were generally constructed at a \(2: 1\) slope with a few areas at a 1.5:1 slope. The original paving was a 20 foot wide \(7^{\prime \prime}\) thick PCC pavement. In 1997 the 20 foot paved section was overlaid with a \(31 / 2^{\prime \prime}\) to \(4^{\prime \prime}\) HMA surface. Given the current funding scenario complete reconstruction of the roadway, while the best long term option, is not possible. The necessary level of funding simply does not exist. An HMA overlay incorporating several safety features including paved shoulders, milled edgeline rumble strips and safety edge is considered the overall best affordable option.

Proposed Concept: The proposed concept is to add a 3.0 foot paved shoulder with safety edge and milled edgeline rumble strips in conjunction with \(5^{\prime \prime}\) painted edgelines along both sides of the existing 20 foot wide pavement. A 4" thick HMA overlay will be placed over the entire width of the widened pavement. The resulting pavement will have 11.0 foot lane widths and 2.0 foot wide paved shoulders for an overall paved width of 26.0 feet. The proposed pavement cross section detail and safety edge details are attached herewith.

Justification: The roadway segment in question is an eligible High Risk Rural Road (HRRR) corridor (see attached HRRR 2011 corridor map). The map showing the "Crashes by Severity" as well as the individual "Crash Detail Reports" are attached to this application.

Cost Estimate and Proposed Funding Sources: A detailed cost estimate and schedule of proposed funding is attached to this application.

\section*{SECTION}
CRAWFORD COUNTY ENGINEER'S OFFICE
ENGINEERS CONSTRUCTION COSTESTIMATE
PREPARED BY: PAUL J. ASSMAN
DATE: 7/16/15

> Anticipated Project Funding
> TOTAL ANTICIPATED FUNDING

\section*{SECTION \(H\)}
CRAWFORD COUNTY
COUNTY ROAD M36 BASE WIDENING, SHOULDER PAVING \& RESURFACING PROJECT
LOCATION MAP
(

\section*{SECTION H}

\section*{Crawford County}

County Road M36 Base Widening, Shoulder Paving \& Resurfacing Project

Crawford County
County Road M36 Base Widening, Shoulder Paving \& Resurfacing Project

\author{
Crawford County \\ County Road M36 Base Widening, Shoulder Paving \& Resurfacing Project
}

\section*{section \(G\)}

人LNกOつ \(\square У O \unlhd M \forall \searrow つ ~\)
COUNTY ROAD M36 WIDENING，SHOULDER PAVING \＆RESURFACING PROJECT
ORIGINAL GRADING CROSS SECTION
typical cross section grading

> COUNTY ROAD M36 WIDENING, SHOULDER PAVING \& RESURFACING PROJECT

\section*{SECTION 1}
Iowa Department
of Transportation

\section*{Major Cause Summary}
Crawford County Donna Reed Rd. from Hwy. 30 to S
Analysis Years: \(\quad 2010\) [2], 2011 [3], 2012 (5], 2013 [7], 2014 [9], 2015 [2]
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Crash Summary:} & Injury Summary: & \\
\hline Fatal & - & Fatal & - \\
\hline Major Injury & - & Major Injury & - \\
\hline Minor Injury & 4 & Minor Injury & 4 \\
\hline Possible/Unknown & 7 & Possible & 7 \\
\hline PDO & 17 & Unknown & - \\
\hline Total Crashes & 28 & Total Injuries & 11 \\
\hline \multicolumn{4}{|c|}{TOT Property Damage: \$153,600} \\
\hline \multicolumn{4}{|c|}{AVG Property Damage: \$5,486} \\
\hline
\end{tabular}
\begin{tabular}{|rr|}
\hline Surface Condition Summary: & \\
Dry & 13 \\
Wet & 3 \\
Ice & 4 \\
Snow & 1 \\
Slush & - \\
Sand/Dirt/Oil/Gravel & - \\
Water & - \\
Other & 1 \\
Unknown & - \\
Not Reported & 6 \\
\hline Total Crashes & 28 \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Major Cause Summary: & \\
8 Animal & Improper Backing \\
Ran Traffic Signal & Illegally Parked/Unattended \\
Ran Stop Sign & 4 Swerving/Evasive Action \\
1 Crossed Centerline & Over-Correcting/Over-Steering \\
FTYROW: At Uncontrolled Intersection & Downhill Runaway \\
FTYROW: Making Right Turn on Red Signal & Equipment Failure \\
1 FTYROW: From Stop Sign & Separation of Units \\
FTYROW: From Yield Sign & 4 Ran Off Road - Right \\
FTYROW: Making Left Turn & Ran Off Road - Straight \\
2 FTYROW: From Driveway & 2 Ran Off Road - Left \\
FTYROW: From Parked Position & 3 Lost Control \\
FTYROW: To Pedestrian & Inattentive/Distracted By: Passenger \\
FTYROW: Other (explain in narrative) & Inattentive/Distracted By: Use of Phone or Other \\
Traveling Wrong Way or on Wrong Side of Rd & Inattentive/Distracted By: Fallen Object \\
2 Driving Too Fast for Conditions & Inattentive/Distracted By: Fatigued/Asleep \\
Exceeded Authorized Speed & Other: Vision Obstructed \\
Made Improper Turn & Oversized Load/ Oversized Vehicle \\
Improper Lane Change & Cargo/Equipment Loss or Shift \\
Followed Too Close & Other: Other Improper Action \\
Disregarded Railroad Signal & Unknown \\
Disregarded Warning Sign & Other: No Improper Action \\
Operating Vehicle in Reckless/Aggressive Manner & None Indicated \\
\hline
\end{tabular}

Selection Filter:
((YEAR <> 2005 and YEAR <> 2006 and YEAR <> 2007 and YEAR <> 2008 and YEAR <> 2009))
Analyst: CM Notes: All Crashes 2010-2015
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{Crash Time of Day Summary:} \\
\hline From & 00:00 & 02:00 & 04:00 & 06:00 & 08:00 & 10:00 & 12:00 & 14:00 & 16:00 & 18:00 & 20:00 & 22:00 & & & \\
\hline To & 01:59 & 03:59 & 05:59 & 07:59 & 09:59 & 11:59 & 13:59 & 15:59 & 17:59 & 19:59 & 21:59 & 23:59 & NR & Total & \% \\
\hline SUN & - & - & - & - & - & - & - & - & - & 2 & 1 & - & - & 3 & 11 \\
\hline MON & - & - & - & - & - & 1 & - & - & - & - & - & - & - & 1 & 4 \\
\hline TUE & - & - & - & 1 & 3 & - & - & 1 & 2 & - & - & - & - & 7 & 25 \\
\hline WED & - & - & 1 & - & 1 & - & - & - & 1 & - & - & - & - & 3 & 11 \\
\hline THU & - & - & - & - & 2 & - & - & - & - & - & - & - & - & 2 & 7 \\
\hline FRI & - & - & - & 1 & - & - & - & 1 & - & 2 & - & 1 & - & 5 & 18 \\
\hline SAT & - & 1 & - & - & - & 1 & - & 2 & - & 1 & - & 2 & - & 7 & 25 \\
\hline Tot. & & 1 & 1 & 2 & 6 & 2 & & 4 & 3 & 5 & 1 & 3 & & 28 & \\
\hline \% & & 4 & 4 & 7 & 21 & 7 & & 14 & 11 & 18 & 4 & 11 & & & 100 \\
\hline
\end{tabular}

Driver Age/Gender Summary:
\begin{tabular}{|r|crr|rr|}
Age & Male & Female & NR & Drivers & \(\%\) \\
\hline\(<14\) & - & - & - & & \\
14 & - & - & - & & \\
15 & - & - & - & & \\
16 & - & 1 & - & 1 & 3 \\
17 & - & 1 & 1 & 2 & 6 \\
18 & - & - & - & & \\
19 & - & 1 & - & 1 & 3 \\
20 & - & - & - & & \\
21 to 24 & - & - & - & & \\
25 to 29 & 3 & 1 & - & 4 & 12 \\
30 to 34 & 2 & - & - & 2 & 6 \\
35 to 39 & 1 & 1 & - & 2 & 6 \\
40 to 44 & 1 & 1 & - & 2 & 6 \\
45 to 49 & 3 & 3 & - & 6 & 18 \\
50 to 54 & - & 1 & - & 1 & 3 \\
55 to 59 & 3 & 1 & - & 4 & 12 \\
60 to 64 & 2 & 1 & - & 3 & 9 \\
65 to 69 & 1 & - & - & 1 & 3 \\
70 to 74 & - & 1 & - & 1 & 3 \\
75 to 79 & - & 2 & - & 2 & 6 \\
80 to 84 & - & - & - & & \\
85 to 89 & - & - & - & & \\
90 to 94 & - & - & - & & \\
95 plus & - & - & - & & \\
NR & - & - & 1 & 1 & 3 \\
\hline Drivers & 16 & 15 & 2 & 33 & \\
\(\%\) & 48 & 45 & 6 & & 100 \\
\hline
\end{tabular}

Drug/Alcohol Summary:
\begin{tabular}{l|rr}
& Total & \(\%\) \\
\hline Drug & & \\
Alcohol, Less than Statutory & 1 & 4 \\
Alcohol, Statutory & & \\
Drug/Alcohol, Less than Statutory & & \\
\begin{tabular}{l}
Drug/Alcohol, Statutory \\
Refused \\
Under Influence of Alc/Drugs/Meds \\
None Indicated
\end{tabular} & 27 & 96 \\
\hline Total Crashes & 28 & 100 \\
\hline
\end{tabular}

Fixed Object Struck Summary:
\begin{tabular}{l|rr}
& Vehs. & \(\%\) \\
\hline Bridge/Bridge rail/Overpass & 1 & 3 \\
Underpass/Structure Support & & \\
Culvert & 1 & 3 \\
Ditch/Embankment & 8 & 24 \\
Curb/Island/Raised Median & & \\
Guardrail & & \\
Concrete Barrier & 2 & 6 \\
Tree & 1 & 3 \\
Pole - Utility/Light/Etc & & \\
Sign Post & & \\
Mailbox & 1 & 3 \\
Impact Attenuator & 19 & 58 \\
\hline Other Fixed Object & 33 & 100 \\
None & & \\
\hline Total Vehicles & &
\end{tabular}

\section*{Selection Filter:}
((YEAR <> 2005 and YEAR <> 2006 and YEAR <> 2007 and YEAR <> 2008 and YEAR <> 2009))

Analyst: CM
Notes: All Crashes 2010-2015

\begin{tabular}{|ll|}
\hline \begin{tabular}{c}
2010605364 \\
County:24
\end{tabular} & \begin{tabular}{l}
12/09/2010 09:21 \\
City:
\end{tabular} \\
\hline
\end{tabular}

Major Cause: Ran off road - left
Roadway Type:Non-intersection: No special feature

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash: Non-collision

\section*{Surface Conditions:Dry}

Light Conditions:Daylight
Weather Conditions: Partly cloudy
Drug/Alc Involved:none indicated
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & South & 0 & 0 \\
\hline Veh Action: & 88 & 0 & 0 \\
\hline Configuration: & 4-tire light truck & 0 & 0 \\
\hline Driver Age: & 42 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Asleep/fatigued/etc. & 0 & 0 \\
\hline Drivr Contr 1: & Fatigued/Asleep & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & none & 0 & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

Crawford County Donna Reed Rd. from Hwy. 30 to S
\begin{tabular}{|cl|}
\hline 2011619686 & \(02 / 27 / 2011 \quad 18: 16\) \\
County:24 & City: \\
\hline
\end{tabular}

M036 / DONNA REED RD

\section*{Major Cause: Animal}

Roadway Type:Not reported

Severity: PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: not reported
Surface Conditions: not reported
Light Conditions: not reported
Weather Conditions: not reported
Drug/Alc Involved:none indicated
Property Damage:\$2000
Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & not reported & 0 & 0 \\
\hline Veh Action: & not reported & 0 & 0 \\
\hline Configuration: & Passenger car & 0 & 0 \\
\hline Driver Age: & 46 & 0 & 0 \\
\hline Driver Gender: & F & & \\
\hline Driver Cond: & not reported & 0 & 0 \\
\hline Drivr Contr 1 : & unknown & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & none & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
2011623473
\] \\
County: 24
\end{tabular} & \begin{tabular}{l}
\[
03 / 26 / 2011 \text { 15:53 }
\] \\
City:
\end{tabular} & M036 / DONNA REED RD \\
\hline
\end{tabular}

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries:0
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Dry
Light Conditions:Daylight
Weather Conditions: Cloudy
Drug/Alc Involved:none indicated
Property Damage:\$6200
Number of Vehicles: 1
\begin{tabular}{|c|c|c|}
\hline & Unit 1 & Unit 2 \\
\hline Init Trav Dir: & South & 0 \\
\hline Veh Action: & Essentially straight & 0 \\
\hline Configuration: & Sport utility vehicle & 0 \\
\hline Driver Age: & 60 & 0 \\
\hline Driver Gender: & M & \\
\hline Driver Cond: & Normal & 0 \\
\hline Drivr Contr 1: & Lost control & 0 \\
\hline Drivr Contr 2: & not reported & 0 \\
\hline Fixed Object: & Ditch/embankment & 0 \\
\hline
\end{tabular}
\begin{tabular}{||l||}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}

\section*{Crash Detail Report}

Crawford County Donna Reed Rd. from Hwy. 30 to S
\begin{tabular}{|cl|l|}
\hline 2011639210 & \(07 / 19 / 201108: 59\) \\
County:24 & City: & \\
\hline
\end{tabular}

\begin{tabular}{|cl|}
\hline 2012666590 & 01/04/2012 09:50 M036 / DONNA REED RD \\
County:24 & City:
\end{tabular}

Major Cause:Swerving/evasive action
Roadway Type:Non-intersection: No special feature

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries:1
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions: Other
Light Conditions:Daylight
Weather Conditions: Partly cloudy
Drug/AIc Involved:none indicated
Property Damage:\$25000
Number of Vehicles:
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & South & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & 4-tire light truck & 0 & 0 \\
\hline Driver Age: & 49 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Normal & 0 & 0 \\
\hline Drivr Contr 1: & Lost control & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & Other fixed object & 0 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|cl|}
\hline 2012670964 & \(02 / 04 / 2012\) 02:49 M036 / DONNA REED RD \\
County:24 & City:
\end{tabular}

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Unknown Injuries: \(0 \quad\) Property Damage:\$3000} & Number of Vehicles: 1 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & South & 0 & 0 & \\
\hline Veh Action: & Essentially straight & 0 & 0 & \\
\hline Configuration: & Sport utility vehicle & 0 & 0 & \\
\hline Driver Age: 2 & 29 & 0 & 0 & \\
\hline Driver Gender: \({ }^{\text {M }}\) & M & & & \\
\hline Driver Cond: & Normal & 0 & 0 & \\
\hline Drivr Contr 1: & none & 0 & 0 & \\
\hline Drivr Contr 2: & not reported & 0 & 0 & \\
\hline Fixed Object: D & Ditch/embankment & 0 & 0 & \\
\hline
\end{tabular}

\section*{Crash Detail Report}

Crawford County Donna Reed Rd. from Hwy. 30 to S
\begin{tabular}{|cl|}
\hline 2012714369 & 11/28/2012 17:19 M036/DONNA REED RD \\
County:24 & City:Denison
\end{tabular}

\section*{Major Cause: Animal}

Roadway Type:Non-intersection: No special feature

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash:unknown
Surface Conditions:Dry
Light Conditions:Dusk
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage:\$7000 Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & South & North & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Van or mini-van & 4-tire light truck & 0 \\
\hline Driver Age: & 27 & 28 & 0 \\
\hline Driver Gender: & F & M & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & none & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2012714581 & \(12 / 01 / 2012 \quad 22: 15\) \\
County:24 & City:Denison
\end{tabular}\(\quad\)\begin{tabular}{l}
M036/DONNA REED RD \\
\end{tabular}

\section*{Major Cause:Animal}

Roadway Type:Non-intersection: No special feature
\begin{tabular}{cc}
Severity:PDO & Manner of Crash:Non-collision \\
Fatalities: 0 & Surface Conditions:Wet \\
ajor Injuries: 0 & Light Conditions:Dark - unknown roadway lighting \\
inor Injuries: 0 & Weather Conditions: Fog/smoke
\end{tabular}

Possible Injuries: \(0 \quad\) Drug/Alc Involved:none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Property Damage:\$2200} & Number of Vehicles: 1 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & North & 0 & 0 & \\
\hline Veh Action: & Essentially straight & 0 & 0 & \\
\hline Configuration: & Passenger car & 0 & 0 & \\
\hline Driver Age: & 56 & 0 & 0 & \\
\hline Driver Gender: & F & & & \\
\hline Driver Cond: & Normal & 0 & 0 & \\
\hline Drivr Contr 1: & none & 0 & 0 & \\
\hline Drivr Contr 2: & not reported & 0 & 0 & \\
\hline Fixed Object: n & none & 0 & 0 & \\
\hline
\end{tabular}

\title{
Crash Detail Report \\ Crawford County Donna Reed Rd. from Hwy. 30 to S
}
\begin{tabular}{|cl|}
\hline \begin{tabular}{c}
2013722125 \\
County:24
\end{tabular} & \begin{tabular}{l}
\(01 / 18 / 2013\) City:Denison \\
Co6
\end{tabular} \\
\hline
\end{tabular}

Major Cause:Ran off road - left
Roadway Type:Non-intersection: No special feature

Severity:Minor
Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Ice
Light Conditions:Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage:\$3500
Number of Vehicles: 1
\begin{tabular}{cl}
2013725047 & \(02 / 05 / 2013\) \\
County:24:27 & City:
\end{tabular}\(\quad\) 036/DONNA REED RD

\section*{Crash Detail Report}

Crawford County Donna Reed Rd. from Hwy. 30 to S
\begin{tabular}{|cl|}
\hline 2013725669 & \begin{tabular}{l}
02/05/2013 17:11 \\
County:24 \\
City:
\end{tabular} \\
\hline
\end{tabular}

Major Cause: FTY from driveway
Roadway Type:Non-intersection: Farm/residential drive
Severity:PDO Manner of Crash:Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions:Dry
Light Conditions:Daylight
Minor Injuries: 0
Weather Conditions: Clear
Possible Injuries: 0
Drug/AIc Involved:none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline Unknown Inju & \multicolumn{2}{|l|}{uries: \(0 \quad\) Property Damage:\$4500} & & Number of Vehicles: 2 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & West & North & 0 & \\
\hline Veh Action: & Entering (merging) & Essentially straight & 0 & \\
\hline Configuration: & Sport utility vehicle & 4-tire light truck & 0 & \\
\hline Driver Age: & 56 & 64 & 0 & \\
\hline Driver Gender: & M & & & \\
\hline Driver Cond: & Normal & Normal & 0 & \\
\hline Drivr Contr 1: & FTY from driveway & none & 0 & \\
\hline Drivr Contr 2: & not reported & not reported & 0 & \\
\hline Fixed Object: & none & none & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cll|}
\hline 2013737647 & 04/18/2013 09:45 M036/DONNA REED RD \\
County:24 & City: & \\
\hline
\end{tabular}

Major Cause:Swerving/evasive action
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries:0
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Wet
Light Conditions:Daylight
Weather Conditions:Sleet/hail/freezing rain
Drug/AIc Involved:none indicated
\begin{tabular}{r|l||l||l|}
& Unit 1 & Unit 2 \\
Init Trav Dir: & North & 0 \\
Veh Action: & Essentially straight & 0 \\
Configuration: & Passenger car & 0 \\
Driver Age: & 74 & 0 \\
Driver Gender: & F & 0 \\
Driver Cond: & Normal & 0 \\
Drivr Contr 1: & Lost control & 0 \\
Drivr Contr 2: & Over correcting/steering & 0 & 0 \\
Fixed Object: & Ditch/embankment & 0 & 0 \\
\hline
\end{tabular}

7/16/2015
Crash Mapping Analysis Tool
Page: 7 of 14

\begin{tabular}{|cl|}
\hline 2013776501 & 12/30/2013 11:09 M036/DONNA REED RD \\
County:24 & City:
\end{tabular}

Major Cause:Ran off road - right
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Ice
Light Conditions:Daylight
Weather Conditions: Cloudy
Drug/Alc Involved:none indicated
Property Damage:\$6000
Number of Vehicles: 1
\begin{tabular}{r|l||l||l||}
\hline & Unit 1 & Unit 2 & Unit 3 \\
Init Trav Dir: & North & 0 \\
Veh Action: & Essentially straight & 0 \\
Configuration: & Sport utility vehicle & 0 \\
Driver Age: & 58 & 0 \\
Driver Gender: & M & 0 \\
Driver Cond: & Normal & 0 \\
Drivr Contr 1: & Lost control & 0 \\
Drivr Contr 2: & not reported & 0 \\
Fixed Object: & Pole: utility/light/etc & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline \begin{tabular}{c}
2014782577 \\
County:24
\end{tabular} & \begin{tabular}{l}
\(02 / 02 / 2014\) \\
City:
\end{tabular} \\
\hline
\end{tabular}

M036/DONNA REED RD
County:24 City:
Major Cause:Swerving/evasive action
Roadway Type:Non-intersection: No special feature

\section*{Severity:Minor}

Fatalities: 0
Major Injuries: 0
Minor Injuries:1
Possible Injuries: 0
Possiblewn Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Dry
Light Conditions:Dark - roadway not lighted
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage:\$4200
Number of Vehicles: 1

\section*{Crash Detail Report}

Crawford County Donna Reed Rd. from Hwy. 30 to S
\begin{tabular}{|cl|l|}
\hline 2014798237 & \begin{tabular}{l}
05/09/2014 19:17 \\
County:24
\end{tabular} & City:
\end{tabular}\(\quad\)\begin{tabular}{l}
M036/DONNA REED RD \\
\hline \hline
\end{tabular}

Major Cause:Swerving/evasive action
Roadway Type:Non-intersection: No special feature
Severity:Minor Manner of Crash:Non-collision

Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0
Unknown Injuries: 0

Surface Conditions:Dry
Light Conditions:Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage:\$5000
Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|c|}
\hline & Unit 1 & Unit 2 & & Unit 3 \\
\hline Init Trav Dir: & North & 0 & & 0 \\
\hline Veh Action: & Essentially straight & 0 & & 0 \\
\hline Configuration: & Motorcycle & 0 & & 0 \\
\hline Driver Age: & 47 & 0 & & 0 \\
\hline Driver Gender: & F & & & \\
\hline Driver Cond: & Normal & 0 & & 0 \\
\hline Drivr Contr 1: & Lost control & 0 & - & 0 \\
\hline Drivr Contr 2: & not reported & 0 & & 0 \\
\hline Fixed Object: & Ditch/embankment & 0 & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2014831291 & \(08 / 31 / 201420: 00\) \\
County:24 & City:
\end{tabular}

Major Cause: Other: No improper action
Roadway Type:Non-intersection: No special feature

Severity: PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Wet
Light Conditions:Dark - roadway not lighted
Weather Conditions: Rain
Drug/Alc Involved:none indicated
Property Damage:\$5000
Number of Vehicles:1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & North & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & Van or mini-van & 0 & 0 \\
\hline Driver Age: & 30 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Normal & 0 & 0 \\
\hline Drivr Contr 1: & none & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & Tree & 0 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|cl|}
\hline 2014825089 & 11/04/2014 08:30 M036/DONNA REED RD \\
County:24 & City:
\end{tabular}

\section*{Major Cause: Animal}

Roadway Type:Not reported
\begin{tabular}{rc}
Severity:PDO & Manner of Crash:Non-collision \\
Fatalities: 0 & Surface Conditions:not reported \\
Major Injuries:0 & Light Conditions: not reported \\
Minor Injuries:0 & Weather Conditions: not reported \\
Possible Injuries:0 & Drug/Alc Involved:none indicated \\
Unknown Injuries:0 & Property Damage: \(\$ 2500\)
\end{tabular}

Number of Vehicles:1

7/16/2015
\begin{tabular}{|cl|}
\hline 2014825717 & 11/08/2014 10:24 M036/DONNA REED RD \\
County:24 & City:
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Major Cause:Driving too fast for conditions \\
Roadway Type:Non-intersection: No special feature
\end{tabular}} & \multicolumn{2}{|r|}{Number of Vehicles: 1} \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & North & 0 & 0 & \\
\hline Veh Action: & Essentially straight & 0 & 0 & \\
\hline Configuration: & Passenger car & 0 & 0 & \\
\hline Driver Age: & 78 & 0 & 0 & \\
\hline Driver Gender: & \(F\) & & & \\
\hline Driver Cond: & Normal & 0 & 0 & \\
\hline Drivr Contr 1: & Too fast for conditions & 0 & 0 & \\
\hline Drivr Contr 2: & not reported & 0 & 0 & \\
\hline Fixed Object: & & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2014825719 & \(11 / 08 / 2014\) 18:23 \\
County:24 & City:Denison
\end{tabular}\(\quad\) DONNA REED RD AND BOULDERS DR

\begin{tabular}{|cl|}
\hline \begin{tabular}{c}
2014829676 \\
County:24
\end{tabular} & \begin{tabular}{l}
\(11 / 21 / 2014\) \\
City:Denison
\end{tabular} \\
\hline
\end{tabular} US \(30 / 4\) TH AVE S AND US 30 AND DONNA REED DR
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Major Cause:Lost control \\
Roadway Type:Non-intersection \\
Severity:Poss/Unk \\
Fatalities: 0 \\
Major Injuries: 0 \\
Minor Injuries: 0 \\
Possible Injuries:1 \\
Unknown Injuries: 0
\end{tabular} & \begin{tabular}{l}
ecial f \\
of Crash \\
onditions \\
onditions \\
onditions \\
Involved \\
Damage
\end{tabular} & \multicolumn{2}{|r|}{Number of Vehicles:1} \\
\hline Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: West & 0 & 0 & \\
\hline Veh Action: Essentially straight & 0 & 0 & \\
\hline Configuration: Passenger car & 0 & 0 & \\
\hline Driver Age: 17 & 0 & 0 & \\
\hline Driver Gender: NR & & & \\
\hline Driver Cond: Normal & 0 & 0 & \\
\hline Drivr Contr 1: Lost control & 0 & 0 & \\
\hline Drivr Contr 2: not reported & 0 & 0 & \\
\hline Fixed Object: Culvert & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2014831014 & 11/26/2014 05:47 \\
County:24 & City:Denison
\end{tabular}\(\quad\) DONNA REED RD

Major Cause:Driving too fast for conditions
Roadway Type:Non-intersection: No special feature

\section*{Severity:Poss/Unk}

Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries:1

Manner of Crash: Non-collision
Surface Conditions:Snow
Light Conditions:Dark - unknown roadway lighting
Weather Conditions: Snow
Drug/Alc Involved:none indicated
Property Damage:\$1100
Number of Vehicles: 1

\section*{Crash Detail Report}

Crawford County Donna Reed Rd. from Hwy. 30 to S
\begin{tabular}{|cl|}
\hline 2015842635 & 01/30/2015 18:31 \\
County:24 & City:
\end{tabular}

Major Cause:Animal
Roadway Type:Not reported

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:not reported
Surface Conditions:not reported
Light Conditions: not reported
Weather Conditions: not reported
Drug/Alc Involved:none indicated
Property Damage: \(\$ 3500\)
Number of Vehicles: 1
\begin{tabular}{|l|l||}
\hline Unit 3 \\
0 \\
0 \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|l|}
\hline 2015852813 & \(03 / 31 / 2015\) & \(16: 09\) \\
County:24 & City: &
\end{tabular}

Crash Severity
量 Fatal (15)
- Major Injury (42)
- Minor Injury (75)
- Possible/Unknown Injury (123)
- Property Damage Only (476)

Primary Roads
 Unpaved Secondary Road County Border

All Secondary Road Crashes* Crawford County, Iowa

2005-2014

\section*{High Risk Rurall Roads =- 2011}

Eligible Corridors Based on 2001-2010 Fatal and Major Injury Crash Density/Rate

\section*{SECTION}
CRAWFORD COUNTY
COUNTY ROAD M36 BASE WIDENING, SHOULDER PAVING \& RESURFACING PROJECT

TRAFFIC COUNT SUMMARY On M36 (Donna Reed Rd.) Just South of R Ave. Counter \#4
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ DAY } & \multicolumn{1}{c|}{ DATE } & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
NB
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
SB
\end{tabular}} & \begin{tabular}{c}
\% TRUCKS \\
NB
\end{tabular} & \begin{tabular}{c}
\% TRUCKS \\
SB
\end{tabular} \\
\hline Tuesday & \(7 / 23 / 2013\) & 480 & 446 & 6.5 & 12.9 \\
\hline Wednesday & \(7 / 24 / 2013\) & 426 & 417 & 4.8 & 13.0 \\
\hline Thursday & \(7 / 25 / 2013\) & 460 & 459 & 4.5 & 10.6 \\
\hline Friday & \(7 / 26 / 2013\) & 501 & 468 & 5.6 & 13.1 \\
\hline Saturday & \(7 / 27 / 2013\) & 452 & 403 & 7.9 & 15.4 \\
\hline Sunday & \(7 / 28 / 2013\) & 363 & 323 & 5.5 & 10.9 \\
\hline
\end{tabular}

AVERAGE \# OF VEHICLES NB: 447
AVERAGE \# OF VEHICLES SB: 419
ADT COMBINED: 866
AVERAGE \% OF NB TRUCKS: 6\%
AVERAGE \% OF SB TRUCKS: 13\%
AVERAGE \% TRUCKS: 10\%

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Interval Start} & \multicolumn{9}{|c|}{Northbound} \\
\hline & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Fri} \\
7 / 26 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013
\end{array}
\] & Mon - Fri Average & 7 Day Average \\
\hline 12:00 AM & 2 & 1 & 0 & 5 & 6 & 7 & - & 2.0 & 3.5 \\
\hline 1:00 AM & 1 & 2 & 1 & 2 & 4 & 1 & - & 1.5 & 1.8 \\
\hline 2:00 AM & 1 & 1 & 1 & 2 & 1 & 0 & - & 1.3 & 1.0 \\
\hline 3:00 AM & 2 & 2 & 1 & 2 & 2 & 0 & - & 1.8 & 1.5 \\
\hline 4:00 AM & 3 & 3 & 2 & 5 & 3 & 0 & - & 3.3 & 2.7 \\
\hline 5:00 AM & 13 & 13 & 13 & 15 & 3 & 4 & - & 13.5 & 10.2 \\
\hline 6:00 AM & 18 & 15 & 13 & 17 & 9 & 6 & - & 15.8 & 13.0 \\
\hline 7:00 AM & 24 & 11 & 18 & 14 & 17 & 7 & - & 16.8 & 15.2 \\
\hline 8:00 AM & 18 & 17 & 14 & 21 & 22 & 12 & - & 17.5 & 17.3 \\
\hline 9:00 AM & 26 & 16 & 18 & 25 & 27 & 16 & - & 21.3 & 21.3 \\
\hline 10:00 AM & 25 & 21 & 25 & 15 & 31 & 29 & - & 21.5 & 24.3 \\
\hline 11:00 AM & 31 & 23 & 21 & 29 & 28 & 23 & - & 26.0 & 25.8 \\
\hline 12:00 PM & 25 & 28 & 30 & 38 & 34 & 36 & - & 30.3 & 31.8 \\
\hline 1:00 PM & 30 & 28 & 27 & 36 & 38 & 31 & - & 30.3 & 31.7 \\
\hline 2:00 PM & 43 & 35 & 45 & 45 & 22 & 31 & - & 42.0 & 36.8 \\
\hline 3:00 PM & 53 & 45 & 58 & 39. & 29 & 30 & - & 48.8 & 42.3 \\
\hline 4:00 PM & 43 & 47 & 40 & 55 & 23 & 29. & - & 46,3 & 39.5 \\
\hline 5:00 PM & 23 & 21 & 28 & 29 & 29 & 25 & - & 25.3 & 25.8 \\
\hline 6:00 PM & 15 & 29 & 27 & 26 & 18 & 8 & - & 24.3 & 20.5 \\
\hline 7:00 PM & 32 & 18 & 36 & 19 & 23 & 13 & - & 26.3 & 23.5 \\
\hline 8:00 PM & 26 & 17 & 24 & 21 & 27 & 12 & - & 22.0 & 21.2 \\
\hline 9:00 PM & 16 & 9 & 7 & 13 & 28 & 27 & - & 11.3 & 16.7 \\
\hline 10:00 PM & 7 & 21 & 5 & 21 & 23 & 12 & - & 13.5 & 14.8 \\
\hline 11:00 PM & 3 & 3 & 6 & 7. & 5 & 4 & - & 4.8 & 4.7 : \\
\hline Totals & 480 & 426 & 460 & 501 & 452 & 363 & 0 & 466.8 & 447.0 \\
\hline & & & & Peak H & ours & & & & \\
\hline \[
\begin{array}{r}
12: 00 \mathrm{AM}- \\
12: 00 \mathrm{PM}
\end{array}
\] & 11:00 AM & 11:00 AM & 10:00 AM & 11:00 AM & 10:00 AM & 10:00 AM & - & 11:00 AM & 11:00 AM \\
\hline Volume & 31 & 23 & 25 & 29 & 31 & 29 & - & 26.0 & 25.8 \\
\hline \[
\begin{gathered}
\text { 12:00 PM - } \\
\text { 12:00 AM }
\end{gathered}
\] & 3:00 PM & 4:00 PM & 3:00 PM & 4:00 PM & 1:00 PM & 12:00 PM & - & 3:00 PM & 3:00 PM \\
\hline Volume & 53 & 47 & 58 & 55 & 38 & 36 & - & 48.8 & 42.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Seven Day Volume, per Channel} \\
\hline \multicolumn{10}{|c|}{Southibouind} \\
\hline Interval Start & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Fri } \\
7 / 26 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013 \\
\hline
\end{array}
\] & Mon - Fri Average & \[
\begin{array}{r}
7 \text { Day } \\
\text { Average } \\
\hline
\end{array}
\] \\
\hline 12:00 AM & 0 & 2 & 0 & 0 & 2 & 0 & & 0.5 & 0.7 \\
\hline 11:00 AM & 0 & 0 & 1 & 0 & 2 & 2 & & 0.3 & 0.8 \\
\hline 2:00 AM & 3 & 3 & 4 & 5 & 1 & 3 & & 3.8 & 3.2 \\
\hline 3:00 AM & 7 & 6 & 6. & . & . & 1 & & 6.3 & 4.5 \\
\hline 4:00 AM & 14 & 10 & 12 & 9 & 3 & 2 & & 11.3 & 8.3 \\
\hline 5:00 AM & 26 & 28 & 25 & 31 & 10 & 3 & & 27.5 & 20.5 \\
\hline 6:00 AM & 47 & 48 & 45 & 46 & 17 & 8 & & 46.5 & 35.2 \\
\hline 7.7:00 AM & 32 & 28 & 35 & 27 & 31 & 12 & & 30.5 & 27.5 \\
\hline 8:00 AM & 26 & 20 & 33 & 25 & 45 & 21 & & 26.0 & 28.3 \\
\hline 9000 AM & 29 & 27. & 23. & 25 & 40 & 20 & & 26.0 & 27.3 \\
\hline 10:00 AM & 14 & 14 & 18 & 27 & 23 & 32 & & 18.3 & 21.3 \\
\hline 11:00 AM & 16 & 21 & 28. & 24 & 28 & 23 & & 22.3 & 23,3 \\
\hline 12:00 PM & 26 & 21 & 23 & 31 & 21 & 18 & & 25.3 & 23.3 \\
\hline 1:00 PM & 23 & 26 & 32. & 29 & 22 & 23 & & 27.5 & 25.8 \\
\hline 2:00 PM & 26 & 23 & 41 & 32 & 20 & 25 & & 30.5 & 27.8 \\
\hline 5 3:00 PM & 24 & 20 & 25 & - 31 & 25 & 19 & * & 25.0 & 24.0 \\
\hline 4:00 PM & 27 & 26 & 29 & 34 & 30 & 27 & & 29.0 & 28.8 \\
\hline 5:00 PM & 46 & 29. & 28. & 34 & 24 & - \(\quad 25\) & - & 34.3 & 31.0 \\
\hline 6:00 PM & 25 & 26 & 21. & 18 & 16 & 22 & & 22.5 & 21.3 \\
\hline 77.00 PM & 19 & 14 & 10 & 15 & 14 & -18 & - & 14.5 & 15.0 \\
\hline 8:00 PM & 8 & 14 & 12 & 9 & 10 & 9 & & 10.8 & 10.3 \\
\hline - 9:00 PM & 5 & 4 & 3 & 5 & 8. & 6. & & 4.3 & 5.2 \\
\hline 10:00 PM & 2 & 6 & 3 & 0 & 7 & 2 & & 2.8 & 3.3 \\
\hline 11:00 PM & , 1 & 1 & 2. & 5 & 3 & 1, 2 & - & 2.3 & 2.3 \\
\hline Totals & 446 & 417 & 459 & 468 & 403 & 323 & 0 & 447.5 & 419.3 \\
\hline \multicolumn{10}{|c|}{Peak Hours} \\
\hline \[
\begin{aligned}
& \text { 12:00 AM - } \\
& \text { 12:00 PM }
\end{aligned}
\] & 6:00 AM & 6:00 AM & 6:00 AM & 6:00 AM & 8:00 AM & 10:00 AM & & 6:00 AM & 6:00 AM \\
\hline Volume & 47 & 48 & 45 & 46 & 45 & 32 & & 46.5 & 35.2 \\
\hline \[
\begin{gathered}
\text { 12:00 PM - } \\
\text { 12:00 AM }
\end{gathered}
\] & 5:00 PM & 5:00 PM & 2:00 PM & 4:00 PM & 4:00 PM & 4:00 PM & & 5:00 PM & 5:00 PM \\
\hline Volume & 46 & 29 & 41 & 34 & 30 & 27 & & 34.3 & 31.0 \\
\hline
\end{tabular}

TRAFFIC COUNT SUMMARY
On M36 (Donna Reed Rd.) Approx. 1/4 Mile South of S. Main Loop Counter \#5
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ DAY } & \multicolumn{1}{c|}{ DATE } & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
NB
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
SB
\end{tabular}} & \begin{tabular}{c}
\% TRUCKS \\
NB
\end{tabular} & \begin{tabular}{c}
\% TRUCKS \\
SB
\end{tabular} \\
\hline Tuesday & \(7 / 23 / 2013\) & 536 & 499 & 4.0 & 22.4 \\
\hline Wednesday & \(7 / 24 / 2013\) & 477 & 468 & 4.3 & 21.3 \\
\hline Thursday & \(7 / 25 / 2013\) & 502 & 499 & 5.6 & 18.8 \\
\hline Friday & \(7 / 26 / 2013\) & 549 & 513 & 5.3 & 21.2 \\
\hline Saturday & \(7 / 27 / 2013\) & 487 & 437 & 4.9 & 21.0 \\
\hline Sunday & \(7 / 28 / 2013\) & 388 & 344 & 3.2 & 14.9 \\
\hline
\end{tabular}

AVERAGE \# OF VEHICLES NB: 490
AVERAGE \# OF VEHICLES SB: 460
ADT COMBINED: 950
AVERAGE \% OF NB TRUCKS: 5\%
AVERAGE \% OF SB TRUCKS: 20\%
AVERAGE \% TRUCKS: 13\%
- -

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Interval Start} & \multicolumn{9}{|c|}{Northbound} \\
\hline & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Fri } \\
7 / 26 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013 \\
\hline
\end{array}
\] & Mon ~ Fri Average & \begin{tabular}{l}
7 Day \\
Average
\end{tabular} \\
\hline 12:00 AM & 3 & 3 & 3 & 7 & 6 & 7 & - & 4.0 & 4.8 \\
\hline 1:00 AM & 2 & 2 & 2 & 3 & 9 & 5 & - & 2.3 & 3.8 \\
\hline 2:00 AM & 1 & 2 & 0 & 2 & 3 & 1 & - & 1.3 & 1.5 \\
\hline 3:00 AM & 1 & 1 & 2 & 2 & 2 & 0 & - & 1.5 & 1.3 \\
\hline 4:00 AM & 2 & 2 & 0 & 2 & 1 & 0 & - & 1.5 & 1.2 \\
\hline 5:00 AM & 4 & 3 & 4 & 6 & 3 & 0 & - & 4.3 & 3.3 \\
\hline 6:00 AM & 12 & 13 & 11 & 17 & 3 & 4 & - & 13.3 & 10.0 \\
\hline 7:00 AM & 21 & 17 & 16 & 18 & 12 & 7 & - & 18.0 & 15.2 \\
\hline 8:00 AM & 26 & 14 & 17 & 14 & 18 & 8 & - & 17.8 & 16.2 \\
\hline 9:00 AM & 19 & 19 & 18 & 19 & 22 & 11. & - & 18.8 & 18.0 \\
\hline 10:00 AM & 30 & 22 & 24. & 30 & 29 & 17 & - & 26.5 & 25.3 \\
\hline 11:00 AM & 32 & 26 & 26 & 22 & 35 & 33 & - & 26.5 & 29.0 \\
\hline 12:00 PM & 33 & 27 & 24 & 34 & 35 & 26 & - & 29.5 & 29.8 \\
\hline 1:00 PM & 26 & 31 & 32 & 34 & 39 & 36 & - & 30.8 & 33.0 \\
\hline 2:00 PM & 35 & 33 & 37 & 44 & 38 & 34 & - & 37.3 & 36.8 \\
\hline 3:00 PM & 44 & 40 & 43 & 50 & 24 & 28 & - & 44.3 & 38.2 \\
\hline 4:00 PM & 58 & 50 & 64 & 47 & 31 & 37 & - & 54.8 & 47.8 \\
\hline 5:00 PM & 50 & 50 & 43 & 62 & 25 & 33 & - & 51.3 & 43.8 \\
\hline 6:00 PM & 23 & 23 & 31 & 29 & 34 & 25 & - & 26.5 & 27.5 \\
\hline 7:00 PM & 20 & 28 & 30 & 24 & 16 & 8 & - & 25.5 & 21.0 \\
\hline 8:00 PM & 43 & 21 & 39 & 23 & 24 & 15 & - & 31.5 & 27.5 \\
\hline 9:00 PM & 26 & 18 & 23 & 21 & 27 & 14 & - & 22.0 & 21.5 \\
\hline 10:00 PM & 16 & 11 & 7 & 15 & 33 & 31 & - & 12.3 & 18.8 \\
\hline 11.00 PM & 9 & 21 & 6 & 24 & 18 & 8 & - & 15.0 & 14.3 \\
\hline Totals & 536 & 477 & 502 & 549 & 487 & 388 & 0 & 516.0 & 489.8 \\
\hline & & & & Peak H & ours & & & & \\
\hline \[
\begin{gathered}
12: 00 \mathrm{AM}- \\
12: 00 \mathrm{PM}
\end{gathered}
\] & 11:00 AM & 11:00 AM & 11:00 AM & 10:00 AM & 11:00 AM & 11:00 AM & - & 10:00 AM & 11:00 AM \\
\hline Volume & 32 & 26 & 26 & 30 & 35 & 33 & - & 26.5 & 29.0 \\
\hline \[
\begin{gathered}
12: 00 \mathrm{PM}- \\
12: 00 \mathrm{AM}
\end{gathered}
\] & 4:00 PM & 4:00 PM & 4:00 PM & 5:00 PM & 1:00 PM & 4:00 PM & - & 4:00 PM & 4:00 PM \\
\hline Volume & 58 & 50 & 64 & 62 & 39 & 37 & - & 54.8 & 47.8 \\
\hline
\end{tabular}

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Southbound} \\
\hline Interval Start & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Fri} \\
7 / 26 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013 \\
\hline
\end{array}
\] & Mon - Fri Average & 7 Day Average \\
\hline 12:00 AM & 2 & 1 & 1 & 2 & 5 & 3 & - & 1.5 & 2.3 \\
\hline 100 AM & 0 & 22 & 0 & - 0 & 2 & 0 & & 0.5 & 0.7 \\
\hline 2:00 AM & 0 & 0 & 1 & 0 & 2 & 2 & - & 0.3 & 0.8 \\
\hline 3.00 AM & 3 & , 3 & 4 & 5 & 1 & 3 & +4 & 3.8 & 3.2 \\
\hline 4:00 AM & 9 & 8 & 8 & 8 & 1 & 1 & - & 8.3 & 5.8 \\
\hline 5:00 AM & 14 & ¢ 11 & 12 & ¢ 9 & \% 3 & 4 & , & 11.5 & 8.8 \\
\hline 6:00 AM & 27 & 34 & 27 & 33 & 13 & 3 & - & 30.3 & 22.8 \\
\hline 7:00 AM & 50 & ए 49 & - 54 & 49. & , 17 & 9 & \% & 50.5 & 38.0 \\
\hline 8:00 AM & 38 & 31 & 32 & 24 & 34 & 13 & \(\cdots\) & 31.3 & 28.7 \\
\hline 9:00 AM & 26 & 24 & 37 & 28 & 49 & 21. & & 28.8 & 30.8 \\
\hline 10:00 AM & 37 & 32 & 27 & 26 & 42 & 20 & - & 30.5 & 30.7 \\
\hline 11:00 AM & 18 & 14 & 22 & 32 & 25 & 31 & & 21.5 & 23.7 \\
\hline 12:00 PM & 23 & 24 & 29 & 28 & 31. & 24 & - & 26.0 & 26.5 \\
\hline 1.00 PM & 29 & , 28 & 26. & 35 & -29 & 20 & & 29.5 & 27.8 \\
\hline 2:00 PM & 27 & 28 & 35 & 35 & 23 & 22 & - & 31.3 & 28.3 \\
\hline , 3:00 PM & 26 & 25 & 41 & , 33 & 22 & 25 & & 313 & 28.7 \\
\hline 4:00 PM & 21 & 25 & 30 & 34 & 28 & 21 & & 27.5 & 26.5 \\
\hline 5:00 PM & \(1+32\) & -29 & \% 29 & 41. & \(\bigcirc 31\) & 31 & & 32.8 & 322 \\
\hline 6:00 PM & - 49 & - 33 & 31. & 36 & 25 & 27 & & 37.3 & 33.5 \\
\hline 7,00 PM & P 30 & , 27 & , 24 & 23 23 & , 17 & 25 & & 26.0 & 24.3 \\
\hline 8:00 PM & 20 & 14 & 10 & 17 & 12 & 19 & - & 15.3 & 15.3 \\
\hline 9:00 PM & 9 & 15 & , 12 & 9 9 & 10 & 9 & & 11.3 & 10.7. \\
\hline 10:00 PM & 6 & 4 & 3 & 5 & 8 & 9 & , & 4.5 & 5.8 \\
\hline 1100 PM & \(\square 3\) & 7. & 4 & 1 & , \(\quad 7\) & 2 & \(\square\) & 38. & 40 \\
\hline Totals & 499 & 468 & 499 & 513 & 437 & 344 & 0 & 494.8 & 460.0 \\
\hline & & & & Peak H & ours & & & & \\
\hline \[
\begin{array}{r}
12: 00 \mathrm{AM}- \\
12: 00 \mathrm{PM}
\end{array}
\] & 7:00 AM & 7:00 AM & 7:00 AM & 7:00 AM & 9:00 AM & 11:00 AM & - & 7:00 AM & 7:00 AM \\
\hline Volume & 50 & 49 & 54 & 49 & 49 & 31 & - & 50.5 & 38.0 \\
\hline \[
\begin{gathered}
12: 00 \mathrm{PM}- \\
12: 00 \mathrm{AM}
\end{gathered}
\] & 6:00 PM & 6:00 PM & 3:00 PM & 5:00 PM & 12:00 PM & 5:00 PM & - & 6:00 PM & 6:00 PM \\
\hline Volume & 49 & 33 & 41 & 41 & 31 & 31 & * & 37.3 & 33.5 \\
\hline
\end{tabular}

TRAFFIC COUNT SUMMARY
On M36 (Donna Reed Rd.) Approx. 1/2 Mile So. Of O Ave. (Maple Ridge Dr.) Counter \#6
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ DAY } & \multicolumn{1}{c|}{ DATE } & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
NB
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
SB
\end{tabular}} & \begin{tabular}{c}
\% TRUCKS \\
NB
\end{tabular} & \begin{tabular}{c}
\% TRUCKS \\
SB
\end{tabular} \\
\hline Tuesday & \(7 / 23 / 2013\) & 763 & 710 & 4.7 & 29.8 \\
\hline Wednesday & \(7 / 24 / 2013\) & 725 & 563 & 4.3 & 31.1 \\
\hline Thursday & \(7 / 25 / 2013\) & 772 & 238 & 6.5 & 24.4 \\
\hline Friday & \(7 / 26 / 2013\) & 901 & 859 & 4.5 & 25.0 \\
\hline Saturday & \(7 / 27 / 2013\) & 768 & 705 & 3.8 & 25.1 \\
\hline Sunday & \(7 / 28 / 2013\) & 616 & 572 & 2.8 & 19.5 \\
\hline
\end{tabular}

AVERAGE \# OF VEHICLES NB: 758
AVERAGE \# OF VEHICLES SB: 608
ADT COMBINED: 1366
AVERAGE \% OF NB TRUCKS: 4\%
AVERAGE \% OF SB TRUCKS: 26\%
AVERAGE \% TRUCKS: 15\%

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Interval Start} & \multicolumn{9}{|c|}{Northbound} \\
\hline & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Fri} \\
7 / 26 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013 \\
\hline
\end{array}
\] & Mon - Fri Average & 7 Day Average \\
\hline 12:00 AM & 5 & 5 & 4 & 7 & 6 & 15 & - & 5.3 & 7.0 \\
\hline 1:00 AM & 3 & 2 & 3 & 8 & 10 & 11 & - & 4.0 & 6.2 \\
\hline 2:00 AM & 1 & 2 & 1 & 3 & 6 & 5 & - & 1.8 & 3.0 \\
\hline 3:00 AM & 2 & 1 & 2 & 3 & 4 & 1 & - & 2.0 & 2.2 \\
\hline 4:00 AM & 3 & 2 & 0 & 2 & 1. & 1 & - & 1.8 & 1.5 \\
\hline 5:00 AM & 6 & 4 & 3 & 6 & 4 & 1 & - & 4.8 & 4.0 \\
\hline 6:00 AM & 12 & 17 & 15 & 19 & 4 & 5 & - & 15.8 & 12.0 \\
\hline 7:00 AM & 23 & 19 & 16 & 25 & 16 & 8 & - & 20.8 & 17.8 \\
\hline 8:00 AM & 30 & 19 & 21 & 24 & 31 & 18 & - & 23.5 & 23.8 \\
\hline 9:00 AM & 31 & 29 & 41 & 49 & 38 & 17 & - & 37.5 & 34.2 \\
\hline 10:00 AM & 41 & 46 & 61 & 38 & 59 & 32 & - & 46.5 & 46.2 \\
\hline 11:00 AM & 49 & 50 & 60 & 49 & 52 & 51 & - & 52,0 & 51.8 \\
\hline 12:00 PM & 47 & 47 & 53 & 50 & 57. & 42 & - & 49.3 & 49.3 \\
\hline 1:00 PM & 44 & 41 & 47 & 54 & 63 & 49 & - & 46.5 & 49.7 \\
\hline 2:00 PM & 50 & 52 & 55 & 66 & 59 & 44 & - & 55.8 & 54.3 \\
\hline 3:00 PM & 61 & 53 & 21 & 86 & 46 & 44 & \(\cdots\) & 55.3 & 51.8 \\
\hline 4:00 PM & 82 & 78 & 92 & 82. & 44 & 59 & - & 83.5 & 72.8 \\
\hline 5:00 PM & 72 & 73 & 69 & 81 & 42 & 47 & - & 73.8 & 64.0 \\
\hline 6:00 PM & 39 & 36 & 49 & 64 & 58 & 40 & - & 47.0 & 47.7 \\
\hline 7:00 PM & 28 & 40 & 50 & 45 & 35 & 23 & - & 40.8 & 36.8 \\
\hline 8:00 PM & 62 & 36 & 56 & 37 & 40 & 24 & - & 47.8 & 42.5 \\
\hline 9:00 PM & 35 & 29 & 36 & 36 & 40 & 24 & - & 34.0 & 33.3 \\
\hline 10:00 PM & 24 & 20 & 11 & 31 & 32. & 39 & - & 21.5 & 26.2 \\
\hline 11:00 PM & 13 & 24 & 6 & 36 & 21 & 16 & - & 19.8 & 19.3 \\
\hline \multirow[t]{2}{*}{Totals} & 763 & 725 & 772 & 901 & 768 & 616 & 0 & 790.3 & 757.5 \\
\hline & \multicolumn{9}{|c|}{Peak Hours} \\
\hline \[
\begin{array}{r}
12: 00 \mathrm{AM}- \\
12: 00 \mathrm{PM}
\end{array}
\] & 11:00 AM & 11:00 AM & 10:00 AM & 9:00 AM & 10:00 AM & 11:00 AM & - & 11:00 AM & 11:00 AM \\
\hline Volume & 49 & 50 & 61 & 49 & 59 & 51 & - & 52.0 & 51.8 \\
\hline \[
\begin{gathered}
12: 00 \mathrm{PM}- \\
12: 00 \mathrm{AM}
\end{gathered}
\] & 4:00 PM & 4:00 PM & 4:00 PM & 3:00 PM & 1:00 PM & 4:00 PM & - & 4:00 PM & 4:00 PM \\
\hline Volume & 82 & 78 & 92 & 86 & 63 & 59 & * & 83.5 & 72.8 \\
\hline
\end{tabular}

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Soutribound} \\
\hline Interval Start & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Fri} \\
7 / 26 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013
\end{array}
\] & Mon - Fri Average & 7 Day Average \\
\hline 12:00 AM & 4 & 2 & 0 & 2 & 5 & 7 & & 2.0 & 3.3 \\
\hline , 1100 AM & 0 & 3 & 0 & , 1 & 6 & 0 & & 1.0 & 1.7 \\
\hline 2:00 AM & 0 & 0 & 0 & 1 & 2 & 5 & & 0.3 & 1.3 \\
\hline 3:00 AM & 5 & 4 & 0 & 8 & 42 2 & 1. & & 43 & 3.3 \\
\hline 4:00 AM & 9 & 10 & 0 & 8 & 5 & 1. & & 6.8 & 5.5 \\
\hline 5:00 AM & 25 & 21. & 0 & 14 & 10 & 11 & & 15.0 & 13,5 \\
\hline 6:00 AM & 39 & 44 & 0 & 49 & 20 & 6 & - & 33.0 & 26.3 \\
\hline 7:00 AM & 64 & 74. & 1 & 81 & 33 & 15 & & 55.0 & 44.7 \\
\hline 8:00 AM & 58 & 53 & 0 & 47 & 54 & 33 & - & 39.5 & 40.8 \\
\hline 9:00 AM & 51 & 42 & 0 & 46 & 74 & 36. & & 348 & 41.5 \\
\hline 10:00 AM & 44 & 47 & 0 & 48 & 58 & 42 & - & 34.8 & 39.8 \\
\hline 11.00 AM & 36 & 35 & 0 & 56 & 43 & 47 & - & 31.8 & 36.2 \\
\hline 12:00 PM & 35 & 38 & 0 & 56 & 47 & 42 & & 32.3 & 36.3 \\
\hline 1:00 PM & 45 & 41 & 1 & 54 & 49 & 30 & & 35.3 & 36.7 \\
\hline 2:00 PM & 42 & 37 & 0 & 53 & 28 & 29 & - & 33.0 & 31.5 \\
\hline 3:00 PM & \(\bigcirc 32\) & 26. & Q, 23 & \% 53 & - 40 & + \(\quad 34\) & & 33.5 & 34.7 \\
\hline 4:00 PM & 32 & 38 & 46 & 48 & 35 & 37 & & 41.0 & 39.3 \\
\hline 5 5:00 PM & 43 & 36 & 48 & 64 & - 57 & 57 & & 47.8 & 50.8 \\
\hline 6:00 PM & 58 & 8 & 36 & 59 & 40 & 43 & & 40.3 & 40,7 \\
\hline 7:00 PM & 34 & 1 & 34 & , 34 & 25 & 38 & & 25.8 & 277 \\
\hline 8:00 PM & 24 & 0 & 16 & 31 & 24 & 27 & - & 17.8 & 20.3 \\
\hline 9:00 PM & 15 & 2 & 17 & 18 & 24 & 11 & & 130 & 14.5 \\
\hline 10:00 PM & 10 & 1 & 12 & 14 & 14 & 15 & - & 9.3 & 11.0 \\
\hline 11:00 PM & 5 & 0. & 4. & - \(\quad 14\) & 10. & W. 5 & - & 5.8 & 6.3 \\
\hline Totals & 710 & 563 & 238 & 859 & 705 & 572 & 0 & 592.5 & 607.8 \\
\hline & & & & PeakH & & & & & \\
\hline \[
\begin{gathered}
\text { 12:00 AM - } \\
\text { 12:00 PM }
\end{gathered}
\] & 7:00 AM & 7:00 AM & 7:00 AM & 7:00 AM & 9:00 AM & 11:00 AM & & 7:00 AM & 7:00 AM \\
\hline Volume & 64 & 74 & 1 & 81 & 74 & 47 & & 55.0 & 44.7 \\
\hline \[
\begin{array}{r}
12: 00 \mathrm{PM}- \\
\text { 12:00 AM }
\end{array}
\] & 6:00 PM & 1:00 PM & 5:00 PM & 5;00 PM & 5:00 PM & 5:00 PM & & 5:00 PM & 5:00 PM \\
\hline Volume & 58 & 41 & 48 & 64 & 57 & 57 & & 47.8 & 50.8 \\
\hline
\end{tabular}

TRAFFIC COUNT SUMMARY On M36 (Donna Reed Rd.) just North of O Ave. (Maple Ridge Dr.) Counter \#7
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ DAY } & DATE & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
NB
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
ADT \\
SB
\end{tabular}} & \begin{tabular}{c}
\% TRUCKS \\
NB
\end{tabular} & \begin{tabular}{c}
\% TRUCKS \\
SB
\end{tabular} \\
\hline Tuesday & \(7 / 23 / 2013\) & 1156 & 1170 & 8.2 & 7.5 \\
\hline Wednesday & \(7 / 24 / 2013\) & 1149 & 1171 & 7.5 & 8.5 \\
\hline Thursday & \(7 / 25 / 2013\) & 1220 & 1247 & 5.8 & 6.2 \\
\hline Friday & \(7 / 26 / 2013\) & 1441 & 1430 & 5.8 & 7.2 \\
\hline Saturday & \(7 / 27 / 2013\) & 1199 & 1215 & 4.9 & 5.0 \\
\hline Sunday & \(7 / 28 / 2013\) & 912 & 897 & 5 & 4.3 \\
\hline
\end{tabular}

AVERAGE \# OF VEHICLES NB: 1180
AVERAGE \# OF VEHICLES SB: 1188
ADT COMBINED: 2368
AVERAGE \% OF NB TRUCKS: 6\%
AVERAGE \% OF SB TRUCKS: 6\%
AVERAGE \% TRUCKS: 6\%

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Interval Start} & \multicolumn{9}{|c|}{Northbound} \\
\hline & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{FrI} \\
7 / 26 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013 \\
\hline
\end{array}
\] & Mon - Fri Average & 7 Day Average \\
\hline 12:00 AM & 6 & 9 & 7 & 7 & 18 & 19 & - & 7.3 & 11.0 \\
\hline 1:00 AM & 5 & 3 & 5 & 12 & 8 & 16 & - & 6.3 & 8.2 \\
\hline 2:00 AM & 2 & 4 & 4 & 2 & 6 & 8 & * & 3.0 & 4.3 \\
\hline 3:00 AM & 2 & 4 & 3 & 3 & 4 & 2 & - & 3.0 & 3.0 \\
\hline 4:00 AM & 4 & 5 & 2 & 5 & 2 & 2 & - & 4.0 & 3.3 \\
\hline 5:00 AM & 9 & 8 & 4 & 10 & 4 & 1 & - & 7.8 & 6.0 \\
\hline 6:00 AM & 19 & 22. & 22 & 33 & 9 & 8 & - & 24.0 & 18.8 \\
\hline 7:00 AM & 47 & 38 & 32 & 47 & 27 & 14 & - & 41.0 & 34.2 \\
\hline 8:00 AM & 52 & 48 & 37 & 46 & 51 & 31 & - & 45.8 & 44.2 \\
\hline 9:00 AM & 57 & 49 & 64 & 63 & 67 & 60 & - & 58.3 & 60.0 \\
\hline 10:00 AM & 67 & 59 & 75 & 51 & 79 & 49 & - & 63.0 & 63.3 \\
\hline 11:00 AM & 71 & 84 & 96 & 88 & 77 & 61 & - & 84.8 & 79.5 \\
\hline 12:00 PM & 76 & 70 & 84 & 89 & 82 & 58 & - & 79.8 & 76.5 \\
\hline 1:00 PM & 58 & 66 & 73 & 88 & 81 & 69 & - & 71.3 & 72.5 \\
\hline 2:00 PM & 63 & 81 & 96 & 98 & 85 & 63 & - & 84.5 & 81.0 \\
\hline 3:00 PM & 70 & 72 & 89 & 100 & 86 & 62 & - & 82.8 & 79.8 \\
\hline 4:00 PM & 122 & 126 & 119 & 117 & 84 & 85 & - & 121.0 & 108.8 \\
\hline 5:00 PM & 121 & -- . 122 & 107 & 118 & 144 & 63 & & 117.0 & 112.5 \\
\hline 6:00 PM & 74 & 66 & 82 & 171 & 84 & 57 & - & 98.3 & 89.0 \\
\hline 7:00 PM & 51 & 64 & 68 & 89 & 54 & 41 & - & 68.0 & 61.2 \\
\hline 8:00 PM & 80 & 52 & 77 & 57 & 40 & 32 & - & 66.5 & 56.3 \\
\hline 9:00 PM & 46 & 40 & 45 & 61 & 43 & 37 & - & 48.0 & 45.3 \\
\hline 10:00 PM & 36 & 34. & 20. & 42 & 36 & 49 & - & 33.0 & 36.2 . \\
\hline 11:00 PM & 18 & 23 & 9 & 44 & 28. & 25 & - & 23.5 & 24.5 \\
\hline Totals & 1156 & 1149 & 1220 & 1441 & 1199 & 912 & 0 & 1241.5 & 1179.5 \\
\hline & & & & Peak H & ours & & & & \\
\hline \[
\begin{gathered}
12: 00 \mathrm{AM}- \\
12: 00 \mathrm{PM}
\end{gathered}
\] & 11:00 AM & 11:00 AM & 11:00 AM & 11:00 AM & 10:00 AM & 11:00 AM & - & 11:00 AM & 11:00 AM \\
\hline Volume & 71 & 84 & 96 & 88 & 79 & 61 & - & 84.8 & 79.5 \\
\hline \[
\begin{gathered}
12: 00 \mathrm{PM}- \\
12: 00 \mathrm{AM}
\end{gathered}
\] & 4:00 PM & 4:00 PM & 4:00 PM & 6:00 PM & 5:00 PM & 4:00 PM & - & 4:00 PM & 5:00 PM \\
\hline Volume & 122 & 126 & 119 & 171 & 144 & 85 & - & 121.0 & 112,5 \\
\hline
\end{tabular}

Seven Day Volume, per Channel
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Southbound} \\
\hline Interval Start & \[
\begin{array}{r}
\text { Tue } \\
7 / 23 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Wed } \\
7 / 24 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Thu } \\
7 / 25 / 2013
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Fri} \\
7 / 26 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Sat } \\
7 / 27 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Sun } \\
7 / 28 / 2013
\end{array}
\] & \[
\begin{array}{r}
\text { Mon } \\
7 / 29 / 2013
\end{array}
\] & \begin{tabular}{l}
Mon - Fri \\
Average
\end{tabular} & 7 Day Average \\
\hline 12:00 AM & 6 & 9 & 5 & 2 & 21 & 10 & - & 5.5 & 8.8 \\
\hline 1.00 AM & 6 & 4 & 4 & 5 & 19 & 8 & & 4.8 & 7.7 \\
\hline 2:00 AM & 1 & 1 & 6 & 3 & 5 & 6 & & 2.8 & 3.7 \\
\hline \%3.00 AM & 5 & 6 & 5 & 9 & 4. & 2 & & 6.3 & 5.2 \\
\hline 4:00 AM & 17 & 14 & 13 & 15 & 7 & 2 & & 14.8 & 11.3 \\
\hline 5:00 AM & 43 & 26 & -25 & 17. & 13. & 11. & & 25.3 & 20.8 \\
\hline 6:00 AM & 54 & 61 & 58 & 63 & 28 & 10 & - & 59.0 & 45.7 \\
\hline 7:00 AM & 96 & 101 & 98 & - 106 & 47. & 22 & & 100.3 & 78.3 \\
\hline 8:00 AM & 72 & 85 & 78 & 63 & 72 & 54 & - & 74.5 & 70.7 \\
\hline 9:00 AM & 73 & 62 & \(\bigcirc 79\) & , 88 & 91 & 50 & F & 75.5 & 73.8 \\
\hline 10:00 AM & 72 & 61 & 75 & 67 & 84 & 63 & \(\cdots\) & 68.8 & 70.3 \\
\hline 11:00 AM & 51 & 56 & \(\because 76\) & 83 & 70 & 76 & \(\cdots\) & 66.5 & 68.7 \\
\hline 12:00 PM & 60 & 67 & 84 & 99 & 93 & 52 & & 77.5 & 75.8 \\
\hline , 1:00 PM & 95 & 74 & 80 & 94. & -73 & 49 & & 858 & 77.5 \\
\hline 2:00 PM & 66 & 61 & 93 & 84 & 58 & 51 & - - & 76.0 & 68.8 \\
\hline 3.00 PM & 973 & \% 62 & \% 89 & 90 & 59 & 61. & & 78.5 & -723 \\
\hline 4:00 PM & 63 & 61 & 69 & 79 & 81 & 71 & \(\cdots\) & 68.0 & 70.7 \\
\hline - 5:00 PM & \% 71 & 74 & 82 & 106 & 82 & 87 & + & 83.3 & 837. \\
\hline 6:00 PM & 110 & 73 & 58 & 90 & 63 & 62 & & 82.8 & 76.0 \\
\hline 7700 PM & 55 & - 63 & 65 & 4, 59 & 61 & 57 & - & 60.5 & 60.0 \\
\hline 8:00 PM & 40 & 72 & 49 & 60 & 61 & 46 & - & 55.3 & 54.7 \\
\hline 9:00 PM & 28. & 52 & 24 & 71 & 57 & 17 & - & 43.8 & 41.5 \\
\hline 10:00 PM & 15 & 15 & 25 & 50 & 35 & 24 & - & 26.3 & 27.3 \\
\hline 11:00 PM & 8 & 11 & 7 & 27. & 31 & 6 & ¢, & 1-13.3 & 150.0 \\
\hline Totals & 1170 & 1171 & 1247 & 1430 & 1215 & 897 & 0 & 1254.5 & 1188.3 \\
\hline & & & & Peak H & ours & & & & \\
\hline \[
\begin{array}{r}
12: 00 \mathrm{AM}- \\
\text { 12:00 PM }
\end{array}
\] & 7:00 AM & 7:00 AM & 7:00 AM & 7:00 AM & 9:00 AM & 11:00 AM & & 7:00 AM & 7:00 AM \\
\hline volume & 96 & 101 & 98 & 106 & 91 & 76 & - & 100.3 & 78,3 \\
\hline \[
\begin{gathered}
12: 00 \mathrm{PM}- \\
\text { 12:00 AM }
\end{gathered}
\] & 6:00 PM & 1:00 PM & 2:00 PM & 5:00 PM & 12:00 PM & 5:00 PM & & 1:00 PM & 5:00 PM \\
\hline Volume & 110 & 74 & 93 & 106 & 93 & 87 & - & 85.8 & 83.7 \\
\hline
\end{tabular}
\(\square\)
\(\Gamma\)
SECTION \(L\)

\section*{Road Segment Benefit / Cost Safety Analysis}

\section*{lowa DOT Office of Traffic \& Safety}

County: Crawford

Prepared by: \(\qquad\) Paul J. Assman
Date Prepared: \(\qquad\) Aug 6, 2015
Location: Donna Reed Rd(Co. Rd. M36) From US Hwy 30 to Co. Rd E53

\section*{Improvement}

Proposed Improvement(s): 3' HMA Base Widening in conjunction with a 4" HMA overlay including milled rumble
strips, increased lane width, increased width of edge line and safety edge
\$ 699,333 Estimated Improvement Cost, EC
\$ \(\quad-\quad\) Other Annual Cost (after initial year), AC
\$ - Present Value Other Annual Costs, OC
\(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)

20 Est. Improvement Life, years, Y
74 Crash Reduction Factor (integer), CRF
4.0\% Discount Rate, INT
\$ 699,333 Present Value All Costs, COST = EC + OC

Traffic Volume Data
\begin{tabular}{l}
Source: \\
\cline { 2 - 3 } \begin{tabular}{l}
lowa DOT traffic count \\
\cline { 2 - 3 } Two-way \\
Length (mi.) \\
\hline 4.75 \\
\hline
\end{tabular}\(| 980\) \\
\hline
\end{tabular}
1.0\% Projected Traffic Growth (0\%-10\%), G

2012 Date of traffic count

4,655 Current Vehicle Miles / Day, VM
5,680 End of Life Veh. Miles / Day 1,699,075 Current Veh. Miles / Year, AMI 37,411,939 Total Projected Veh. Miles Over Life of Project, TVMT
\(T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)\)

\section*{Crash Data}
\begin{tabular}{c}
2010 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular}

First full year -->> \(\qquad\) Last full year
6.0 years, Time Period, T

Additional months
0 Fatal Crashes

Fatalities @ Major Injuries @ values as of May 2014
\begin{tabular}{rc}
\(\$ 4,500,000\) & \(\$\) \\
\(\$ 325,000\) & \$
\end{tabular}
\(\qquad\) Property Damage Only

28
Total Crashes, TA
OR- enter all Property Costs of all crashes:
Total \$ Loss, LOSS \$ 712,200
4.67 Current Crashes \(/\) Year, \(A A=T A / T\)
\$ 25,436 Cost per Crash, AVCR = LOSS / TA
102.8 Total Expected Crashes, TCR \(=\mathrm{CR} \times\) TVMT/10^8
3.47 Crashes Avoided First Year AAR = AA \(\times\) CRF / 100
\$ 88,289 Crash Costs Avoided in First Year, AAR x AVCR
76.4 Total Avoided Crashes, TCR x CRF/ 100
274.7 Crashes / HMVM, Crash Rate, CR \(C R=T A \times 10^{\wedge} 8 /(A M \times T)\)
\(\$ \mathbf{1 , 3 0 4 , 0 9 2}\) Present Value of Avoided Crashes, BENEFIT
\(B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)\)

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 1,304,092: \$ 699,333: 1.86: 1
\]

\section*{Approximate Improvement Service Life}
\begin{tabular}{|c|c|}
\hline & \\
\hline & ұนəแəлолdu| \\
\hline
\end{tabular}

Document all values and assumptions and include with application.
Use either the "Road Segment" or "Intersections" worksheet and only enter values in the YELLOW cells.

\section*{Crash Reduction Factors}

Crash Reduction Factors should be obtained from the "Crash Modification Factors Clearinghouse."

\section*{http://www.cmfclearinghouse.org/}

Be sure to use the CRF (not the CMIF) in these spreadsheets. A CRF of 10 means a \(10 \%\) reduction in crashes is expected with that improvement.

Start with a conservative (low) CRF value. If your benefit/cost ratio is greater than 1.8 you are finished. If the benefit/cost ratio is lower, try less conservative values of CRF. You will have to decide how realistic the CRF is for your particular location and situation.

If more than one safety improvement will be made, the cummulative crash reduction factor must be calculated using the following formula:
\(C R F=100^{*}\left(1-(1-\mathrm{CRF} 1 / 100)^{*}(1-\mathrm{CRF} 2 / 100)^{*}(1-\mathrm{CRF} 3 / 100)^{*}(1-\mathrm{CRF} 4 / 100)^{*}(1-\mathrm{CRF} 5 / 100)\right)\)
or enter the individual values into this calculator:
Enter up to 5 CRFs: \begin{tabular}{rr|r|r|r|r|}
\hline 37 & 24.28 & 37.7 & 5 & 9.26 \\
\hline
\end{tabular}
Cummulative CRF \(=\underline{\underline{74.38103}}\)
If the improvements have different service lives, the shortest value must be used.

\section*{Yearly Worksheet}

The "Yearly" worksheet is not part of the analysis, but can be used to check and better understand the results.

\section*{Discount Rate}

The discount rate of \(4 \%\) excludes inflation and comes from the St. Louis Federal Reserve Bank. It should not be changed without proper justification and documentation.

August 2009-Changed Property Cost calculations to include ALL crashes, rather than just PDO crashes.

April 2010 - Changed source for Crash Reduction Factors from Desktop Reference to CMF Clearinghouse web site.

July 2010 - Removed shadows from arrows on B/C sheets.

\section*{CMF / CRF Details}

CMF ID: 2831

\section*{Install paved shoulder and rumble strips}

Description: Pave shoulders and install rumble strips
Prior Condition: No Prior Condition(s)
Category: Shoulder treatments
Study: Benefit-Cost Analysis of In-Vehicle Technologies and Infrastructure Modifications as a Means to Prevent Crashes Along Curves and Shoulders, Pitale et al., 2009

\author{
Star Quality Rating: [View score details] \\ Crash Modification Factor (CMF) \\ Value: 0.63 \\ Adjusted Standard Error: \\ Unadjusted Standard Error: \\ Crash Reduction Factor (CRF) \\ Value: 37 (This value indicates a decrease in crashes) \\ Adjusted Standard Error: \\ Unadjusted Standard Error:
}

\section*{Applicability}
Crash Type: All
Crash Severity: All
Roadway Types: Principal Arterial Other
Number of Lanes: 2
Road Division Type:
Speed Limit:

\section*{CMF / CRF Details}

CMF ID: 4328

\section*{Installation of safety edge treatment}

Description: The safety edge is a low-cost treatment that is implemented in conjunction with pavement resurfacing and is intended to help minimize drop-off-related crashes.

Prior Condition: Rural highways prior to resurfacing and installation of safety edge treatment
Category: Shoulder treatments
Study: Safety Evaluation of the Safety Edge Treatment, Graham et al., 2011

Star Quality Rating: [View score details]

Crash Modification Factor (CMF)
Value:
0.757

Adjusted Standard Error:

Unadjusted Standard Error: 0.101

Crash Reduction Factor (CRF)
Value: 24.281 (This value indicates a decrease in crashes)
Adjusted Standard Error:

Unadjusted Standard Error: 10.078

Applicability
Crash Type: All
Crash Severity: Property damage only (PDO)
Roadway Types: Principal Arterial Other
Number of Lanes: 2
Road Division Type:

Speed Limit:

\section*{CMF / CRF Details}

CMF ID: 4751

\title{
Install wider edgelines (4 in to 5 in) \\ Description: Widen edgelines from 4 inches to 5 inches \\ Prior Condition: Compares 4 in to 5 in wide edgelines \\ Category: Delineation
}

Study: Safety effects of wider edge lines on rural, two-lane highways, Park et al., 2012

Star Quality Rating: [View score details]

\section*{Crash Modification Factor (CMF)}

Value: 0.623

Adjusted Standard Error:
Unadjusted Standard Error: 0.061

Crash Reduction Factor (CRF)
Value: 37.7 (This value indicates a decrease in crashes)

Adjusted Standard Error:
Unadjusted Standard Error: 6.1

Applicability
Crash Type: All
Crash Severity: Fatal,Serious injury,Minor injury
Roadway Types: Not specified
Number of Lanes: 2

Road Division Type:
Speed Limit:

Area Type: Rural

\section*{Study Details}

Study Title: Safety Evaluation of Multilane Arterials in Florida
Authors: Abdel-Aty et al.
Publication Date: JUL, 2009
Abstract: Resurfacing is one of the more common construction activities on highways. While its effect on riding quality on any type of roadway is obviously positive; its impact on safety as measured in terms of crashes is far from obvious. This study examines the safety effects of the resurfacing projects on multilane arterials with partially limited access. Empirical Bayes method, which is one of the most accepted approaches for conducting before-after evaluations, has been used to assess the safety effects of the resurfacing projects. Safety effects are estimated not only in terms of all crashes but also rear-end as well as severe crashes (crashes involving incapacitating and fatal injuries). The safety performance functions (SPFs) used in this study are negative binomial crash frequency estimation models that use the information on ADT, length of the segments, speed limit and number of lanes. These SPFs are segregated by crash groups (all, rear-end, and severe), length of the segments being evaluated, and land use (urban, suburban, and rural). The results of the analysis show that the resulting changes in safety following resurfacing projects vary widely. Evaluating additional improvements carried out with resurfacing activities showed that all (other than sidewalk improvements for total crashes) of them consistently led to improvements in safety of multilane arterial sections. It leads to the inference that it may be a good idea to take up additional improvements if it is cost effective to do them along with resurfacing. It was also found that the addition of turning lanes (left and/or right) and paving shoulders were two improvements associated with a project's relative performance in terms of reduction in rear-end crashes.

Study Citation: Abdel-Aty, M., Devarasetty, P. C., and Pande, A., "Safety Evaluation of Multilane Arterials in Florida." Accident Analysis and Prevention, Vol. 41, No. 4, Elsevier, (2009) pp. 777-788.

\section*{CMFs Associated With This Study}

\section*{Category: Roadway}

Countermeasure: Resurface pavement
\begin{tabular}{lcccccc}
CMF & CRF(\%) & Quality & Crash Type & Crash Severity & \begin{tabular}{c}
Roadway \\
Type
\end{tabular} & Area Type \\
\(\underline{1.01}\) & \(\underline{-1}\) & All & All & Not Specified \\
\(\underline{0.95}\) & \(\underline{5}\) & All & Fatal,Serious injury & Not Specified \\
\(\underline{0.99}\) & \(\underline{1}\) & Rear end & All & Not Specified
\end{tabular}

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

\footnotetext{
The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.
}

\section*{CMF / CRF Details}

CMF ID: 4811

\section*{Change lane width from \(X\) to \(\mathbf{Y}\) (in feet)}

Description: Change lane width on rural two-lane highways from \(X\) to \(Y\) (in feet)
Prior Condition: Rural two-lane highway with lane width \(X\) (in feet)
Category: Roadway
Study: Efficacies of roadway safety improvements across functional subclasses of rural two-lane highways, Labi, 2011

Star Quality Rating: [View score details]

\section*{Crash Modification Factor (CMF)}

Value: \(\quad C M F=e^{(-0.0972(Y-X))}\)
\[
\begin{aligned}
& y=11 \\
& x=10
\end{aligned}
\]

Adjusted Standard Error:

Unadjusted Standard Error:

Crash Reduction Factor (CRF)

Value:
\[
C R F=100 \times\left(1-e^{(-0.0972(Y-X))}\right)
\]

Adjusted Standard Error:

Unadjusted Standard Error:
CRE \(=9.26\)

Applicability
Crash Type: All
Crash Severity: Serious injury, Minor injury

Roadway Types: Minor Arterial

Number of Lanes: 2

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}
\begin{tabular}{|c|c|}
\hline GENERAL INFORMATION & DATE: August 10, 2015 \\
\hline Location / Title of Project & C-60 Reconstruction - From C-66 West 3.25 Mi. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant \\
Plymouth County
\end{tabular}} \\
\hline Contact Person Thomas Rohe & Rohe Title County Engineer \\
\hline \multirow[t]{2}{*}{Complete Mailing Address} & P.O. Box 1227 \\
\hline & Le Mars, lowa 51031 \\
\hline Phone 712-546-4559 & E-Mail trohe@co.plymouth.ia.us \\
\hline (Area Code) & \\
\hline
\end{tabular}

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) NA
Contact Person Thomas Rohe Title County Engineer

Complete Mailing Address P.O. Box 1227
Le Mars, lowa 51031
Phone \(\frac{712-546-4559}{\text { (Area Code) }}\)

E-Mail trohe@co.plymouth.ia.us

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type
Site Specific \(\boxtimes\)
Traffic Control Device \(\quad \square\)
Safety Study \(\square\)

\section*{Funding Amount}
\begin{tabular}{ll}
Total Project Cost & \(\$ 1,740,000\) \\
Safety Funds Requested & \(\$ 500,000\) \\
\hline
\end{tabular}

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the Plymouth County Board of Supervisors

Signed:

Jim Henrich
Typed Name

Attest:

Stacey Feldman
Typed Name

\section*{B. Narrative}

\section*{C-60 From NW Cor NE1/4 NE1/4 Sec 7-90-44 east 3.25 miles to the NE Cor Sec 10-90-44}

This section of roadway was graded in 1950 with a 28 ft . top width and \(11 / 2: 1\) foreslopes. The road was paved in 1952 with a 22 ft . wide asphalt emulsion base and was resurfaced in 1960, 1974, and 1988. The grade line of this road essentially follows the existing topography but in some places will only meet a \(35-40 \mathrm{mph}\) design standard for vertical curve lengths. There is also a large deflection at the west end of the project where C-60 intersects with K-64. The deflection at this intersection is just under 3 degrees and with the vertical alignment results in cars going off the edge of the roadway. Chevron signs have been placed in order to alert motorists of the change in direction. The enclosed photo shows this situation.

Many of the accidents along this roadway result in rollovers because of the narrow shoulders and steep foreslopes. It is very difficult to redirect a vehicle back onto the roadway once leaving the pavement surface. The shoulder width along the roadway is \(21 / 2\) to 3 ft . The enclosed photo's should show typical shoulder areas.

The proposed project will reconstruct this roadway in 2016 to meet current design standards. The shoulder width will be widened to 8 ft . and the foreslopes will be constructed to \(3: 1\) which would allow any vehicles leaving the roadway to stay upright and not overturn. The vertical curves will be constructed to a 55 mph design standard to allow adequate sight distance for proper turning and passing maneuvers. The intersection at the west end of the project will be reconstructed with a longer horizontal and vertical curve, correcting the accident prone situation we currently have. We anticipate that approximately one half of this project will be shoulder grading/widening work while the other half will be complete reconstruction.

\section*{C. Cost}

The cost of this project is estimated at \(\$ 1,740,000\). This will include all necessary work to bring the shoulders, foreslopes and gradeline up to current design standards. This estimate is only for the reconstruction and does not include the repaving of the roadway. We do not at this time have our preliminary design completed in order to give a detailed breakdown of quantities. The amount of traffic safety funds we are requesting is \(\$ 500,000\). This project will be paved in 2017 under a separate contract.

\section*{D. Time Schedule}

This project is scheduled for the 2016 construction season. Preliminary survey work has been completed. Design work began in the fall of 2014 and will be completed by fall of 2015. Right of Way purchase will begin in the late fall/winter months of 2015.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Crash Detail Report
CMAT Version 3.4.0
\begin{tabular}{|lll|}
\hline \begin{tabular}{lll}
2007378439 & \(06 / 12 / 2007\) & \(13: 55\) \\
County:75 & City:
\end{tabular} \\
\hline
\end{tabular}

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature

Severity:Major
Fatalities: \(0 \quad\) Surface Conditions:Dry
Major Injuries: 1
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0
Manner of Crash:Non-collision

Light Conditions: Daylight
Weather Conditions: Partly cloudy
Drug/Alc Involved: none indicated
Property Damage: \(\$ 75100\)

Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit2 & Unit 3 \\
\hline Init Trav Dir: & West & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & Truck/trailer & 0 & 0 \\
\hline Driver Age: & 27 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Normal & 0 & 0 \\
\hline Drivr Contr 1: & Lost control & 0 & 0 \\
\hline Drivr Contr 2 : & not reported & 0 & 0 \\
\hline Fixed Object: & none & 0 & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

CMAT Version 3.4.0
\begin{tabular}{|lll}
\hline 2011632376 & \(05 / 23 / 2011\) & \(22: 30\) \\
County:75 & City:
\end{tabular}\(\quad 1 / 2\) WEST OF OYENS AVE ON C60

Major Cause:Animal
Roadway Type:Not reported
Severity: PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: not reported
Surface Conditions: not reported
Light Conditions:not reported
Weather Conditions: not reported
Drug/Alc Involved:none indicated
Property Damage:\$2000
Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & not reported & 0 & 0 \\
\hline Veh Action: & not reported & 0 & 0 \\
\hline Configuration: & Passenger car & 0 & 0 \\
\hline Driver Age: & 19 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & not reported & 0 & 0 \\
\hline Drivr Contr 1: & unknown & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & none & 0 & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

CMAT Version 3.4.0
8anan verion 13 ang \(20 x 6\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{lll}
2011613704 & \(01 / 24 / 2011\) & \(05: 30\) \\
County:75 & City: &
\end{tabular} & C060 / C60 measuring 0.3 Miles East from K064 / OYENS AVE and C060 / C60 and OYENS AVE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { Major C } \\
\text { Roadway } \\
\text { Sev } \\
\text { Fatal } \\
\text { Major Inju } \\
\text { Minor Inju } \\
\text { Possible Inju } \\
\text { Unknown Inju }
\end{array}
\] & \begin{tabular}{l}
Cause: Ran off road - r \\
Type:Non-intersection \\
rerity: PDO \\
lities: 0 \\
uries: 0 \\
uries: 0 \\
uries: 0 \\
uries: 0
\end{tabular} & \begin{tabular}{l}
pecial \\
of Crash \\
onditions \\
onditions \\
anditions \\
Involved \\
Damage
\end{tabular} & Number of Vehicles: 1 \\
\hline & Unit 1 & Unit 2 & \\
\hline Init Trav Dir: & West & 0 & \\
\hline Veh Action: & Essentially straight & 0 & \\
\hline Configuration: & Passenger car & 0 & \\
\hline Driver Age: & 42 & 0 & \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Normal & 0 & \\
\hline Drivr Contr 1: & none & 0 & \\
\hline Drivr Contr 2: & not reported & 0 & \\
\hline Fixed Object: & & 0 & \\
\hline
\end{tabular}

\section*{Crash Detail Report \\ CMAT Version 3.4.0}

Raten Vamanan \(13 \times n=2006\)

Major Cause:Ran off road - left
Roadway Type:Non-intersection: Bridge/overpass/underpass

Severity: Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 1

Manner of Crash:Non-collision Surface Conditions: Dry

Light Conditions: Dusk
Weather Conditions: unknown
Drug/Alc Involved:none indicated
Property Damage: \(\$ 3500\)
Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & East & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & 4-tire light truck & 0 & 0 \\
\hline Driver Age: & 53 & 0 & 0 \\
\hline Driver Gender: & E & & \\
\hline Driver Cond: & Asleep/fatigued/etc. & 0 & 0 \\
\hline Drivr Contr 1: & Lost control & 0 & 0 \\
\hline Drivr Contr 2: & Eatigued/Asleep & 0 & 0 \\
\hline Fixed Object: & Bridge/bridge & 0 & 0 \\
\hline
\end{tabular}

\title{
Crash Detail Report \\ CMAT Version 3.4.0
}

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature

Severity: Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1

Manner of Crash:Non-collision
Surface Conditions: Ice
Light Conditions: Daylight
Weather Conditions:Clear
Drug/Alc Involved:none indicated
Property Damage: \(\$ 5000\)
Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit2 & Unit 3 \\
\hline Init Trav Dir: & West & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & Passenger car & 0 & 0 \\
\hline Driver Age: & 83 & 0 & 0 \\
\hline Driver Gender: & E & & \\
\hline Driver Cond: & Normal & 0 & 0 \\
\hline Drivr Contr 1: & Lost control & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & none & 0 & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

CMAT Version 3.4.0
Fappan Vertion +3 nes 3005

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature
Severity: PDO Manner of Crash:Non-collision
Fatalities: \(0 \quad\) Surface Conditions:Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 0
Weather Conditions:Clear
Possible Injuries: \(0 \quad\) Drug/Alc Involved:none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Property Damage: \$4200} & Number of Vehicles: 1 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & East & 0 & 0 & \\
\hline Veh Action: & Essentially straight & 0 & 0 & \\
\hline Configuration: & 4-tire light truck & 0 & 0 & \\
\hline Driver Age: & 65 & 0 & 0 & \\
\hline Driver Gender: & M & & & \\
\hline Driver Cond: & Normal & 0 & 0 & \\
\hline Drivr Contr 1: & Lost control & 0 & 0 & \\
\hline Drivr Contr 2: & not reported & 0 & 0 & \\
\hline Fixed Object: & Pole: utility/light/etc & 0 & 0 & \\
\hline
\end{tabular}

\section*{Crash Detail Report}

CMAT Version 3.4.0
Fermen Wersion 13 Aerg 3005
\begin{tabular}{ll}
\begin{tabular}{ll}
2012671139 & \(02 / 06 / 2012\) \\
County:75 & City:
\end{tabular} & \begin{tabular}{l}
C060 / C60 measuring 0.33 Miles West from Off Roadway/Roadway \\
Not Eound
\end{tabular}
\end{tabular}

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature
Severity: PDO Manner of Crash:Non-collision
Fatalities: 0

Major Injuries: 0
Minor Injuries: 0
Possibie Injuries: 0
Unknown Injuries: 0

Surface Conditions: Dry
Light Conditions: Dark - roadway not lighted
Weather Conditions: Fog/smoke
Drug/Alc Invoived:Alcohol: Statutory
Property Damage: \$3000
Number of Vehicles: I
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & East & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & Passenger car & 0 & 0 \\
\hline Driver Age: & 18 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Infl by alc/drugs/meds & 0 & 0 \\
\hline Drivr Contr 1: & Lost control & 0 & 0 \\
\hline Drivr Contr 2: & not reported & 0 & 0 \\
\hline Fixed Object: & Culvert & 0 & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

CMAT Version 3.4.0

\begin{tabular}{|cl|l}
\hline 2009489269 & \(01 / 17 / 200914: 55\) \\
County:75 & City:
\end{tabular}\(\quad\)\begin{tabular}{l}
C060 / C60 measuring 0.1 Miles West from C066 / POLK AVE and \\
C60 and C060/C60 and POLK AVE
\end{tabular}

Major Cause: Ran off road - right
Roadway Type:Non-intersection: No special feature
Severity:PDO Manner of Crash:Non-collision
Fatalities: \(0 \quad\) Surface Conditions:Snow

Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0
\begin{tabular}{|c|c|}
\hline & Unit 1 \\
\hline Init Trav Dir: & West \\
\hline Veh Action: & Essentially straight \\
\hline Configuration: & Van or mini-van \\
\hline Driver Age: & 18 \\
\hline Driver Gender: & M \\
\hline Driver Cond: & Normal \\
\hline Drivr Contr 1: & none \\
\hline Drivr Contr 2: & not reported \\
\hline Fixed Object: & none \\
\hline
\end{tabular}

CMAT Version 3.4.0
Bepen Vercion 13 Ang 3005
\begin{tabular}{|ll}
\hline \begin{tabular}{ll}
2007399531 \\
County:75 & 10/26/2007 15:27 \\
City:
\end{tabular} \\
\hline
\end{tabular} POLK AVE and C060/C60 and C066 / POLK AVE and C60

Major Cause: Other improper action
Roadway Type:Intersection: Eour-way intersection

Severity:Major
Fatalities: 0
Major Injuries: 1
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0
\begin{tabular}{|c|c|c|}
\hline Unknown Inj & uries: 0 & Property D \\
\hline & Unit 1 & \\
\hline Init Trav Dir: & East & E \\
\hline Veh Action: & Turning left & O \\
\hline Configuration: & Passenger car & T \\
\hline Driver Age: & 21 & 6 \\
\hline Driver Gender: & M & M \\
\hline Driver Cond: & Normal & N \\
\hline Drivr Contr 1: & none & O \\
\hline Drivr Contr 2: & not reported & n \\
\hline Fixed Object: & none & n \\
\hline
\end{tabular}

Document all values and assumptions and include with application.
Use either the "Road Segment" or "Intersections" worksheet and only enter values in the YELLOW cells.

\section*{Crash Reduction Factors}

Crash Reduction Factors should be obtained from the "Crash Modification Factors Clearinghouse."

\section*{http://www.cmfclearinghouse.org/}

Be sure to use the CRF (not the CMF) in these spreadsheets. A CRF of 10 means a 10\% reduction in crashes is expected with that improvement.

Start with a conservative (low) CRF value. If your benefit/cost ratio is greater than 1.8 you are finished. If the benefit/cost ratio is lower, try less conservative values of CRF. You will have to decide how realistic the CRF is for your particular location and situation.

If more than one safety improvement will be made, the cummulative crash reduction factor must be calculated using the following formula:
\(C R F=100^{*}\left(1-(1-\mathrm{CRF} 1 / 100)^{*}(1-\mathrm{CRF} 2 / 100)^{*}(1-\mathrm{CRF} 3 / 100)^{*}(1-\mathrm{CRF} 4 / 100)^{*}(1-\mathrm{CRF} 5 / 100)\right)\)
or enter the individual values into this calculator:
Enter up to 5 CRFs:
Cummulative CRF \(=\)\begin{tabular}{rr|r|r|l|}
\hline 20 & 15 & 47 & & \\
\hline
\end{tabular}

If the improvements have different service lives, the shortest value must be used.

\section*{Yearly Worksheet}

The "Yearly" worksheet is not part of the analysis, but can be used to check and better understand the results.

\section*{Discount Rate}

The discount rate of 4\% excludes inflation and comes from the St. Louis Federal Reserve Bank. It should not be changed without proper justification and documentation.

August 2009 - Changed Property Cost calculations to include ALL crashes, rather than just PDO crashes.

April 2010 - Changed source for Crash Reduction Factors from Desktop Reference to CMF Clearinghouse web site.

Road Segment Benefit / Cost Safety Analysis
Rev. 5/14 Iowa DOT Office of Traffic \& Safety
County: Plymouth Prepared by:__ Thomas Rohe__Date Prepared:_Aug 10, 2015 Location: On Plymouth County Road C-60 From 1/4 West of NE Cor Sec 7-90-44 east to NE Cor Sec 10-90-44

\section*{Improvement}

Proposed Improvement(s): Reconstruction of County Road C-60 which will widen the shoulders, flatten foreslopes, and improve vertical and horizontal alignment from current \(35-45 \mathrm{mph}\) design to current 55 mph design.
\$ 500,000 Estimated Improvement Cost, EC
\$ - Other Annual Cost (after initial year), AC
\$ - Present Value Other Annual Costs, OC
\(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)

20 Est. Improvement Life, years, Y
64 Crash Reduction Factor (integer), CRF 4.0\% Discount Rate, INT
\(\$ 500,000\) Present Value All Costs, COST = EC + OC

\section*{Traffic Volume Data}
\begin{tabular}{l}
Source: \\
\cline { 2 - 3 } \begin{tabular}{l}
Towa Department of Transportation \\
\hline
\end{tabular} \\
\begin{tabular}{|c|r|l|}
Length (mi.) & veh/day Description \\
\hline 3.25 & 640 & 22 Ft. Widen Asphalt Pav't \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\end{tabular}
\(\qquad\) 2011 Date of traffic count

2,080 Current Vehicle Miles / Day, VM
2,538 End of Life Veh. Miles / Day
759,200 Current Veh. Miles / Year, AM
16,716,828 Total Projected Veh. Miles Over Life of Project, TVMT
\[
T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
\]

\section*{Crash Data}
\begin{tabular}{c}
2004 \\
\hline
\end{tabular}

First full year \(\rightarrow\) \(\qquad\) Last full year Additional months
\(\qquad\) Fatal Crashes
\(\qquad\) Injury Crashes

8 \(\qquad\) Property Damage Only

15
Total Crashes, TA
1.50 Current Crashes \(/\) Year, \(A A=T A / T\)
\$ 64,400 Cost per Crash, AVCR = LOSS / TA
33.0 Total Expected Crashes, TCR = CR \(\times\) TVMT/10^8
0.96 Crashes Avoided First Year AAR = AA x CRF / 100
\$ 61,824 Crash Costs Avoided in First Year, AAR x AVCR
21.1 Total Avoided Crashes, TCR x CRF/ 100
10.0 years, Time Period, T
values as of May 2014
\begin{tabular}{rlr}
\(\$ 4,500,000\) & \(\$\) & - \\
\(\$ 325,000\) & \(\$\) & 650,000 \\
\(\$ 65,000\) & \(\$\) & 65,000 \\
\(\$ 35,000\) & \(\$\) & 140,000 \\
\(\$ 7,400\) & \(\$\) & 111,000
\end{tabular}
-OR- enter all Property Costs of all crashes:
Total \$ Loss, LOSS \$ 966,000
197.6 Crashes / HMVM, Crash Rate, CR \(C R=T A \times 10^{\wedge} 8 /(A M \times T)\)
\(\$ \quad 913,184\) Present Value of Avoided Crashes, BENEFIT
\[
B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)
\]

\section*{Benefit / Cost Ratio}

\section*{District 4}

\section*{Application for TRAFFIC SAFETY FUNDS}

\section*{GENERAL INFORMATION}
Location / Title of Project H34 East Pavement Widening
Applicant Montgomery County
Contact Person Bradley Skinner, PE \& PLS Title County Engineer
Complete Mailing Address PO Box 95Red Oak, IA 51566
Phone \(\frac{712-623-5197}{\text { (Area Code) }} \quad\) E-Mail bskinner@montgomerycoia.us
If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).
Co-Applicant(s)Contact Person
\(\qquad\)Title
Complete Mailing Address
\(\qquad\)
\(\qquad\)
Phone
 (Area Code)E-Mail
\(\qquad\)
PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type
Site Specific 区
Traffic Control Device Safety Study \(\quad \square\)
Funding Amount
Total Project Cost\$ 695,644
Safety Funds Requested\$ 400,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the County of Montgomery

Signed:

Bradley Skinner, County Engineer
Typed Name

Attest:

Denise Manard, Office Manager
Typed Name

\title{
Montgomery County Secondary Roads
}
P.O. Box 95, Red Oak, Iowa 51566

Phone: (712) 623-5197 / Fax: (712) 623-9477

August 12, 2015

\author{
2014 TSIP Application Narrative \\ H34 Lane Widening East of Red Oak \\ Montgomery County, Iowa
}

The proposed project entails County Highway H34 (Montgomery County 200 \({ }^{\text {th }}\) Street), from the intersection with US Highway 34, four and one-half miles east to the intersection with \(N\) Avenue. The existing roadway is comprised of an lowa Highway Commission built ten inch thick PCC slab, originally built 18 -feet wide with curbs in 1930 . The pavement was in-filled with asphalt and slurry mixtures over the last fifty years to provide for drainage. As an integral link between Red Oak and US Highway 71, this highway carries over 500 vehicles per day including significant truck traffic.

Numerous pavement departures (tires off roadway) occur on the narrow roadway every day, with many documented roadway departure incidents resulting in serious accidents and fatalities on adjacent sections in recent years. It is nearly impossible for a vehicle to meet an on-coming semi-truck without departing the pavement. This highway has been a major priority for shoulder maintenance over the years, however, edge ruts develop quickly and hazards frequently develop after rainstorms or just from routine traffic. In short, the roadway is insufficient with safety issues for current traffic demands.

Montgomery County proposes to improve the referenced corridor with TSIP funding, to include the above described roadway for widening of five to six foot to accomplish a 24 -foot wide pavement for this heavily traveled Farm-to-Market and Federal Aid route. There is generally adequate existing shoulder width to accomplish said widening and allow for a three foot or greater aggregate shoulder going forward.

Montgomery County will continue work on the corridor with an HMA overlay, as appropriate, once the widening has been accomplished.

\section*{Road Segment Benefit / Cost Safety Analysis}

\section*{lowa DOT Office of Traffic \& Safety}

\section*{Crash Data}

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 575,827: \$ 400,000 \quad=\quad 1.44: 1
\]

\section*{District 5}

August 14, 2015

Donna Matulac, P.E.
Office of Traffic and Safety
Iowa Department of Transportation
800 Lincoln Way
Ames, lowa 50010

\section*{Dear Donna,}

Included is the Traffic Safety Improvement Application for a spot improvement in the City of Ottumwa, lowa. The intersection identified for the improvements is \(S\) Marion Street and \(2^{\text {nd }}\) Street \(W\). The Benefit/ Cost spreadsheet is submitted in PDF and excel format. If you have any questions regarding the material submitted in the application please feel free to contact me by phone or e-mail.

Sincerely,
SHIVE-HATTERY, INC.

Justin Campbell, PE
Civil Engineer
(319) 364-0227
jcampbell@shive-hattery.com

\title{
Traffic Safety Improvement Program Application
}

\author{
S Marion Street and \(\mathbf{2}^{\text {nd }}\) Street W \\ Ottumwa, lowa \\ August 14, 2015
}

Prepared by:
SHIVEHIATTERY
ARCHITECTURE+ENGINEERING
\(3162^{\text {nd }}\) Street, Suite 500
Cedar Rapids, lowa 52406
(800) 798-0227

\section*{Application for TRAFFIC SAFETY FUNDS}
GENERAL INFORMATION
Location / Title of Project \(\quad\) S Marion Street and \(2^{\text {nd }}\) Street W, Ottumwa, lowa
Applicant City of Ottumwa
Contact Person Larry Seals Title Public Works Director
\begin{tabular}{ll}
Complete Mailing Address & 105 East Third Street \\
\cline { 2 - 3 } Ottumwa, Iowa 52501 \\
\hline
\end{tabular}
Phone
\(\frac{(641) 683-0680}{\text { (Area Code) }}\)
E-Mail Iseals@ci.ottumwa.ia.us
If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).
Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title
Complete Mailing Address \(\qquad\)
\(\qquad\)
Phone \(\qquad\) E-Mail \(\qquad\)
PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:
Application Type
Site Specific \(\boxtimes\)
Traffic Control Device \(\square\)
Safety Study \(\square\)
Funding Amount

Total Project Cost
\$ 223,700
Safety Funds Requested
\$ 223,700

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the City of Ottumwa

Signed:

Tom X. Lazio, Mayor
Typed Name

Attest:

Amanda Valent, City Clerk
Typed Name

\section*{RESOLUTION \#181-2015}

\section*{A RESOLUTION APPROVING THE TRAFFIC SAFETY IMPROVEMENT PROGRAM APPLICATION FOR THE MARION STREET AND WEST SECOND STREET INTERSECTION ENHANCEMENTS}

WHEREAS, This resolution approves the Traffic Safety Improvement Program Application for Traffic Safety Funds through the Iowa Department of Transportation for enhancements to the intersection of Marion Street and West Second Street; and,

WHEREAS, The proposed intersection improvements include construction of a mini-roundabout which will serve as a traffic calming measure. Splitter islands will be installed to reduce the intersection speeds and notify motorists of the intersection. Improvements will also provide for accommodations for pedestrians and bicyclists and will aid in providing acceptable gaps; and,

WHEREAS, The proposed improvements are expected to result in a safer intersection and reduce the number of injury crashes per year; and,

WHEREAS, The City of Ottumwa is requesting Safety Funds in the amount of \$223,700.00.

NOW, THEREFORE, BE IT RESOLVED, BY THE CITY COUNCIL OF THE CITY OF OTTUMWA, IOWA THAT: The Traffic Safety Improvement Program Application for the Marion Street and West Second Street Intersection Enhancements is hereby approved and adopted.

APPROVED, PASSED, AND ADOPTED, this 4th day of August 2015.

\section*{ATTEST:}

\section*{Background}

The City of Ottumwa is planning to make enhancements to the intersection of S Marion Street and \(2^{\text {nd }}\) Street W to address running stop signs on S Marion. Most recently \(2^{\text {nd }}\) Street has been converted from a one-way street to two way. This change to the corridor had little to no effect on the safety of this intersection and crashes continue to occur as will be discussed in the crash history section.

S Marion Street is a two-lane urban roadway with parking on both sides of the street and a posted speed of 25 MPH . S Marion is the minor street and is currently stop controlled. \(2^{\text {nd }}\) Street \(W\) is the major street and operates under free-flow conditions. The posted speed limit is 25 MPH and also has parking along both side of the street. The most frequent crash type is a failure of the \(S\) Marion Street motorists to yield to the vehicles on \(2^{\text {nd }}\) Street. See Exhibit \(\mathbf{H}\) for existing conditions.

The majority of the traffic is passenger vehicles and truck-turning traffic is minimal. Trucks (WB-50 and above) have alternative routes which makes the design vehicle for this intersection single unit trucks and school buses. Traffic signals were evaluated for this intersection and none of the eight warrants were met as required by MUTCD.

\section*{Proposed Improvements}

The proposed intersection improvements include constructing a mini roundabout which will serve as a traffic calming measure. Splitter islands will be installed to reduce the intersection speeds and notify motorist of the intersection. The splitter islands will be raised to allow for pedestrian refuges and additional raised medians will be added to reduce crosswalk lengths and additional deflection where possible. The central island will be fully traversable and constructed with HMA or other materials to provide a contrast in color. The central island will be raised \(3-4\) " to deter motorists from traveling through the island and will allow for any large trucks or buses to navigate the intersection. Pavement markings will be modified in the vicinity of the intersection reduce the on-street parking closest to the intersection. Included in the improvements is intersection lighting to illuminate the approaches and pedestrian crossings. The lighting will be cut-off to reduce the impact to adjacent property owners. Refer to Section G for proposed improvements.

Crash history for this intersection was collected from lowa DOT CMAT software, and City of Ottumwa

Police Department, and has been evaluated from 2004 to 2014 to identify trends and safety issues with the current geometry. In the past 10 years 34 crashes have been reported at this location resulting in 10 minor and 11 possible injuries. 30 of the 34 (\(88 \%\)) were broadside crashes. The City has reported that the trend of broadside crashes in 2015 is continuing. Refer to Section I for crash history, officer accident reports and post-crash photos of recent accidents.

The proposed improvements will provide users with an intersection that will reduce speeds, provide accommodations for pedestrians and bicyclists, and will aid in providing acceptable gaps. The proposed improvements are expected to result in a safer intersection and reduce the number of injury crashes per year.

\section*{SHIVEFIATTERY \\ ARCHITECTURE +ENGINEERING}

\section*{Proposed Public Improvements - Mini-Roundabout Second Street \& Marion Street}

Ottumwa, lowa
Engineer's Rough Order Magnitude of Cost Estimate of Quantities - July 21, 2015
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Item No & Description & Unit & \multicolumn{2}{|r|}{Unit Price} & Quantity & \multicolumn{2}{|r|}{Cost} \\
\hline 1 & Removal of Pavement & SY & \$ & 10 & 1,300 & \$ & 13,000 \\
\hline 2 & Removal of Sidewalk & SY & \$ & 8 & 300 & \$ & 2,400 \\
\hline 3 & Removal of Light Pole & EA & \$ & 200 & 1 & \$ & 200 \\
\hline 4 & Hydrant Relocation & EA & \$ & 500 & 2 & \$ & 1,000 \\
\hline 5 & PCC Patch, 10" & SY & \$ & 80 & 100 & \$ & 8,000 \\
\hline 6 & PCC Colored - Median \& Crosswalk & SY & \$ & 90 & 1,200 & \$ & 108,000 \\
\hline 7 & PCC Sidewalk, 4" & SY & \$ & 35 & 300 & \$ & 10,500 \\
\hline 8 & PCC Sidewalk Ramp & SY & \$ & 50 & 50 & \$ & 2,500 \\
\hline 9 & Granular Subbase, 6" & SY & \$ & 7 & 800 & \$ & 5,600 \\
\hline 10 & Storm Improvements & LS & \$ & 15,000 & 1 & \$ & 15,000 \\
\hline 11 & Pavement Markings and Signage & LS & \$ & 5,000 & 1 & \$ & 5,000 \\
\hline 12 & Street Lighting & EA & \$ & 4,000 & 8 & \$ & 32,000 \\
\hline 13 & Erosion Control \& Administration & LS & \$ & 500 & 1 & \$ & 500 \\
\hline 14 & Construction Survey & LS & \$ & 5,000 & 1 & \$ & 5,000 \\
\hline 15 & Traffic Control & LS & \$ & 5,000 & 1 & \$ & 5,000 \\
\hline 16 & Mobilization & LS & \$ & 10,000 & 1 & \$ & 10,000 \\
\hline
\end{tabular}

Improvements to the \(2^{\text {nd }}\) Street and Marion Street Intersection which are to be funded through Traffic Safety Improvement Fund. The schedule proposed for the safety improvements is as follows:
- August 2015 - Submit for 2015 TSIP Funds
- September 2015 - January 2016 - Proceed with design of improvements
- December 2015 - TSIP Funds are awarded
- February 2016 -Let intersection project
- Summer 2016 - Construction begins
- July 2016 -TSIP funds are available for the \(2^{\text {nd }}\) Street and Marion Street Intersection Improvements
- August 2016 - Construction complete for mini roundabout.

Looking Northeast from Marion Street NE Bound Approach

Looking Northwest from \(2^{\text {nd }}\) Street NW Bound Approach*

\section*{SHIVEIATTERY}

ARCHITECTURE + ENGINEERING

Looking Southeast from \(2^{\text {nd }}\) Street SE Bound Approach

Looking Southwest from Marion Street SW Bound Approach

\section*{SHIVEHIATTERY \\ ARCHITECTURE + ENGINEERING}

Broadside Collision: 6/18/2015 (1)

Broadside Collision: 6/18/2015 (2)

Broadside Collision: 6/18/2015 (3)

\section*{SHIVE-IATTERY \\ ARCHITECTURE + ENGINEERING}

Broadside Collision: Date Unknown (1)

Broadside Collision: Date Unknown (2)
*Source: Google \({ }^{\circledR}\)

\section*{SHIVE-IATTERY}

ARCHITECTURE + ENGINEERING

8. Iowa Department \(\begin{aligned} & \text { of Transportation }\end{aligned}\)

\section*{Abbreviated Crash Report}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{8 Iowa Department of Transportation} & \multicolumn{3}{|l|}{Abbreviated Crash Report} & \multirow[t]{3}{*}{Repoot Vesion 1.2amideos} \\
\hline & & & & & & \\
\hline Date & DOT Case \# & Agency Case \# & City & Crash Sev. & Literal Description & \\
\hline 02/07/2004 & 2004209126 & 20040000527 & Ottumwa & PDO & ON SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 06/30/2004 & 2004229948 & 20040002603 & Ottumwa & PDO & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 07/02/2004 & 2004230831 & 20040002629 & Ottumwa & PDO & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 09/22/2004 & 2004244403 & 20040003790 & Ottumwa & Poss/Unk & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 10/20/2004 & 2004250210 & 20040004173 & Ottumwa & PDO & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 12/16/2004 & 2004266708 & 20040004922 & Ottumwa & Poss/Unk & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 08/09/2005 & 2005236714 & 20050003130 & Ottumwa & PDO & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 09/30/2005 & 2005244655 & 20050003847 & Ottumwa & PDO & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 12/12/2005 & 2005259428 & 20050004769 & Ottumwa & PDO & SECOND ST AND SO MARION ST AND NO MARION & \\
\hline 12/30/2005 & 2005265108 & 20050004994 & Ottumwa & PDO & SECOND ST and SO MARION ST and NO MARION & \\
\hline 09/05/2006 & 2006237655 & 20060003764 & Ottumwa & Poss/Unk & SECOND ST AND \(0 / \mathrm{S}\) MARION ST AND \(0 / \mathrm{N}\) MARION & \\
\hline 10/16/2006 & 2006245501 & 20060004378 & Ottumwa & PDO & SECOND ST AND \(0 / \mathrm{S}\) MARION ST AND \(0 / \mathrm{N}\) MARION & \\
\hline 10/30/2006 & 2006248062 & 20060004566 & Ottumwa & Poss/Unk & SECOND ST AND \(0 / \mathrm{S}\) MARION ST AND \(0 / \mathrm{N}\) MARION & \\
\hline 11/07/2006 & 2006250872 & 20060004677 & Ottumwa & PDO & SECOND ST AND \(0 / \mathrm{S}\) MARION ST AND \(0 / \mathrm{N}\) MARION & \\
\hline 01/12/2007 & 2007201610 & 20070000167 & Ottumwa & Poss/Unk & SECOND ST AND \(0 / \mathrm{S}\) MARION ST AND \(0 / \mathrm{N}\) MARION & \\
\hline 11/19/2007 & 2007405241 & 20070005152 & Ottumwa & Minor & W 2ND ST and \(0 / \mathrm{S}\) MARION ST and \(0 / \mathrm{N}\) MARION ST & \\
\hline 12/08/2007 & 2007408743 & 20070005450 & Ottumwa & PDO & \(W\) 2ND ST and \(0 / \mathrm{S}\) MARION ST and \(0 / \mathrm{N}\) MARION ST & \\
\hline 02/21/2008 & 2008428045 & 20080000818 & Ottumwa & Minor & \(W\) 2ND ST and \(0 / \mathrm{S}\) MARION ST and \(0 / \mathrm{N}\) MARION ST & \\
\hline 03/28/2008 & 2008434645 & 20080001408 & Ottumwa & PDO & SECOND AND MARION & \\
\hline 06/02/2008 & 2008444079 & 20080002577 & Ottumwa & Minor & W 2ND ST and \(0 / \mathrm{S}\) MARION ST and \(0 / \mathrm{N}\) MARION ST & \\
\hline 05/14/2009 & 2009507098 & 20090002157 & Ottumwa & Poss/Unk & \(0 / \mathrm{N}\) MARION ST and \(0 / \mathrm{S}\) MARION ST and W 2ND ST & \\
\hline 04/22/2010 & 2010575500 & 20100001716 & Ottumwa & PDO & W 2ND ST & \\
\hline 08/04/2010 & 2010584650 & 20100003378 & Ottumwa & Poss/Unk & \(N\) MARION ST and W 2ND ST and S MARION ST & \\
\hline 12/22/2010 & 2010609585 & 20100005637 & Ottumwa & PDO & \(N\) MARION ST and W 2ND ST and S MARION ST & \\
\hline 03/11/2011 & 2011622921 & 20110001111 & Ottumwa & Poss/Unk & W 2ND ST AND S MARION ST & \\
\hline 10/20/2011 & 2011654869 & 20110004741 & Ottumwa & PDO & W 2ND ST AND S MARION ST & \\
\hline 11/03/2011 & 2011654870 & 20110004951 & Ottumwa & Minor & \(N\) MARION ST and W 2ND ST and S MARION ST & \\
\hline 05/07/2012 & 2012684602 & 20120002230 & Ottumwa & PDO & \(N\) MARION ST and S MARION ST and W 2ND ST & \\
\hline 05/29/2012 & 2012687777 & 20120002613 & Ottumwa & Minor & \(N\) MARION ST and S MARION ST and W 2ND ST & \\
\hline 07/31/2012 & 2012697270 & 20120003674 & Ottumwa & PDO & \(N\) MARION ST and S MARION ST and W 2ND ST & \\
\hline 06/15/2013 & 2013744811 & 20130002889 & Ottumwa & PDO & W 2ND ST AND N MARION ST AND S MARION ST & \\
\hline 09/19/2013 & 2013759863 & 20130004670 & Ottumwa & PDO & W 2ND ST AND N MARION ST AND S MARION ST & \\
\hline
\end{tabular}
Abbreviated Crash Report

\section*{Crash Detail Report}
\begin{tabular}{cl}
\hline 2005236714 & \(08 / 09 / 2005\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND ST AND SO MARION ST AND NO MARION

Major Cause: Ran stop sign
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: \(0 \quad\) Light Conditions: Daylight
Minor Injuries: \(0 \quad\) Weather Conditions: Clear
Possible Injuries: \(0 \quad\) Drug/Alc Involved: none indicated
Unknown Injuries: \(0 \quad\) Property Damage: \(\$ 4000 \quad\) Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & North & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Passenger car & Van or mini-van & 0 \\
\hline Driver Age: & 49 & 25 & 0 \\
\hline Driver Gender: & F & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & none & Ran stop sign & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2005244655 & \(09 / 30 / 2005\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND ST AND SO MARION ST AND NO MARION
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
ause: Ran stop sign \\
Type:Intersection: Fou \\
erity:PDO \\
lities: 0 \\
uries: 0 \\
uries: 0 \\
uries: 0 \\
uries: 0
\end{tabular} & \begin{tabular}{l}
intersection of Crash: Broadside onditions: Dry \\
onditions: Daylight \\
onditions: Cloudy \\
Involved:none indicat \\
Damage: \$5000
\end{tabular} & & ber o & hicles: 2 \\
\hline \begin{tabular}{l}
Init Trav Dir: \\
Veh Action: \\
Configuration: \\
Driver Age: \\
Driver Gender: \\
Driver Cond: \\
Drivr Contr 1: \\
Drivr Contr 2: \\
Fixed Object:
\end{tabular} & \begin{tabular}{l}
Unit 1 \\
West \\
Essentially straight \\
Passenger car \\
35 \\
M \\
Normal \\
none \\
not reported \\
none
\end{tabular} & \begin{tabular}{l}
Unit 2 \\
North \\
Essentially straight \\
Passenger car \\
77 \\
M \\
Normal \\
Ran stop sign \\
not reported \\
none
\end{tabular} & \begin{tabular}{l}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular} & & \\
\hline \multicolumn{3}{|l|}{7/28/2015 Crash Mapping Analysis Tool Page: 1 of 17} & & & \\
\hline
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{|cl|}
\hline 2005259428 & \(12 / 12 / 2005\) 11:41 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND ST AND SO MARION ST AND NO MARION

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry

Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0
\begin{tabular}{|l||l|}
\hline Unit 2 & \begin{tabular}{l}
Unit 3 \\
West \\
Essentially straight \\
Passenger car \\
22 \\
M \\
Normal \\
none \\
not reported \\
none
\end{tabular} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}
\begin{tabular}{cl}
2005265108 & \(12 / 30 / 2005\) 20:50 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND \(S T\) and SO MARION ST and NO MARION

\section*{Crash Detail Report}
\begin{tabular}{ll}
\hline 2006237655 & 09/05/2006 10:27 \\
County: 90 & City:Ottumwa
\end{tabular} SECOND ST AND \(0 /\) S MARION ST AND \(0 /\) N MARION

Major Cause: Ran stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 1
Weather Conditions: Partly cloudy
Drug/Alc Involved: none indicated
Unknown Injuries: \(0 \quad\) Property Damage: \(\$ 4000 \quad\) Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & North & West & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Passenger car & Passenger car & 0 \\
\hline Driver Age: & 48 & 76 & 0 \\
\hline Driver Gender: & F & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & Ran stop sign & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2006245501 & 10/16/2006 16:50 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND ST AND 0 / S MARION ST AND 0 / N MARION

\section*{Crash Detail Report}
\begin{tabular}{ll}
\hline 2006248062 & 10/30/2006 16:47 \\
County:90 & City:Ottumwa
\end{tabular} SECOND ST AND \(0 /\) S MARION ST AND \(0 /\) N MARION

Major Cause: Ran stop sign
Roadway Type:Intersection: Other intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Dusk

Possible Injuries: 1 Drug/Alc Involved: none indicated
Weather Conditions: Clear

\begin{tabular}{|ll}
\hline 2006250872 & 11/07/2006 13:00 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND ST AND 0 / S MARION ST AND 0 / N MARION

\section*{Crash Detail Report}
\begin{tabular}{ll}
\hline \begin{tabular}{ll}
2007201610 & \(01 / 12 / 2007\) \\
County: 90 & City:Ottumwa
\end{tabular} & SECOND ST AND \(0 / 46\) \\
\end{tabular}

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 1
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Unknown Injuries: 0 Property Damage: \$2429} & Number of Vehicles: 2 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & North & West & 0 & \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 & \\
\hline Configuration: & Passenger car & 4-tire light truck & 0 & \\
\hline Driver Age: & 24 & & 0 & \\
\hline Driver Gender: & F & & & \\
\hline Driver Cond: & Normal & Normal & 0 & \\
\hline Drivr Contr 1: & FTY from stop sign & none & 0 & \\
\hline Drivr Contr 2: & not reported & not reported & 0 & \\
\hline Fixed Object: & none & none & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2007405241 & \(11 / 19 / 200714: 29\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND \(S T\) and \(0 / S\) MARION ST and \(0 /\) N MARION ST

\section*{Crash Detail Report}

Report Version 1.3 Aug 2006
\begin{tabular}{|c|c|}
\hline \begin{tabular}{ll}
2007408743 & 12/08/2007 14:06 \\
County:90 & City:Ottumwa
\end{tabular} & W 2ND ST and \(0 / \mathrm{S}\) MARION ST and \(0 / \mathrm{N}\) MARION ST \\
\hline
\end{tabular}

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Snow

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Partly cloudy

Unknown Injuries: 0
Drug/Alc Involved: none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{: \(0 \quad\) Property Damage: \(\$ 5500\)} & Number of Vehicles: 2 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & West & North & 0 & \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 & \\
\hline Configuration: & Passenger car & Passenger car & 0 & \\
\hline Driver Age: & 41 & & 0 & \\
\hline Driver Gender: & M & & & \\
\hline Driver Cond: & Normal & Normal & 0 & \\
\hline Drivr Contr 1: & none & FTY from stop sign & 0 & \\
\hline Drivr Contr 2: & not reported & not reported & 0 & \\
\hline Fixed Object: & none & none & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2008428045 & \(02 / 21 / 2008\) 01:48 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) ND \(S T\) and \(0 / S\) MARION ST and \(0 /\) N MARION ST

\section*{Crash Detail Report}
\begin{tabular}{cl}
\hline 2008434645 & \(03 / 28 / 2008\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SECOND AND MARION

Major Cause: Ran stop sign
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 0
Weather Conditions: Clear
Possible Injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$2000
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & North & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Van or mini-van & Passenger car & 0 \\
\hline Driver Age: & 64 & & 0 \\
\hline Driver Gender: & F & & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & none & Ran stop sign & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2008444079 & \(06 / 02 / 200814: 40\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND \(S T\) and \(0 / S\) MARION ST and \(0 /\) N MARION ST

\section*{Crash Detail Report}

Report Versison 1.3 Aug 2006
\begin{tabular}{ll}
\hline 2009507098 & \(05 / 14 / 200915: 22\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad 0 / \mathrm{N}\) MARION \(S T\) and \(0 / \mathrm{S}\) MARION ST and W 2ND ST

Major Cause: Inattentive/distracted by: Use of phone or other device
Roadway Type:Intersection: Four-way intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 1
Weather Conditions: Partly cloudy
Drug/Alc Involved: none indicated
Unknown Injuries: \(0 \quad\) Property Damage: \(\$ 10000 \quad\) Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & North & West & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Van or mini-van & Sport utility vehicle & 0 \\
\hline Driver Age: & 35 & 38 & 0 \\
\hline Driver Gender: & F & & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & Distracted phone/device & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2010575500 & \(04 / 22 / 2010 \quad 11: 15\) \\
County: 90 & City:Ottumwa
\end{tabular} 2ND ST

Major Cause: unknown
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Rear-end
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$2500
Number of Vehicles: 2
\begin{tabular}{|l||l|}
\hline Unit 2 & Unit 3 \\
West & 0 \\
Essentially straight & 0 \\
Passenger car \\
80 \\
F \\
Normal & 0 \\
unknown & 0 \\
not reported \\
none & 0 \\
0 \\
0
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{|ll|}
\hline 2010584650 & \(08 / 04 / 201011: 51\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) MARION ST and \(W\) 2ND ST and \(S\) MARION ST

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 0
Weather Conditions: Cloudy
Possible Injuries: 2
Drug/Alc Involved: none indicated

\begin{tabular}{|cl|}
\hline 2010609585 & \(12 / 22 / 2010\) N MARION \(S T\) and \(W\) 2ND \(S T\) and \(S\) MARION ST \\
County: 90 & City:Ottumwa
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{ll}
\hline 2011622921 & \begin{tabular}{l}
\(03 / 11 / 2011\) \\
County: 90
\end{tabular} \\
City:Ottumwa
\end{tabular}\(\quad\) W 2ND ST AND S MARION ST

Major Cause: Made improper turn
Roadway Type:Non-intersection: No special feature
Severity:Poss/Unk Manner of Crash:Sideswipe, same direction

Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry
Light Conditions: Dusk
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0
\begin{tabular}{|c|c|}
\hline & Unit 1 \\
\hline Init Trav Dir: & West \\
\hline Veh Action: & Turning left \\
\hline Configuration: & 4-tire light truck \\
\hline Driver Age: & 65 \\
\hline Driver Gender: & M \\
\hline Driver Cond: & Normal \\
\hline Drivr Contr 1: & Made improper turn \\
\hline Drivr Contr 2: & not reported \\
\hline Fixed Object: & none \\
\hline
\end{tabular}

Number of Vehicles: 2
\begin{tabular}{|l||l||}
\hline Unit 2 & Unit 3 \\
West & 0 \\
Essentially straight & 0 \\
Passenger car \\
41 \\
M \\
Normal & 0 \\
unknown & 0 \\
not reported & 0 \\
none & 0 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 2011654869 & \(10 / 20 / 2011\) 15:26 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND ST AND S MARION ST

\section*{Crash Detail Report}
\begin{tabular}{cl}
\hline 2011654870 & \(11 / 03 / 2011\) 11:36 MARION \(S T\) and \(W\) 2ND \(S T\) and \(S\) MARION ST \\
County: 90 & City:Ottumwa
\end{tabular}

Major Cause: Ran stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Minor Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: \(0 \quad\) Light Conditions: Daylight
Minor Injuries: \(1 \quad\) Weather Conditions: Cloudy
Possible Injuries: \(0 \quad\) Drug/Alc Involved: none indicated
Unknown Injuries: \(0 \quad\) Property Damage: \(\$ 8000 \quad\) Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & North & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Passenger car & Sport utility vehicle & 0 \\
\hline Driver Age: & 62 & 26 & 0 \\
\hline Driver Gender: & M & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & none & Ran stop sign & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2012684602 & \(05 / 07 / 2012\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) N MARION \(S T\) and \(S\) MARION ST and W 2ND ST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Major Cause: Ran stop sign \\
Roadway Type:Intersection: Fo \\
Severity:PDO \\
Fatalities: 0 \\
Major Injuries: 0 \\
Minor Injuries: 0 \\
Possible Injuries: 0 \\
Unknown Injuries: 0 \\
Unit 1 \\
Init Trav Dir: North \\
Veh Action: Essentially straight \\
Configuration: Passenger car \\
Driver Age: 24 \\
Driver Gender: M \\
Driver Cond: Normal \\
Drivr Contr 1: Ran stop sign \\
Drivr Contr 2: not reported \\
Fixed Object: none
\end{tabular}}} & \begin{tabular}{l}
intersection \\
of Crash: Broadside \\
onditions: Dry \\
nditions: Daylight \\
nditions: Clear \\
Involved:none indicated \\
Damage: \$5500
\end{tabular} & \multicolumn{3}{|r|}{Number of Vehicles: 2} \\
\hline & & \begin{tabular}{l}
Unit 2 \\
West \\
Essentially straight \\
Sport utility vehicle \\
32 \\
M \\
Normal \\
none \\
not reported \\
none
\end{tabular} & \begin{tabular}{|l}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{7/28/2015 Crash Mapping Analysis Tool Page: 11 of 17} \\
\hline
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{|cl|}
\hline 2012687777 & \(05 / 29 / 2012\) 10:47 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) MARION \(S T\) and \(S\) MARION ST and W 2ND ST

Major Cause: Other: No improper action
Roadway Type:Non-intersection: No special feature
Severity:Minor Manner of Crash: Non-collision
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: \(0 \quad\) Light Conditions: Daylight
Minor Injuries: 3
Weather Conditions: Clear
Possible Injuries: 0
Drug/Alc Involved: none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Property Damage: \$550} & Number of Vehicles: 1 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & South & 0 & 0 & \\
\hline Veh Action: & Turning right & 0 & 0 & \\
\hline Configuration: & Sport utility vehicle & 0 & 0 & \\
\hline Driver Age: & 48 & 0 & 0 & \\
\hline Driver Gender: & F & & & \\
\hline Driver Cond: & Normal & 0 & 0 & \\
\hline Drivr Contr 1: & none & 0 & 0 & \\
\hline Drivr Contr 2: & not reported & 0 & 0 & \\
\hline Fixed Object: & none & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2012697270 & \(07 / 31 / 2012\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) N MARION \(S T\) and \(S\) MARION ST and W 2ND ST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Major Cause: Ran stop sign \\
Roadway Type:Intersection: Fo \\
Severity:PDO \\
Fatalities: 0 \\
Major Injuries: 0 \\
Minor Injuries: 0 \\
Possible Injuries: 0 \\
Unknown Injuries: 0 \\
Unit 1 \\
Init Trav Dir: West \\
Veh Action: Essentially straight \\
Configuration: 4-tire light truck \\
Driver Age: 48 \\
Driver Gender: M \\
Driver Cond: Normal \\
Drivr Contr 1: none \\
Drivr Contr 2: not reported \\
Fixed Object: none
\end{tabular}}} & \begin{tabular}{l}
intersection \\
of Crash: Broadside \\
onditions: Dry \\
nditions: Daylight \\
nditions: Partly cloudy \\
Involved:none indicated \\
Damage: \$9500
\end{tabular} & \multicolumn{3}{|r|}{Number of Vehicles: 2} \\
\hline & & \begin{tabular}{l}
Unit 2 \\
North \\
Essentially straight \\
Sport utility vehicle \\
18 \\
F \\
Normal \\
Ran stop sign \\
not reported \\
none
\end{tabular} & \begin{tabular}{|l}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{7/28/2015 Crash Mapping Analysis Tool Page: 12 of 17} \\
\hline
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{ll}
2013744811 & \(06 / 15 / 2013\) 09:44 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND ST AND N MARION ST AND \(S\) MARION ST

Major Cause: Ran stop sign
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 0
Weather Conditions: Clear
Possible Injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$2000
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & North & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Van or mini-van & Passenger car & 0 \\
\hline Driver Age: & 54 & 57 & 0 \\
\hline Driver Gender: & M & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & none & Ran stop sign & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2013759863 & \(09 / 19 / 2013\) 12:57 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND ST AND N MARION ST AND S MARION ST

\section*{Crash Detail Report}
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{cl}
2014807536 & 07 / 11 / 2014 \text { 12:15 } \\
\text { County: } 90 & \text { City:Ottumwa }
\end{array}
\] & W 2ND ST AND N MARION ST AND \(S\) MARION ST \\
\hline
\end{tabular}

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Minor Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 1
Weather Conditions: Partly cloudy
Possible Injuries: 1
Drug/Alc Involved: none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Property Damage: \$6000} & Number of Vehicles: 2 \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & North & East & 0 & \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 & \\
\hline Configuration: & Passenger car & 4-tire light truck & 0 & \\
\hline Driver Age: & 42 & 40 & 0 & \\
\hline Driver Gender: & F & F & & \\
\hline Driver Cond: & Normal & Normal & 0 & \\
\hline Drivr Contr 1: & FTY from stop sign & none & 0 & \\
\hline Drivr Contr 2: & not reported & not reported & 0 & \\
\hline Fixed Object: & none & none & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2014819625 & \(10 / 02 / 2014\) 13:05 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND ST AND N MARION ST AND S MARION ST

\section*{Crash Detail Report}
\begin{tabular}{|cl|l|l|l|l}
\hline 2015840328 & \(01 / 13 / 201507: 56\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) SND ST AND N MARION ST AND S MARION ST

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 1
Weather Conditions: Clear
Possible Injuries: \(1 \quad\) Drug/Alc Involved: none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(n\) Injuries: \(0 \quad\) Property Damage: \$21000} & \multirow[t]{11}{*}{Number of Vehicles: 2} \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: & North & East & 0 & \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 & \\
\hline Configuration: & 4-tire light truck & Sport utility vehicle & 0 & \\
\hline Driver Age: & 50 & 48 & 0 & \\
\hline Driver Gender: & F & M & & \\
\hline Driver Cond: & Normal & Normal & 0 & \\
\hline Drivr Contr 1: & FTY from stop sign & none & 0 & \\
\hline Drivr Contr 2: & not reported & not reported & 0 & \\
\hline Fixed Object: & none & none & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2015848126 & \(02 / 27 / 2015\) \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND ST AND N MARION ST AND S MARION ST

\section*{Crash Detail Report}
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{cl}
2015850655 & 03 / 14 / 2015 \text { 12:58 } \\
\text { County:90 } & \text { City:Ottumwa }
\end{array}
\] & W 2ND ST AND N MARION ST AND S MARION ST \\
\hline
\end{tabular}

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:Poss/Unk Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 0
Weather Conditions: Clear
Possible Injuries: 1
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$3500
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & North & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Passenger car & 4-tire light truck & 0 \\
\hline Driver Age: & 48 & 51 & 0 \\
\hline Driver Gender: & F & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & none & FTY from stop sign & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
2015866227
\] & \[
05 / 08 / 2015 \text { 11:29 }
\] & W 2ND ST AND N MARION ST AND S MARION ST \\
\hline County:90 & City:Ottumwa & \\
\hline
\end{tabular}

\section*{Crash Detail Report}

Major Cause: FTY from stop sign
Roadway Type:Intersection: Four-way intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: 0
Light Conditions: Daylight
Minor Injuries: 0
Weather Conditions: Clear
Possible Injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$2000
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & North & West & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Passenger car & Van or mini-van & 0 \\
\hline Driver Age: & 27 & & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & FTY from stop sign & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2015865153 & \(06 / 18 / 2015\) 14:15 \\
County: 90 & City:Ottumwa
\end{tabular}\(\quad\) 2ND ST AND N MARION ST AND S MARION ST

2014 Iowa DOT Traffic Map
\begin{tabular}{|c|c|}
\hline Road Name & 2014 Iowa DOT AADT \\
\hline Marion Street & 1980 \\
\hline \(2^{\text {nd }}\) Street & 2920 \\
\hline
\end{tabular}

Intersection or Spot Benefit / Cost Safety Analysis Iowa DOT Office of Traffic \& Safety

County: Wapello
Prepared by: \(\qquad\) Date Prepared: Aug 14, 2015

Intersection: S Marion \& 2nd Street W - Ottumwa, Iowa
Improvement
Proposed Improvement(s)
Conversion to Mini Roundabout
Existing 2-way Stop at 4-way intersection
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\$ 223,700} & \multicolumn{3}{|l|}{Estimated Improvement Cost, EC 20} & Est. Improvement Life, years, \(\mathbf{Y}\) \\
\hline & & Other Annual Cost (after initial year), AC & & 65 & Crash Reduction Factor (integer), CRF \\
\hline \$ & - & Present Value Other Annual Costs, OC & & 4.0\% & Discount Rate (time value of \$), INT \\
\hline & & \[
O C=\frac{A C}{I^{N T}}\left(1-\frac{1}{V}\right)
\] & \$ & 223,700 & Present Value Cost, COST \(=\mathrm{EC}+\mathrm{OC}\) \\
\hline
\end{tabular}

\section*{Traffic Volume Data}

Source:
Iowa DOT 2014 Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

\(1.0 \%\) Projected Traffic Growth (0\%-10\%), G
4,900 Current Daily Entering Vehicles, DEV

1,788,500 Current Annual Entering Veh., AEV = DEV * 365
5,979 veh / day, Final Year DEV, FDEV
39.38 MEV, Total Million Entering Veh. Over life of Project, TMEV
\(T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}\)

Crash Data

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 1,122,963: \$ 223,700 \quad=\frac{5.02}{}: 1
\]

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION
DATE: August 6, 2015
Phase 1 Riverside Rd, PCC Overlay w/ Paved Shoulders
Location / Title of Project \& Rumble Strips

Applicant Washington County
Contact Person Jacob Thorius Title County Engineer

Complete Mailing Address
210 W Main Street, Suite 2
Washington, IA 52353

Phone
E-Mail thorius@co.washington.ia.us

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone
E-Mail \(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

Application Type
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

Funding Amount

Total Project Cost
Safety Funds Requested
\$ 2,039,026.93
\$ 500,000.00

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the County of Washington

Signed:

Jack Seward, Jr.
Typed Name

Attest:

Daniel L. Widmer
Typed Name

\section*{RESOLUTION 15-34}

\section*{APPROVAL OF TRANSPORTATION SAFETY IMPROVEMENT PROGRAM APPLICATION FOR RIVERSIDE ROAD, PHASE 1}

WHEREAS, the Iowa Department of Transportation has adopted Administrative Rule 761 - Chapter 164, which created the Traffic Safety Improvement Program (TSIP) to allow for funding to be provided to local jurisdictions for eligible traffic safety improvement projects; and

WHEREAS, past traffic data shows the existing W61 corridor has an accident history and safety for the traveling public could be improved by incorporating safety improvements such as roadway widening and paved shoulders; and

WHEREAS, the overlay of W61 between G36 and G26 is included in the Washington County Five (5) Year Construction Program; and

WHEREAS, the Washington County Engineer recommends the TSIP application be submitted to the Iowa Department of Transportation for possible safety funding of the above mentioned project.

IT IS THEREFORE RESOLVED by the Washington County Board of Supervisors to endorse the above mentioned project and authorize the maintenance of the improvement after construction is complete;

BE IT FURTHER RESOLVED that the Chairperson of the Washington County Board of Supervisors be authorized to sign said funding application and direct the County Engineer to submit the application to the Iowa Department of Transportation for possible Traffic Safety Improvement Funding.

Adopted this \(/ /^{\text {th }}\) day of August, 2015.
The vote on the resolution:
Aye Sew and Stoops Young Yoder Miller
Nay
Abstain \(\qquad\)

Attest:

DANIEL L. WIDMER
County Auditor

Washington County is applying for Traffic Safety Improvement Program (TSIP) funds to be used for improving the safety on W61 (Riverside Road) from G36 (220 th Street) to G26 (190 \({ }^{\text {th }}\) Street), approximately 4.0 miles. TSIP funds are being sought to aid in the placement of a 24 foot PCC overlay with 2 foot paved shoulders and 8 " rumble strips. This overlay project will increase the width of the travel lanes and add a paved shoulder with rumbles that will help to improve the safety for the traveling public by giving them a notification they are drifting off the road. This notification and wider pavement will give the driver more time to react and correct the problem before they encounter gravel and/or an edge rut.

Currently the road is a 20 foot wide PCC pavement with 8 foot granular shoulders that was originally constructed in 1962. This stretch of road has seven curves, of which two are ninety degree changes in direction, and numerous patches have been placed on this aging pavement. When this road was originally constructed, the standards used to build the road called for 10 ’ lanes with 2:1 foreslopes and variable backslopes. The narrowness of the lanes and the curves in the road contribute to edge ruts developing from the wind whip created by passing vehicles and their tires dropping off the edge of the pavement as they drift around curves. The combination of the edge rut, which tends to cause a driver to over correct if they drop off the pavement in to the rut, and the existing slopes create a safety hazard for the public. W61 is the main road from Washington to Riverside and the annual average traffic count on this stretch of road between G36 and G26 is 390 vpd.

The majority of the reported accidents over the last five years have been minor in nature and have involved the driver over correcting and swerving to avoid the ditch. A wider road and paved shoulders will greatly reduce the amount of wind whipping away the granular shoulder and vehicles dropping off of the pavement, both of which are causing an edge rut to develop alongside the pavement. In addition rumble strips will be placed within the paved shoulder, and will alert drivers sooner that they are veering off the paved driving surface. This will give them more time to react and correct the travel of their vehicle. The increased hard surfaced driving area and reduced rutting will help in being proactive to reduce the number of future accidents and unreported near miss accidents.

\section*{PAVEMENT OVERLAY}

\section*{PAVEMENT OVERLAY W/ PAVED SHOULDER}

Itemized Breakdown of All Costs:
Please see the attached sheet for the cost breakdown, showing improvements made with and without the safety funds.

Below is a breakdown of the anticipated funding for the project, with and without the safety improvement. For the safety improvement of two foot paved shoulders with rumble strips, Washington County is requesting \(\$ 500,000\) in TSIP funds.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Funding Source Breakdown } \\
\hline With Safety Improvement & & \multicolumn{2}{|l|}{ Without Safety Improvement } \\
\hline Funding Source & Amount & Funding Source & Amount \\
\hline Federal Aid (STP) & \(\$ 1,231,000\) & & Federal Aid (STP) & \(\$ 1,254,000\) \\
\hline Farm to Market (FM) & \(\$ 308,000\) & & Farm to Market (FM) & \(\$ 313,000\) \\
\hline TSIP & \(\$ 500,000\) & & TSIP & \(\$ 0\) \\
\hline Total & \(\$ 2,039,000\) & Total & \(\$ 1,567,000\) \\
\hline
\end{tabular}

Time Schedule:

TSIP Application
Preliminary Project Design
TSIP Funding Award
Final Project Design
TSIP Funds Available
Project Letting
Project Construction

August 15, 2015
October 2015
December 2015
March 2016
July 2016
November 2016
April 2017-September 2017

If the project is awarded TSIP funds, the letting and construction date may be pushed back one to two years in order to tie this project in with some additional overlay work. This would be done to try and obtain better unit price for a larger funded set of projects.

Мар:

Color Pictures:

Typical section of existing pavement; notice edge rutting that is developing along edge of pavement.

Edge rutting developing on topside of curve because of narrowness of the pavement.

Typical intersection of pavement and rock road, notice the rock that is tracked on to the driving surface, creating a safety hazard, in the center of the picture.

Typical section, notice edge rutting developing along straight stretch of pavement.

Plan View \& Aerial:

Copies of Actual Investigating Officer's Report of Motor Vehicle Accident:
See attached set of accident reports supplied by the Washington County Sheriff's Office

Traffic Volume:
The 2014 AADT for this stretch of the Riverside Road (W61) is 390
Turning movement and intersection counts are not available for this stretch of road.
Traffic Signals - N/A K K
L
Benefit/Cost Ratio:
See attached worksheet
The following Crash Modification Factors (CMF) were used in the calculation of the Benefit/Cost Ratio:

CMF ID: 6690 - Pave Shoulder, with a CRF of 18
CMF ID: 3478 - Install Shoulder Rumble Strips, with a CRF of 28
These factors were combined in the Excel spreadsheet to create a cumulative CRF of 40.96 and a service life of 35 years was used for the 8 " PCC Unbonded Overlay; the widening unit and paved shoulder will be approximately 12 " thick. The B/C Ratio was calculated to be 1.92.

A CMF for widening the existing pavement from 20' to \(24^{\prime}\) was not included as that is not part of the safety grant, but was considered as it will add a positive benefit to the roadway and reducing potential crashes. If that were to be included in the analysis, then CMF ID: 4811 Change Lane Width from X to Y (in feet), with a CRF of 32 would have been used. Combining all three CRFs results in a cumulative CRF of 60 and a B/C Ratio of 2.82.

\section*{Crash Detail Report}

Riverside Road 190th St-G36 2004-2014 Crash Details

Major Cause:Ran stop sign
Roadway Type:Intersection: Four-way intersection

Severity:Major
Fatalities: 0
Major Injuries: 1
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:Broadside
Surface Conditions:Wet
Light Conditions:Daylight
Weather Conditions:Clear
Drug/Alc Involved:none indicated
Property Damage:\$5600
Number of Vehicles:2

\begin{tabular}{|l|}
\hline Unit 2 \\
East \\
Essentially straight \\
4-tire light truck \\
45 \\
M \\
Normal \\
Ran stop sign \\
not reported \\
none \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 & \\
0 \\
0 & \\
0 & \\
0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline \begin{tabular}{c}
2010590381 \\
County:92
\end{tabular} & \begin{tabular}{l}
07/25/2010 02:00 \\
City:
\end{tabular} \\
\hline
\end{tabular}

Major Cause:Driving too fast for conditions
Roadway Type:Non-intersection: No special feature

Severity: Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Dry
Light Conditions:Dark - roadway not lighted
Weather Conditions:Clear
Drug/Alc Involved:Drug/Alcohol: Statutory
Property Damage: \(\$ 1000\)
Number of Vehicles: 1
\begin{tabular}{r|l|}
\cline { 2 - 3 } & Unit 1 \\
Init Trav Dir: & South \\
Veh Action: & Essentially straight \\
Configuration: & Fassenger car \\
Driver Age: & 23 \\
Driver Gender: & M \\
Driver Cond: & Infl by alc/drugs/meds \\
Drivr Contr 1: & Too fast for conditions \\
Drivr Contr 2: & Swerved to avoid \\
Fixed Object: & Ditch/embankment \\
\hline
\end{tabular}

\begin{tabular}{|cl|}
\hline 2011620432 & \(01 / 25 / 2011\) 15:40 \\
\hline County:92 & City:
\end{tabular}

Major Cause:Swerving/evasive action
Roadway Type:Non-intersection: No special feature

Severity:Minor
Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0
Unknown Injuries: 0
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Major Cause:Swerving/evasiv \\
Roadway Type:Non-intersection \\
Severity:Minor \\
Fatalities: 0 \\
Major Injuries: 0 \\
Minor Injuries: 1 \\
Possible Injuries: 0 \\
Unknown Injuries: 0
\end{tabular} & \begin{tabular}{l}
pecial \\
of Crash \\
onditions: \\
onditions \\
onditions \\
Involved \\
Damage
\end{tabular} & \\
\hline Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: North & 0 & 0 \\
\hline Veh Action: Essentially straight & 0 & 0 \\
\hline Configuration: Passenger car & 0 & 0 \\
\hline Driver Age: 16 & 0 & 0 \\
\hline Driver Gender: F & & \\
\hline Driver Cond: Normal & 0 & 0 \\
\hline Drivr Contr 1: Lost control & 0 & 0 \\
\hline Drivr Contr 2: Swerved to avoid & 0 & 0 \\
\hline Fixed Object: Ditch/embankment & 0 & 0 \\
\hline
\end{tabular}

Manner of Crash:Non-collision Surface Conditions:Ice

Light Conditions: Daylight
Weather Conditions:Clear
Drug/Alc Involved:none indicated
Property Damage: \(\$ 5000\) Number of Vehicles: 1
\begin{tabular}{|ll|}
\hline \begin{tabular}{c}
2012700627 \\
County:92
\end{tabular} & \begin{tabular}{l}
08/08/2012 14:35 \\
City:
\end{tabular} \\
\hline
\end{tabular}

Major Cause:Swerving/evasive action
Roadway Type:Non-intersection: No special feature

Severity:Minor
Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0 Unknown Injuries: 0

Manner of Crash:Non-collision
Surface Conditions:Dry
Light Conditions:Daylight
Weather Conditions:Clear Drug/Alc Involved:none indicated Property Damage: \(\$ 3500\)

Number of Vehicles:1

\begin{tabular}{|c|c|}
\hline Unit 2 & Unit 3 \\
\hline 0 & 0 \\
\hline
\end{tabular}

Page: 6 of 6

\section*{Iowa DOT Office of Traffic \& Safety}

County: \(\qquad\) Prepared by: \(\qquad\) Date Prepared: \(\qquad\) Jul 29, 2015

Location: W61 (Riverside Road) from G36 (220th Street) north to G26 (190th Street)
Improvement
Proposed Improvement(s): 28' PCC Overlay with lanes widened to 12' from 10', paved shoulders 2' wide, and edgeline rumble strips
\$ 500,000 Estimated Improvement Cost, EC
\$ \(\quad\) - Other Annual Cost (after initial year), AC
\$ - Present Value Other Annual Costs, OC
\(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)
\begin{tabular}{ll}
35 & Est. Improvement Life, years, Y \\
\hline 41 & Crash Reduction Factor (integer), CRF
\end{tabular} 4.0\% Discount Rate, INT
\(\$ \quad 500,000\) Present Value All Costs, COST = EC + OC

\section*{Traffic Volume Data}
\begin{tabular}{l}
Source: \\
\cline { 2 - 3 } \begin{tabular}{l}
DOT Traffic Count Data \\
Two-way \\
Length (mi.) \\
veh/day Description
\end{tabular} \\
\begin{tabular}{|c|r|l|}
\hline 3.99 & 390 & From G36 to G26 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\end{tabular}
1.0\% Projected Traffic Growth (0\%-10\%), G
2014 Date of traffic count

1,556 Current Vehicle Miles / Day, VM
2,204 End of Life Veh. Miles / Day
567,977 Current Veh. Miles / Year, AM
23,662,058 Total Projected Veh. Miles Over Life of Project, TVMT
\[
T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
\]

\section*{Crash Data}
\begin{tabular}{c}
2010 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular}

First full year --> \(\qquad\) Last full year
5.0 years, Time Period, T values as of May 2014
4

Property Damage Only

8
Total Crashes, TA
1.60 Current Crashes / Year, AA = TA / T
\$ 68,650 Cost per Crash, AVCR = LOSS / TA
66.7 Total Expected Crashes, \(T C R=C R \times T V M T / 10^{\wedge} 8\)
0.66 Crashes Avoided First Year AAR = AA \(\times\) CRF / 100
\$ 44,990 Crash Costs Avoided in First Year, AAR \(\times\) AVCR
27.3 Total Avoided Crashes, TCR x CRF/ 100

Fatalities @ \$4,500,000 \$
\begin{tabular}{rlr}
\(\$ 325,000\) & \(\$\) & 325,000 \\
\(\$ 65,000\) & \(\$\) & 130,000 \\
\(\$ 35,000\) & \(\$\) & 35,000 \\
\(\$ 7,400\) & \(\$\) & 59,200
\end{tabular} \begin{tabular}{lrr}
Major Injuries @ & \(\$ 325,000\) & \(\$\) \\
Minor Injuries @ & \(\$ 65,000\) & \(\$\) \\
Possible Injuries @ & \(\$ 35,000\) & \(\$\) \\
(assumed cost per crash) & \(\$ 7,400\) & \(\$\) \\
-OR- enter all Property Costs of all crashes: & & 35,000 \\
\hline
\end{tabular} \begin{tabular}{lrr}
Major Injuries @ & \(\$ 325,000\) & \(\$\) \\
Minor Injuries @ & \(\$ 65,000\) & \(\$\) \\
Possible Injuries @ & \(\$ 35,000\) & \(\$\) \\
(assumed cost per crash) & \(\$ 7,400\) & \(\$\) \\
-OR- enter all Property Costs of all crashes: & & 35,000 \\
\hline
\end{tabular} \begin{tabular}{lrr}
Major Injuries @ & \(\$ 325,000\) & \(\$\) \\
Minor Injuries @ & \(\$ 65,000\) & \(\$\) \\
Possible Injuries @ & \(\$ 35,000\) & \(\$\) \\
(assumed cost per crash) & \(\$ 7,400\) & \(\$\) \\
-OR- enter all Property Costs of all crashes: & & 35,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 1.60 & Current Crashes / Year, AA = TA / T \\
\hline \$ & 68,650 & Cost per Crash, AVCR = LOSS / TA \\
\hline & 66.7 & Total Expected Crashes, TCR = CR x TVMT/10^8 \\
\hline & 0.66 & Crashes Avoided First Year AAR = AA \(\times\) CRF / 100 \\
\hline \$ & 44,990 & Crash Costs Avoided in First Year, AAR x AVCR \\
\hline & 27.3 & Total Avoided Crashes, TCR x CRF/ 100 \\
\hline
\end{tabular}
Total \$ Loss, LOSS \$ 549,200
281.7 Crashes / HMVM, Crash Rate, CR \(C R=T A \times 10^{\wedge} 8 /(A M \times T)\)
\(\$ \quad 961,313\) Present Value of Avoided Crashes, BENEFIT
\(B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)\)

\section*{Benefit / Cost Ratio}
\[
\text { Benefit }: \text { Cost }=\$ 961,313: \$ 500,000 \quad=\quad 1.92: 1
\]

\section*{District 6}

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION date: August 14,2015

Location / Title of Project Otterville Blacktop Shouldered
Applicant

hainan County Secondary Roads
contact Person Brysu T KEIERLEBER Title Buchanan County EnGzuere
Complete Mailing Address 1511 ST ST E Independence, Iowa

EMail engineer@ Qobuchanan:19.45

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).
Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone
E-Mail
\(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}

Site Specific Traffic Control Device Safety Study\(\boxtimes\)
\(\square\)
\(\square\)

Funding Amount

\author{
Total Project Cost \\ Safety Funds Requested
}

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT
To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Attest:

\[
\frac{E \| E N G A f f N e y}{\text { Typed Name }}
\]

\section*{TSIP Application August 14, 2015}

Buchanan County is requesting funds to assist in constructing shoulders, flattening slopes and flattening driveways from IA 150 to W-13 on D-16 (Otterville Blacktop) in Buchanan County lowa. The distance is 5.25 miles. Recent state law requires the strip, salvage and stockpile of soil driving costs up. This in addition to wetlands mitigation has caused the costs of constructing shoulders to become very expensive. Without funding assistance from other sources projects such as proposed will not occur. Currently there is approximately a 4' shoulder and 2:1 slopes. We are proposing to construct aa 8 ft . shoulder and 3:1 fore slopes in addition to 6:1 slopes on driveways. This allows for a future construction project of a 6 " PCC overlay with \(4^{\prime}\) paved shoulders and a safety edge. This would allow for a 1.5 ft . earth shoulder outside the paved shoulder to be up against the safety edge.
BiACHANAN GOuNTY

County:
Buchanan
Prepared by: \(\qquad\) Date Prepared: \(\qquad\)
Location:
D-16 (Otteville Blacktop) W-13 to IA 150

\section*{Improvement}

Proposed Improvement(s): Construct 10 ft . shoulders, pave the shoulders place a safety edge, center rumbles and \(\epsilon\)
\(\$ 1,160,000\) Estimated Improvement Cost, EC
\$ - Other Annual Cost (after initial year), AC
\$ - Present Value Other Annual Costs, OC
\(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)

20 Est. Improvement Life, years, Y
1 Crash Reduction Factor (integer), CRF
4.0\% Discount Rate, INT
\(\$ 1,160,000\) Present Value All Costs, \(\mathrm{COST}=\mathrm{EC}+\mathrm{OC}\)

\section*{Traffic Volume Data}

Source: IDOT Traffic Counts from Service Bureau \(\qquad\) Date of traffic count

Length (mi.) veh/day Description
4,121 Current Vehicle Miles / Day, VM
5,029 End of Life Veh. Miles / Day
1,504,311 Current Veh. Miles / Year, AM
33,123,430 Total Projected Veh. Miles Over Life of Project, TVMT
\(T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)\)

4.80 Current Crashes / Year, AA = TA / T
\$ 19,900 Cost per Crash, AVCR = LOSS / TA
105.7 Total Expected Crashes, \(T C R=C R \times T V M T / 10^{\wedge} 8\)
0.04 Crashes Avoided First Year AAR \(=A A \times C R F / 100\)
\$ 734 Crash Costs Avoided in First Year, AAR \(\times\) AVCR
0.8 Total Avoided Crashes, TCR x CRF/ 100
319.1 Crashes / HMVM, Crash Rate, CR \(C R=T A \times 10^{\wedge} 8 /(A M \times T)\)
\(\$ \quad 10,836\) Present Value of Avoided Crashes, BENEFIT
\[
B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{\gamma}\right)
\]

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 10,836: \$ 1,160,000 \quad=\quad 0.01: 1
\]

\section*{2010-2014* Reportable Crash History \\ D-16 Between W-13 and IA 150 \\ Buchanan County, lowa \\ (*2014 data downloaded 5/19/2015)}

Crashes I Injuries
Year County | Crashes Fatal Major Minor Poss/Unk PDO|Injuries Fatalities Major Minor Possible Unknown
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2010 Buchanan | & 7 & 0 & 0 & 1 & 1 & 5 & 1 & 3 & 0 & 0 & 2 & 1 & 0 \\
\hline 2011 Buchanan | & 5 & 0 & 0 & 0 & 2 & 3 & 1 & 2 & 0 & 0 & 0 & 2 & 0 \\
\hline 2012 Buchanan & 3 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2013 Buchanan & 2 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 2014 Buchanan & 6 & 0 & 0 & 0 & 0 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Totals: | & 23 & 0 & 0 & 2 & 3 & 18 & 1 & 6 & 0 & 0 & 3 & & \\
\hline
\end{tabular}
meeting the following criteria:
(This feature currently not operational.)

Feature Count Report (Monday, August 17, 2015 4:45:54 PM Central Daylight Time)
produced using: lowa's Safety Analysis, Visualization, and Exploration Resource (SAVER)
by:
Michael D. Pawlovich, Plı.D., P.E.
Traffic Safety/Crash Data Engineer
lowa Department of Transportation
Highway Division, Engineering Bureau, Traffic and Safety 800 Lincoln Way
Ames, Iowa 50010

CSEVERITY
\begin{tabular}{lllllllrrr}
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 2000 & 1 & 777 \\
Minor Injury & 0 & 2 & 0 & 2 & 0 & 0 & 18100 & 2 & 4 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 3800 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 3500 & 1 & 2 \\
Possible/Unknown & 0 & 1 & 0 & 0 & 1 & 0 & 8100 & 1 & 2 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 2000 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 5000 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 5100 & 2 & 2 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 3000 & 1 & 777 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 2000 & 1 & 777 \\
Possible/Unknown & 0 & 1 & 0 & 0 & 1 & 0 & 8000 & 2 & 2 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Possible/Unknown & 0 & 1 & 0 & 0 & 1 & 0 & 6500 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 2000 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 1500 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 5000 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 2000 & 1 & 1 \\
Minor Injury & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 2 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 1500 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 5500 & 2 & 3 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 5000 & 2 & 2 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 5000 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 2500 & 1 & 1 \\
Property Damage Only & 0 & 0 & 0 & 0 & 0 & 0 & 10000 & 1 & 1
\end{tabular}
\begin{tabular}{ll}
Collision with: Animal & Not Reported \\
Collision with: Vehicle in/from other roadway & Broadside \\
Collision with fixed object: Ditch/embankment & Non-collision \\
Collision with: Animal & Non-collision \\
Collision with fixed object: Bridge/bridge rail/overpass & Non-collision \\
Collision with fixed object: Tree & Non-collision \\
Collision with: Animal & Not Reported \\
Collision with: Vehicle in traffic & Rear-end \\
Collision with: Animal & Not Reported \\
Collision with: Animal & Not Reported \\
Collision with: Vehicle in traffic & Sideswipe-opposite direction \\
Collision with fixed object: Ditch/embankment & Non-collision \\
Collision with fixed object: Ditch/embankment & Non-collision \\
Collision with: Animal & Not Reported \\
Collision with: Animal & Not Reported \\
Collision with: Animal & Not Reported \\
Non-collision events: Other non-collision (explain in narrative) & Non-collision \\
Collision with: Animal & Not Reported \\
Collision with: Vehicle in/from other roadway & Broadside \\
Collision with: Vehicle in traffic & Rear-end \\
Collision with: Animal & Not Reported \\
Collision with: Animal & Nollision \\
Non-collision events: Overturn/rollover & \\
& \\
\hline
\end{tabular}

\section*{From:}

\section*{Sent:}

To:
Subject:
Attachments:

> Georges Bou-Saab <gbousaab@iastate.edu>
> Wednesday, August 26, 2015 5:25 PM
> Brian Keierleber
> Fwd: Rumble Strip Paper
> 15-0179 - Safety Impacts of Michigan's Statewide Centerline Rumble Strip Program (Final Submit).docx

Greetings Brian,

I hope that you are doing great and I apologize for the late response regarding the combined CMF value for the county roadway segment in Buchanan County. I did my research and found a very useful NCHRP report that was published in 2008. The report presented Crash Modification Factors (CMFs) research performed for various roadway improvement strategies/countermeasures. However, CMF values for the following treatment, "Adding Shoulder Rumble Strips", were only based on rural and urban freeways and it is not applicable to other road classes such as two-lane or multilane. On the positive side, I was able to find another report published by the University of Central Florida where a before-and-after Empirical Bayes study on rural twolane roads demonstrated an improvement (reduction in crashes) for both total and severe (fatal and major) crashes. Researchers calculated a Florida-specific simple SPF for rural two-lane roads and the CMF value for all crash type is 0.768 and 0.778 for severe crashes. In addition, I had the opportunity to meet with Dr. Peter Savolainen from our department and he is proficient researcher in the field of safety. He mentioned that INTRANS started working on a project with the Iowa DOT where they will study the impact of installing both centerline and shoulder rumble strips on county roads rather than just focusing on implementing the latter countermeasures separately. The project is still in the first phase where they are surveying all 99 counties in Iowa to determine the best locations for installing the combination of both treatments. I remember that you talked about adding both centerline and shoulder rumble strips on your county roadways but you are concerned about this particular segment since it is accessible by the Amish community. I forwarded the email by Dr. Savolainen and hopefully you find it helpful. He believes that the combination of both centerline and shoulder rumble strips would have a better result on crashes (i.e. lower CMF).

Moreover, the NCHRP report provided the CMF values for Changing Roadside Slope treatment and the minimum recommended side slope improvement (after condition) is \(1: 4\) ratio (but you wanted to change the side slope from 1:2 existing condition to 1:3). I was not able to find a study that presented a CMF value for 1:3 side slope improvement, hence you might want to re-evaluate the countermeasure requirement for side slope. The CMF value for total crashes is 0.94 for changing the side slope from \(1: 2\) (before condition) to \(1: 4\) (after condition).

I also calculated the CMF for shoulder width and type from the Highway Safety Manual (HSM). According to the information you provided (changing 4 ft . gravel shoulder to 8 ft . composite), the CMF value turned out to be equal to 1.00 .

\section*{From:}

Sent:
To:
Subject:
Attachments:

Georges Bou-Saab <gbousaab@iastate.edu>
Wednesday, August 26, 2015 5:25 PM
Brian Keierleber
Fwd: Rumble Strip Paper
15-0179 - Safety Impacts of Michigan's Statewide Centerline Rumble Strip Program (Final Submit).docx

Greetings Brian,

I hope that you are doing great and I apologize for the late response regarding the combined CMF value for the county roadway segment in Buchanan County. I did my research and found a very useful NCHRP report that was published in 2008. The report presented Crash Modification Factors (CMFs) research performed for various roadway improvement strategies/countermeasures. However, CMF values for the following treatment, "Adding Shoulder Rumble Strips", were only based on rural and urban freeways and it is not applicable to other road classes such as two-lane or multilane. On the positive side, I was able to find another report published by the University of Central Florida where a before-and-after Empirical Bayes study on rural twolane roads demonstrated an improvement (reduction in crashes) for both total and severe (fatal and major) crashes. Researchers calculated a Florida-specific simple SPF for rural two-lane roads and the CMF value for all crash type is 0.768 and 0.778 for severe crashes. In addition, I had the opportunity to meet with Dr. Peter Savolainen from our department and he is proficient researcher in the field of safety. He mentioned that INTRANS started working on a project with the Iowa DOT where they will study the impact of installing both centerline and shoulder rumble strips on county roads rather than just focusing on implementing the latter countermeasures separately. The project is still in the first phase where they are surveying all 99 counties in Iowa to determine the best locations for installing the combination of both treatments. I remember that you talked about adding both centerline and shoulder rumble strips on your county roadways but you are concerned about this particular segment since it is accessible by the Amish community. I forwarded the email by Dr. Savolainen and hopefully you find it helpful. He believes that the combination of both centerline and shoulder rumble strips would have a better result on crashes (i.e. lower CMF).

Moreover, the NCHRP report provided the CMF values for Changing Roadside Slope treatment and the minimum recommended side slope improvement (after condition) is \(1: 4\) ratio (but you wanted to change the side slope from 1:2 existing condition to 1:3). I was not able to find a study that presented a CMF value for 1:3 side slope improvement, hence you might want to re-evaluate the countermeasure requirement for side slope. The CMF value for total crashes is 0.94 for changing the side slope from \(1: 2\) (before condition) to \(1: 4\) (after condition).

I also calculated the CMF for shoulder width and type from the Highway Safety Manual (HSM). According to the information you provided (changing 4 ft . gravel shoulder to 8 ft . composite), the CMF value turned out to be equal to 1.00 .

\section*{Thanks!}

\author{
Peter T. Savolainen, Ph.D., P.E. \\ Associate Professor \\ Civil, Construction and Environmental Engineering lowa State University \\ 482A Town Engineering Bldg \\ Ames, IA 50011 \\ (515) 294-3381 \\ pts@iastate.edu
}

\section*{Georges Bou-Saab}

Graduate Research Assistant and President of Transportation Student Association
Doublecheck identified this as CLEAN. Give feedback: This is SPAM . More

\title{
CIOWADOT Application for TRAFFIC SAFETY FUNDS
}

DATE: August 3, 2015
Location / Title of Project Safety Improvements \(-11^{\text {th }}\) St \& Maynard Way, DeWitt, IA Applicant City of DeWitt

Contact Person Steve Lindner
Title City Administrator
Complete Mailing Address PO Box 407
DeWitt, IA 52742-0407

Phone \(\qquad\) E-Mail cdadmin@gmtel.net

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

\section*{Funding Amount}

Total Project Cost
Safety Funds Requested
\$ 445,700
\$ 300,000

APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT
To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Represen
Signed:
City of DeWitt

Steve Lindner
Typed Name

Attest:

\title{
RESOLUTION APPROVING THE SUBMITTAL OF AN APPLICATION TO THE IOWA DEPARTMENT OF TRANSPIRATION (IDOT) TRAFFIC SAFETY IMPROVEMENT PROGRAM (SIP) FOR FUNDING TRAFFIC SAFETY IMPROVEMENTS TO THE \(11^{\text {TH }}\) STREET MAYNARD WAY INTERSECTION INCLUDING THE INSTALLATION OF TRAFFIC SIGNALS
}

WHEREAS, the IDOT has established the TSIP program that provided funding to local governments to assist in funding projects that improve traffic safety where warranted; and,

WHEREAS, the intersection of \(11^{\text {th }}\) Street and Maynard Way has been identified as an intersection that experiences operational problems and a high crash rate \({ }_{i}\) and,

WHEREAS, a report (dated September 26,2013) funded with TEAP funds confirmed the problems identified above; and,

WHEREAS, the City of DeWitt commissioned IIW to further analyze the intersection and recommend improvements to improve the safety and operation of the intersection.; and,

WHEREAS, IIW presented its analyses in July of 2015 recommending the installation of signals to the intersection and to construct additional lane capacity allowing for east bound and west bound left turn lanes at the intersection; and,

WHEREAS, the estimated costs for the intersection improvements include \(\$ 107,000.00\) for design and engineering fees, and \(\$ 338,700\) for construction with a total estimated cost of \(\$ 445,700.00\).

NOW, THEREFORE, IT IS RESOLVED by the City Council of the City of DeWitt, Iowa, that:
1. The City Council approves the application for TSIP funding.
2. The City Council commits \(\$ 150,000.00\) to the project for design, engineering fees and construction costs.
3. The City Council commits to accepting and maintaining the improvements funded by the TSIP funds at the \(11^{\text {th }}\) Street Maynard Way intersection.

PASSED AND APPROVED this \(3^{\text {rd }}\) day of July, 2015.

\section*{ATTEST:}

The intersection of \(11^{\text {th }}\) Street, Maynard Way and Casey's General Store business driveway experience both operational problems and a high crash rate. In an attempt to identify solutions, the City of DeWitt, in cooperation with the lowa DOT utilized TEAP funding; resulting in a report dated September \(26^{\text {th }}\), 2013. The report outlined potential solutions for mitigating the relatively high crash rate at the Maynard Way \& \(11^{\text {th }}\) Street intersection. The 2013 report suggested the following recommendations:

Short Term:
A. Remove/modify sight distance obstruction located in the southwest quadrant.
B. Install "DO NOT BLOCK INTERSECTION" regulatory sign.
C. Monitor installation of "DO NOT BLOCK INTERSECTION" pavement markings.
D. Convert \(11^{\text {th }}\) Street from a 4 -lane cross section facility to a 3 -lane cross section in combination with item E.
E. Install a split-phased traffic signal.

Long Term:
A. Realign the south leg of the intersection.
B. Implement access management along \(11^{\text {th }}\) Street corridor.

Short Term items A, B, \& C have been implemented; however, crashes and motorists complaints continue to occur. The "DO NOT BLOCK INTERSECTION" pavement markings were installed in the fall of 2012. The sign was installed shortly after the pavement markings.

\section*{EXISTING CONDITIONS}
\(11^{\text {th }}\) Street (old Highway 30) is an east-west 4-lane facility, with two eastbound and two westbound lanes through DeWitt, and is classified as a major collector on federal functional classification maps. \(11^{\text {th }}\) Street, in the area of Maynard Way, is 45 -feet wide with curbs on both sides. There are sidewalks on the north and south side of \(11^{\text {th }}\) Street. The speed limit on \(11^{\text {th }}\) Street is posted at 35 mph , and traffic is free-flow at the Maynard Way intersection.

Maynard Way, the north leg of the intersection, is an average width of 36 -feet with a posted speed limit of 25 mph . At the intersection, a 12 foot lane exists in the northbound direction and two 12 foot lanes are marked southbound for left and right turns. Although no lane is marked for through traffic, a few vehicles do travel through the intersection into the driveway servicing Casey's General Store, typically from the right turn lane. Maynard Way has curb and gutter on both sides. There is a sidewalk on the east side of Maynard Way. Maynard Way is controlled by a stop sign at \(11^{\text {th }}\) Street.

The south leg of the intersection is the eastern-most of two access points to Casey's General Store. This 36 foot wide 2-way driveway functions as the northbound approach on this intersection, and is skewed to the west from Maynard Way approximately 20-feet from centerline to centerline. Casey's General Store driveway does not have any traffic control devices or pavement markings.

\section*{SUMMARY OF CRASH HISTORY}

Copies of crash reports from January, 2010 to December, 2014 were provided by the City of DeWitt Police Department for the intersection study. There were 19 crashes reported at the intersection during that period. 15 of the 19 reported crashes were angle or broadside type crashes, 3 were rear-end crashes, and 1 non-collision involving a motorcycle driver that lost control. The following is a summary of the crash history.

By year:
- 19 Total crashes
- 2010-5
- 3 angle
- 2 rear-end
- 2011-3
- 2 angle
- 1 rear-end
- 2012-4
- 2 angle
- 1 broadside
- 1 non-collision
- 2013-3
- 1 angle
- 2 broadside
- 2014-4
- 4 angle

7 of the 15 angle or broadside crashes were directly attributed to another vehicle in the intersection blocking the view of one of the drivers involved in the crash. Also, the non-collision was attributed to another vehicle obstructing the view of the driver.

\section*{Contributing Factors:}
- 19 Total Crashes
- 7 angle/broadside - view obstructed by another vehicles in the intersection.
- 5 angle/broadside - failure to yield making a left turn, the narrative did not state any cause.
- 2 angle/broadside - driver blinded by morning sun.
- 1 angle - involved an ambulance traveling fast.
- 1 non-collision - motorcycle took evasive action and lost control. Driver turning left did not see motorcycle due to another vehicle blocking view.
- 2 rear-end - icy conditions.
- 1 rear-end - vehicle on 11th St. turning right, had to come to a complete stop due to a pedestrian and was rear ended.

Injuries
- 0 Fatalities
- 8 Injury Crashes
- The 8 crashes resulted in 5 minor injuries and 8 possible injuries.
- 11 Property Damage Only
- \$115,600 Property Damage for all 19 crashes.

There was no apparent pattern of accidents based on time of day, or age of driver.

Since the above crash history has been compiled, 2 additional angle-type crashes have occurred at this intersection. One occurred on January 28, 2015 and the other occurred on April 2, 2015. These crashes are not included in the above summary nor are they included in the benefit/cost ratio; however, the reports are included in Section I of this report.

\section*{APPARENT CAUSES OF CRASHES}

There appear to be 3 primary causes of a majority of the crashes. First, the geometry of the intersection can be confusing with the north and south legs, Maynard Way and Casey's driveway, offset. Second, because of the 4-lane configuration of \(11^{\text {th }}\) Street, vehicles in the intersection block the view for other motorists; and third, there is a relatively large volume of traffic using the intersection.

The non-typical geometrics of the intersection can be confusing. With the offset northbound and southbound approach, drivers may be confused as to who has the right-of-way. The driving paths for the left turns from \(11^{\text {th }}\) Street overlap such that eastbound and westbound left turns cannot occur simultaneously. Also, northbound vehicles from Casey's to Maynard Way must make a jog through the intersection since the approaches do not line up. Finally, drivers on \(11^{\text {th }}\) Street turning onto Maynard Way or into Casey's parking lot may not understand where they should stop to wait for a gap in traffic so the intersection can continue to be accessed by other drivers who have the right-of-way. For example, the police commented that drivers do not understand what the "DO NOT BLOCK INTERSECTION" hatch marks mean.

The second primary cause of crashes appears to be that vehicles stopped or traveling through the intersection block the view for other motorists trying to navigate the intersection. It was specifically noted in 7 of the accident reports that the drivers cited for failure to yield making a left turn did not see the approaching vehicle because of another vehicle in the intersection blocking their view (See diagrams on page 4 of 6).

And the third cause of crashes appears to be the relatively large volume of traffic on \(11^{\text {th }}\) Street reduces the opportunity of vehicles on Maynard Way or Casey's driveway to enter \(11^{\text {th }}\) Street. Currently, the north and south legs of the intersection operate at a level of service of 'D' and 'F' respectively. Drivers become impatient and take more chances.

\section*{PROPOSED SOLUTION}

The City of DeWitt asked IIW, P.C. to further explore the traffic signal option which was recommended in the TEAP funded September \(26^{\text {th }}, 2013\) report, with and without changing the cross section from a 4-lane facility to a 3-lane or 5-lane facility. Agricultural traffic was also a consideration. \(11^{\text {th }}\) Street is the only viable route for agricultural traffic to get from the west side of DeWitt to the east side of town, because slow moving vehicles are prohibited from using US 30 and US 61 around DeWitt. IIW concurred with the 2013 report that a traffic signal would provide the best solution to reduce the angle type crashes. IIW also determined that changing the cross section to a 5-lane facility would offer the most safety impacts with the highest Crash Reduction Factor, and would provide the best level of service. Additionally, this proposed solution accommodates agricultural traffic and is planning to provide a pedestrian crossing across \(11^{\text {th }}\) Street. Currently, the closest place for pedestrians to cross \(11^{\text {th }}\) Street is 1,500 -feet to the east or 1,900 -feet to the west. Their report is included in this application package.

\section*{SAFETY JUSTIFICATION}

The justification for a traffic signal is based on the crash history and on traffic counts taken in both 2013 and 2015. Between October, 2010 and June, 2011, 5 angle crashes occurred. Also, between May, 2014 and April, 2015, 5 angle crashes occurred.

Two hours of turning movement counts were taken on May 14, 2013 from 7:00 AM to 9:00 AM, and 3 hours of turning movement counts were taken on April 30, 2013 from 3:00 PM to 6:00 PM. Since 2013, Kwik Star has opened on the northeast quadrant of the intersection, therefore it is expected that traffic volumes have increased with this new traffic generator. In order to confirm that the traffic signal meets signal warrants, additional counts were taken on July 31, 2015 from 10:00 AM to 1:00 PM.

With these 8 hours of turning movement counts and a crash history of 5 reported crashes in a 12-month period, which are susceptible to correction by a traffic signal, this intersection meets Warrant 7, Crash Experience. The following table is from the MUTCD, Table 4C-1, Condition B. The population of DeWitt is less than 10,000 so the traffic volumes in the \(56 \%\) column were used.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Condition B-Interruption of Continuous Traffic} \\
\hline Number o moving tra appr & of lanes for ffic on each roach & \multicolumn{4}{|l|}{Vehicles per hour on major street (total of both approaches)} & \multicolumn{4}{|l|}{Vehicles per hour on higher-volume minor-street approach (one direction only)} \\
\hline Major Street & Minor Street & 100\% \({ }^{\text {a }}\) & 80\% \({ }^{\text {b }}\) & 70\% \({ }^{\text {c }}\) & 56\% \({ }^{\text {d }}\) & 100\% \({ }^{\text {a }}\) & 80\% \({ }^{\text {b }}\) & 70\% \({ }^{\text {c }}\) & 56\% \({ }^{\text {d }}\) \\
\hline 1 & 1 & 750 & 600 & 525 & 420 & 75 & 60 & 53 & 42 \\
\hline 2 or more & 1 & 900 & 720 & 630 & 504 & 75 & 60 & 53 & 42 \\
\hline 2 or more & 2 or more & 900 & 720 & 630 & 504 & 100 & 80 & 70 & 56 \\
\hline 1 & 2 or more & 750 & 600 & 525 & 420 & 100 & 80 & 70 & 56 \\
\hline
\end{tabular}

\section*{DESIGN CONSIDERATIONS}

All traffic signal poles will be out of the clear zone and detection will be provided on all approaches. The traffic signal will include protected left turn phases on \(11^{\text {th }}\) Street. Because of the offset intersection, the left turn phases will be lead/lag. A phasing diagram is included on the conceptual traffic signal layout in Section K. By widening Casey's General Store driveway, the north and south through movements are better aligned which will permit the northbound and southbound traffic to share green time and reduce overall intersection delay. The detection for Casey's driveway is currently shown outside of the right-of-way. If a maintenance easement agreement cannot be negotiated, then other forms of detection will be explored. It is also expected that a temporary construction easement will be needed from Casey's. The traffic signal concept also includes pedestrian crossings with pedestrian detection on the northbound, southbound, and westbound approaches.

Because this traffic signal design is only in the conceptual stage, no topographic survey has been taken and it is difficult to determine the exact costs associated with this project. An itemized breakdown of all costs is included in Section C. This also includes a contingency to address the unforeseen items expected to be discovered in the design phase. \(\$ 300,000\) of the \(\$ 338,700\) estimated construction costs are expected to be funded by this grant application. The additional \(\$ 38,700\) construction costs plus \(\$ 107,000\) for design, survey, construction staking, and construction administration will be funded by the City of DeWitt.

\section*{Preliminary Cost Estimate - 5-lane cross section with traffic signal and realign Casey's driveway June, 2015}

\section*{Time Schedule}

\section*{Funding Approval}
- December, 2015

Development of Construction Plans and Specifications
- March, 2016 - July, 2016

Bidding
- August, 2016

Construction
- Fall, 2016

\section*{Iowa DOT Office of Traffic \& Safety}

County: \(\qquad\) Prepared by: \(\qquad\) Date Prepared: \(\qquad\)
Intersection: 11th Street \& Maynard Way, DeWitt

\section*{Improvement}

Proposed Improvement(s): Traffic Signal Installation and change 4 lane cross section to
5 lane cross section with left turn lanes at the intersection. Realign Casey's driveway.
\$ 338,700 Estimated Improvement Cost, EC
\$ 1,000 Other Annual Cost (after initial year), AC
\$ 11,118 Present Value Other Annual Costs, OC
15 Est. Improvement Life, years, Y
51 Crash Reduction Factor (integer), CRF 4.0\% Discount Rate (time value of \$), INT \(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)
\(\$ 349,818\) Present Value Cost, COST = EC + OC

\section*{Traffic Volume Data}

Source:
Iowa DOT Traffic Count \(\qquad\) Date of traffic count

Daily Entering Vehicles by Approach (or AADT / 2)

0.0\% Projected Traffic Growth (0\%-10\%), G

10,290 Current Daily Entering Vehicles, DEV

3,755,850 Current Annual Entering Veh., AEV = DEV * 365
10,290 veh / day, Final Year DEV, FDEV
56.34 MEV, Total Million Entering Veh. Over life of Project, TMEV
\(T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}\)

\section*{Crash Data}

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 818,817: \$ 349,818 \quad=\frac{2.34}{}: 1
\]

\section*{Traffic Impact Analysis Intersection of 11 th Street}

\title{
\& \\ Maynard Way / Casey's Driveway \\ City of DeWitt, Clinton County, Iowa
}

July, 2015

I hereby certify that this document was prepared by me or under my direct personal supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Iowa.

Iowa License No. 14690
My License Renewal Date is December 31, 2016
Parts covered by the seal: All

\section*{TRAFFIC ENGINEERING ASSISTANCE PROGRAM}

\section*{FINAL}

\section*{\(11^{\text {th }}\) Street \& Maynard Way Intersection Safety Study}

Prepared for:

\section*{City of DeWitt, IA}

In Cooperation With:
Iowa Department of Transportation \&
U.S. Department of Transportation

Federal Highway Administration

September 26, 2013

HRGreen

\title{
INFORMATION SHEET \\ IOWA DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING ASSISTANCE PROGRAM \\ \\ \(11^{\text {th }}\) STREET AND MAYNARD WAY INTERSECTION SAFETY STUDY
} \\ \\ \(11^{\text {th }}\) STREET AND MAYNARD WAY INTERSECTION SAFETY STUDY
}

September 26, 2013
1. Local Jurisdiction: City of DeWitt, IA
2. Reason TEAP Study Originated: Concerns at \(11^{\text {th }}\) Street \& Maynard Way intersection regarding lack of sight lines for left-turning vehicles.
3. Scope of Services Provided: Performed field review and observation of existing conditions; performed turning movement counts, evaluated relevant crash history and traffic operations; developed recommendations; and prepared illustrative drawings of proposed improvements.
4. The Consultant, HR Green, submitted a final report dated September 26, 2013 with the following recommendations:

Short-Term:
A. Remove/modify sight distance obstruction located in the southwest quadrant
B. Install "DO NOT BLOCK INTERSECTION" regulatory sign (MUTCD R10-7)
C. Monitor installation of "DO NOT BLOCK INTERSECTION" pavement markings
D. Convert 11th Street from a four-lane cross section facility to a three-lane cross section in combination with the final short-term bullet
E. Install a split-phased traffic signal (it is understood however that the installation of a traffic signal is not a low-cost measure)

Long-Term:
A. Realign the south leg of the intersection
B. Implement access management along 11th Street corridor
5. The order of magnitude construction cost opinions for recommended improvements:

Short-Term:
A. "DO NOT BLOCK INTERSECTION" Regulatory Sign: \$300-\$500
B. 4-Lane to 3-Lane Conversion: \(\$ 7,500-\$ 15,000\)
C. Traffic Signal System: \(\$ 150,000\)

Long-Term:
A. South Leg Realignment: Further Study Necessary
B. Access Management along Corridor: Further Study Necessary
6. Potential funding sources include the Iowa Clean Air Attainment Program (ICAAP) and Traffic Safety Improvement Program (TSIP).

\title{
Traffic Engineering Assistance Program \\ 11th Street and Maynard Way Intersection Safety Study \\ DeWitt, lowa
}

FINAL Report

September 26, 2013

\section*{Prepared For:}

City of DeWitt, Iowa

\section*{In Cooperation with:}

\section*{Iowa Department of Transportation}

\section*{Prepared By:}

HRGreen

\section*{TABLE OF CONTENTS}
INTRODUCTION 1
Purpose and Study Objective 1
BACKGROUND 1
Study Location 1
Study Area Existing Conditions 3
Study Intersection Existing Conditions 3
CRASH HISTORYIINFORMATION 6
TRAFFIC HISTORY/INFORMATION 7
INTERSECTION CAPACITY ANALYSIS 10
Traffic Signal Warrant Evaluation 11
STUDY AREA FIELD REVIEW. 12
Sight Distance Available for Vehicles 12
Current "DO NOT BLOCK INTERSECTION" Pavement Markings 13
CONSIDERED OPTIONS 17
RECOMMENDED IMPROVEMENTS 28
Short Term Recommendations 28
Long Term Recommendations 28
OPINION OF PROBABLE COSTS 29
POTENTIAL FUNDING SOURCES 29
Appendix A - CMAT Crash Reports
Appendix B - lowa DOT Provided Count Data
Appendix C - City of DeWitt Collected Count Data
Appendix D - Synchro Analysis Results D
Appendix E - Traffic Signal Warrant Analysis Results E
Appendix F - Additional Information on the Access Management Manual F
Appendix G - Benefit/Cost Analysis Results G
Appendix H - Potential Funding Sources H

\section*{LIST OF EXHIBITS}
Exhibit 1 - Location of DeWitt, Iowa 1
Exhibit 2 - Project Study Area 2
Exhibit 3 - Study Intersection \& \(11^{\text {th }}\) Street Corridor 2
Exhibit 4 - Study Intersection 4
Exhibit 5-11 \(1^{\text {th }}\) Street Westbound Approach Viewing West and East 5
Exhibit \(6-11^{\text {th }}\) Street Eastbound Approach Viewing West and East 5
Exhibit 7 - Maynard Way Southbound Approach Viewing South and North 5
Exhibit 8 - Convenience Store Access Approach Viewing North 6
Exhibit 9 -AM and PM Peak Hour Turning Movement Counts 8
Exhibit 10 - AM Peak Period - Intersection Entering Vehicles by 15-Minute Intervals 9
Exhibit 11 - PM Peak Period - Intersection Entering Vehicles by 15-Minute Intervals 9
Exhibit 12 - Level of Service vs. Control Delay (Unsignalized \& Signalized Intersections) 10
Exhibit 13 - Existing Conditions Capacity Analysis 11
Exhibit 14 - MUTCD Traffic Signal Warrant Analysis of Study Intersection 11
Exhibit 15 - South Leg (Northbound) - Sight lines 13
Exhibit 16 - North Leg (Southbound) - Sight lines 13
Exhibit 17 - Existing "DO NOT BLOCK INTERSECTION" 14
Pavement Marking Feature 14
Exhibit 18 - Uses of "DO NOT BLOCK INTERSECTION" Pavement Markings 15
Exhibit 19 - Example of Westbound Left-Turning Movement 16
Exhibit 20 - Conflicting Left-Turn Movement Scenario 17
Exhibit 21 - Illustrative View of 3-Lane Conversion 19
Exhibit 22 - Study Intersection - Two-Way Left-Turn Lane Capacity Analysis 20
Exhibit 23 - Hidden Vehicle Scenario 21
Exhibit 24 - 3-Lane Cross Section Opposing Direction Left-Turn Movements 22
Exhibit 25 - Study Intersection - Dedicated Left-Turn Lane Addition Capacity Analysis 23
Exhibit 26 - Capacity Analysis with Traffic Signal and Existing Four-Lane Cross Section 24
Exhibit 27 - Capacity Analysis with Traffic Signal and Two-Way Left-Turn Lane 25
Exhibit 28 - Illustrative View of Realigned South Leg of Intersection 27

\section*{INTRODUCTION}

\section*{Purpose and Study Objective}

At the request of the Iowa Department of Transportation (DOT) and the City of DeWitt, lowa, through the Iowa DOT Traffic Engineering Assistance Program (TEAP), this study evaluated the safety of left-turn movements off of \(11^{\text {th }}\) Street onto Maynard Way (north) or into the convenience store parking lot (south). The study examined existing physical and traffic conditions at the intersection, and proposed improvements of intersection geometry and traffic control.

\section*{BACKGROUND}

\section*{Study Location}

DeWitt is located in Clinton County and is approximately twenty-miles north of the Quad Cities and twenty-miles west of Clinton, Iowa. In 2011, the population of DeWitt was approximately 5,300 people. The location of DeWitt is shown in Exhibit 1.

\section*{Exhibit 1 - Location of DeWitt, Iowa}

The study area includes the intersection of \(11^{\text {th }}\) Street (also known as Old Highway 30 and State Highway 948) and Maynard Way as well as the local business access point to the south of the intersection.

Exhibit 2 shows the location of study area in relation to primary locations in the City of DeWitt. Exhibit 3 shows greater detail of the study intersection including the business corridor along \(11^{\text {th }}\) Street.

\section*{Exhibit 2 - Project Study Area}

Exhibit 3 - Study Intersection \& \(\mathbf{1 1}^{\text {th }}\) Street Corridor

\section*{Study Area Existing Conditions}
\(11^{\text {th }}\) Street (Old Highway 30) is an east-west four-lane facility through DeWitt and is classified as a major collector on federal functional classification maps. The cross section of \(11^{\text {th }}\) Street in the vicinity of the study area is 48 feet wide with curbs on both sides. Two 12 foot lanes exist in each direction with an undivided centerline. One street light exists in the northeast quadrant of the \(11^{\text {th }}\) Street \& Maynard Way study intersection. A 5 foot sidewalk exists on the south side of \(11^{\text {th }}\) Street an average of 12 feet from the back of curb. A sidewalk has recently been added along the north side of \(11^{\text {th }}\) Street.

Maynard Way is a north/south two-lane facility with a cross section in the vicinity of the study area of an average of 36 feet between face of curbs. At the study intersection, a 12 foot lane exists in the northbound direction and the southbound approach is split into 12 foot left-turn and right-turn lanes. The cross section returns to a single 18 foot lane in each direction 300 feet north of \(11^{\text {th }}\) Street. No sidewalks exist along Maynard Way.

Across \(11^{\text {th }}\) Street to the south of Maynard Way lies the eastern-most of the two access points to a convenience store. This 36 foot two-way segment functions as the northbound approach to the study intersection. The access point (south leg of intersection) is skewed to the west from Maynard Way approximately twenty feet from center line to center line.
The \(11^{\text {th }}\) Street corridor is lined with local businesses that access \(11^{\text {th }}\) Street. Over the half-mile stretch from \(11^{\text {th }}\) Avenue westward to the John Deere dealership there are 30 access points and 7 cross street intersections (including Maynard Way). Access point for the purpose of this study refers to a connection to a street that allows vehicles to enter or exit the street.

\section*{Study Intersection Existing Conditions}

At the study intersection, curbs exist along the southbound, eastbound and westbound approaches. The radius of the corners at \(11^{\text {th }}\) Street \& Maynard Way intersection is approximately 40 feet (northwest and northeast quadrants). A sidewalk is located along the south and north sides of \(11^{\text {th }}\) street. Sidewalks do not exist along either side of Maynard Way.
Existing traffic control at the study intersection is one-way STOP controlled at Maynard Way, with the sign adjacent to the southbound approach. The access point to the convenience store does not have any traffic control or pavement markings. This is considered typical at private access points. The speed limit along \(11^{\text {th }}\) Street through the study area is 35 mph in both directions, which transitions to/from 55 mph at the extents of DeWitt. The speed limit along Maynard Way is 25 mph in both directions.

Land uses at the study intersection include large commercial properties on the northwest and northeast quadrants, and smaller commercial properties on the south side of the intersection (including the convenience store - Casey's General Store).
Exhibit 4 illustrates the \(11^{\text {th }}\) Street \& Maynard Way intersection and its features.

Exhibit 4 - Study Intersection

In the summer/fall of 2013, the lowa DOT resurfaced \(11^{\text {th }}\) Street and refreshed pavement markings along the corridor. Afterwards, the City of DeWitt added a pavement marking feature along the inside lane of the westbound travel lanes at the study intersection. The feature is referred to as "DO NOT BLOCK INTERSECTION" pavement markings. This feature is not shown in Exhibit 4 above; however, photos of the marking feature can be seen in the following exhibits. Discussion of the feature can be found within the Study Area Field Review section of this study.
Exhibits 5 and 6 provide photos of the westbound and eastbound approaches of the intersection and Exhibits 7 and 8 provide photos of the southbound and northbound approaches of the intersection

Exhibit 5-11 \({ }^{\text {th }}\) Street Westbound Approach Viewing West and East

Exhibit \(6 \mathbf{- 1 1}^{\text {th }}\) Street Eastbound Approach Viewing West and East

Exhibit 7 - Maynard Way Southbound Approach Viewing South and North

\section*{Exhibit 8 - Convenience Store Access Approach Viewing North}

\section*{CRASH HISTORYIINFORMATION}

HR Green compiled and reviewed crash data within the study area. The crash data was compiled using the Crash Mapping Analysis Tool (CMAT) software distributed by the lowa DOT. The crash data review includes the most recent five years of available crash data (2008-2012). Further examination of CMAT data near the study intersection revealed a large group of crashes mapped slightly to the west of the 150 foot radius typically used to identify crashes at a study intersection. The radius was extended to 200 feet from the intersection of \(11^{\text {th }}\) Street \& Maynard Way to capture all incidents related to the two access driveways of the convenience store on the south side of \(11^{\text {th }}\) Street.
The following is a summary of the crash history for the study intersection. Crash reports from CMAT for the study intersection are contained in Appendix A.
- \(11^{\text {th }}\) Street and Maynard Way Intersection
o 21 Total crashes
o 3/21 = Minor Injury crashes
o \(3 / 21\) = Possible Injury crashes (4 total possible injuries)
o \(12 / 21=\) Failure to yield making left turn
- 9/12 = Angle crashes, oncoming left turn
- 2/12 = Broadside crashes
o 5/21 = Crashes occurring under icy/snowy/wet surface conditions
Overall, the main crash types along the study intersection were broadside or angle accidents due to failure to yield making a left turn. The "angle crashes" caused by leftturn vehicles which fail to yield are representative of the concerns voiced about this intersection and can be serious depending on vehicle speed and angle of collision. The pattern of turning-movement direction causing these accidents could not be determined due to ambiguity of the accident description in the CMAT Crash Detail Report.

A total of 21 crashes were found to occur within 200 feet of the study intersection resulting in a crash rate of 1.86 crashes/MEV (Million Entering Vehicles) using 2010 ADT traffic volumes. The crash rate calculated above that occurred over the five most recent years at the study intersection is above the statewide average of 0.8 crashes/MEV with respect to the study roadway traffic volumes and roadway classification types.

\section*{TRAFFIC HISTORY/INFORMATION}

Intersection movement count data was attained from the lowa DOT for the years of 2006, and 2010 at the study intersection. From the DOT traffic volume counts, an annual growth rate of \(-13 \%\) was calculated for the study intersection between 2006 and 2010. Annual average daily traffic (2010 AADT) along \(11^{\text {th }}\) Street in the vicinity of Maynard Way is approximately 5,100 vehicles per day (vpd). In 2006 the AADT was 8,900 vpd.

Annual average daily traffic (2010 AADT) along Maynard Way north of \(11^{\text {th }}\) Street is approximately 2,150 vpd. In 2006 the AADT was 1,630 vpd. Annual count data for the convenience store access point was not available. Count data attained by the lowa DOT can be found within Appendix B.

In addition, traffic counts were conducted by the City of DeWitt on the following dates and timeframes:
- April \(25^{\text {th }}\), 2013: AM timeframe counts
- April \(30^{\text {th }}, 2013\) : PM timeframe counts
- May \(14^{\text {th }}, 2013\) : AM timeframe counts
- June \(10^{\text {th }}, 2013\) : PM timeframe counts

AM timeframe counts were conducted between 7:00-9:00 AM. In the afternoon, PM timeframe counts were conducted between 3:00-6:00 PM. According to the Central Community School District of Clinton County, which includes the elementary school located to the northeast of the study intersection, the last day of school for the 20122013 school year was May \(22^{\text {nd }}\). It was observed that the provided counts from the AM timeframe on April \(25^{\text {th }}\) did not include truck composition broken out. Desiring to have the counts conducted during the school year, the counts of April \(30^{\text {th }}\) and May \(14^{\text {th }}\) were used for traffic analysis within this study.
Both the April \(30^{\text {th }}\) and May \(14^{\text {th }}\) counts included breakouts between the following:
- Turning movements by approach
- Composition of passenger vehicles and trucks
- Pedestrian crossings by approach

The movements by approach are shown in Exhibit 9 for both the AM and PM timeframes. In the AM timeframe, it was found that the peak hour of traffic was between 7:15-8:15 AM and during the PM timeframe, the peak hour was found to be between 4:30-5:30 PM. Exhibits 10 and 11 include graphs of traffic volumes entering the intersection during the AM and PM timeframes, segmented by fifteen minute intervals. The turning movement count data collected by the City of DeWitt and the HR Green peak hour analysis can be found within Appendix \(\mathbf{C}\).

Exhibit 9 -AM and PM Peak Hour Turning Movement Counts

Exhibit 10 - AM Peak Period - Intersection Entering Vehicles by 15-Minute Intervals

Exhibit 11 - PM Peak Period - Intersection Entering Vehicles by 15-Minute Intervals

Observations from the study intersection traffic data include the following:
- In both the AM and PM peak hours, the dominant movements observed included eastbound and westbound through movements.
- In both the AM and PM peak hours, the dominant turning movements observed included eastbound to northbound left-turns, southbound to westbound right-turn movements and westbound to southbound left-turn movements.
- Although the southbound turn lane pavement markings do not include through movement arrows, vehicles still completed southbound through movements.
- The truck traffic turning percentages at the intersection are shown below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Peak Hour & \multicolumn{3}{|c|}{SB} & \multicolumn{3}{|c|}{WB} & \multicolumn{3}{|c|}{NB} & \multicolumn{3}{|c|}{EB} \\
\hline & & RT & ST & LT \\
\hline \multirow{2}{*}{Heavy Vehicle \%} & AM & 0\% & 0\% & 0\% & 6\% & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & 2\% & 0\% \\
\hline & PM & 4\% & 0\% & 0\% & 0\% & 2\% & 0\% & 0\% & 0\% & 0\% & 0\% & 1\% & 0\% \\
\hline
\end{tabular}

\section*{INTERSECTION CAPACITY ANALYSIS}

Level of service (LOS) at intersections is primarily a function of peak hour turning movement volumes, intersection lane configuration, and traffic control. For intersection analysis, the Highway Capacity Manual (HCM) defines LOS in terms of the average control delay at the intersection in seconds per vehicle. The results of an HCM analysis are typically presented in the form of a letter grade (A-F) that provides a qualitative estimate of the operational efficiency or effectiveness of the intersection. Much like an academic report card, LOS A represents the best range of operating conditions (i.e., motorists experiencing little delay or congestion) and LOS F represents the worst (i.e., extreme delay or severe congestion). Exhibit 12 defines the control delay range corresponding to each LOS for unsignalized and signalized intersection locations. LOS \(E\) is considered to be at capacity and, typically, LOS D is considered acceptable operations in urban environments.

For unsignalized intersections, the worst-case stop-controlled LOS is reported. For instance, if an intersection experienced LOS D on one approach and LOS B on another, the LOS D would be reported for the intersection.

\section*{Exhibit 12 - Level of Service vs. Control Delay (Unsignalized \& Signalized Intersections)}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Signalized \\
Intersections
\end{tabular} & \begin{tabular}{c}
Two-Way Stop Control \\
Or \\
All-Way Stop Control
\end{tabular} \\
\hline LOS & \begin{tabular}{c}
Delay / Vehicle \\
(s)
\end{tabular} & \begin{tabular}{c}
Delay I Vehicle \\
(s)
\end{tabular} \\
\hline A & \(0-10\) & \(0-10\) \\
\hline B & \(>10-20\) & \(>10-15\) \\
\hline C & \(>20-35\) & \(>15-25\) \\
\hline D & \(>35-55\) & \(>25-35\) \\
\hline E & \(>55-80\) & \(>35-50\) \\
\hline F & \(>80\) & \(>50\) \\
\hline
\end{tabular}

Traffic models for the study intersections were created using Synchro Version 8 software. The 2010 Highway Capacity Manual (HCM 2010) reporting function of Synchro was used to obtain the average delay and corresponding Level-of-Service for each intersection movement. Intersection reports from the Synchro software are available in Appendix \(\mathbf{D}\).

September 26, 2013 - FINAL REPORT
\(11^{\text {th }}\) Street \& Maynard Way Intersection Safety Study
The results of the current intersection capacity analysis are documented in Exhibit 13.
Exhibit 13 - Existing Conditions Capacity Analysis
\begin{tabular}{|c|c|c|l|c|c|c|c|c|}
\hline Scenario & Peak Hour & Intersection & M.O.E. & EB & WB & NB & SB & Overall \\
\hline \multirow{3}{*}{\begin{tabular}{c}
Existing \\
Conditions
\end{tabular}} & \multirow{2}{*}{ AM } & \begin{tabular}{c}
11 th Street \& \\
Maynard Way
\end{tabular} & Delay & 1.4 & 1.5 & 16.1 & 17.8 & - \\
\cline { 3 - 9 } & & LOS & A & A & C & C & C \\
\hline
\end{tabular}

Exhibit 13 above indicates the study intersection operates at a LOS C in the AM peak hour and a LOS D in the PM peak hour. Both westbound and eastbound movements operate at a LOS A in both the AM and PM peak hours. LOS D is typically considered acceptable operations in an urban environment.

\section*{Traffic Signal Warrant Evaluation}

Traffic signal warrants criteria were evaluated at the study intersection according to the Manual on Uniform Traffic Control Devices (MUTCD), 2009 Edition. Traffic data utilized for the analysis included the peak hour count data collected by the City of DeWitt.
The analysis indicates that two of the nine MUTCD warrants are satisfied. The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic signal.
Exhibit 14 below summarizes the results of the traffic signal warrant evaluation.
Exhibit 14 - MUTCD Traffic Signal Warrant Analysis of Study Intersection
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Traffic Signal Warrant } & Satisfied ? \\
\hline Warrant 1 (Eight Hour Vehicular Volume) & NO \\
\hline Warrant 2 (Four Hour Vehicular Volume) & YES \\
\hline Warrant 3 (Peak Hour Vehicular Volume) & YES \\
\hline Warrant 4 (Pedestrian Volume) & NO \\
\hline Warrant 5 (School Crossing) & NO \\
\hline Warrant 6 (Coordinated Signal System) & N/A \\
\hline Warrant 7 (Crash Experience) & NO \\
\hline Warrant 8 (Roadway Network) & N/A \\
\hline Warrant 9 (Intersection near RR Crossing) & N/A \\
\hline
\end{tabular}

Additional details of the study intersection traffic signal warrant evaluation can be found within Appendix E. Specific warrant notes include:
- Warrant 1 (Eight Hour Vehicle): The City of DeWitt collected turning movement counts include five of the eight necessary hours. The data of the collected five hours confirm that traffic volumes do not satisfy Warrant 1 volume criteria for either Condition A or Condition B. Due to the City of DeWitt having a population of less than 10,000, the 70\% factor of required traffic levels was used.
- Warrant 2 (Four Hour Vehicle): The City of DeWitt collected turning movement counts include four of the four necessary hours. The data of the collected four hours confirm that traffic volumes satisfy Warrant 2 volume criteria. Due to the

City of DeWitt having a population of less than 10,000, the 70\% factor of required traffic levels was used.
- Warrant 3 (Peak Hour Vehicle): The City of DeWitt collected turning movement counts include AM peak hour and PM peak hour data. The 4-5PM hour data confirm that traffic volumes satisfy Warrant 3 volume criteria. Due to the City of DeWitt having a population of less than 10,000, the 70\% factor of required traffic levels was used.
- Warrant 4 (Pedestrian): Based on traffic volumes at this location, Warrant 4 would require at least 75 pedestrians per hour for four different hours or greater than 93 pedestrians in a peak hour. Pedestrian volumes were counted for five hours combined between the AM and PM peak hours. The necessary pedestrian volumes did not satisfy Warrant 4 volume criteria.
- Warrant 5 (School Crossing): Warrant 5 would require at least 25 pedestrians per hour during the highest crossing hour. Pedestrian volumes were counted for five hours combined between the AM and PM peak hours. The necessary pedestrian volumes did not satisfy Warrant 5 volume criteria.
- Warrant 6 (Coordinated Signal System): Not applicable
- Warrant 7 (Crash Experience): Warrant 7 would require multiple sets of criteria to be satisfied. The data does not satisfy Warrant 7 criteria.
- Warrant 8 (Roadway Network): Not applicable
- Warrant 9 (Intersection near RR Crossing): Not applicable

\section*{STUDY AREA FIELD REVIEW}

HR Green staff conducted a field review of the study intersection on Wednesday, December \(12^{\text {th }}, 2012\). The field review included site observations of the traffic characteristics at the study intersection. Through the field review, three primary study considerations emerged for the study. The considerations include:
- Available sight distance at the study intersection
- Current "DO NOT BLOCK INTERSECTION" pavement markings
- Movement of left-turning vehicles from \(11^{\text {th }}\) Street

Each of the evaluation topics is detailed further in sections below.

\section*{Sight Distance Available for Vehicles}

As-built data along \(11^{\text {th }}\) Street corridor in the vicinity of the study intersection was not available from the DOT or the City of DeWitt. Therefore, a proper sight distance review from the horizontal plan sheets along with the vertical grade profile sheets was not able to be conducted. From the study area field review, significant horizontal geometric sight line obstructions were not apparent. However, the presence of a vertical curve along \(11^{\text {th }}\) Street east of Maynard Way was identified which may reduce visibility of the intersection from the perspective of westbound motorists.

Ideally, vertical profiles of the intersecting roadways exist that provide the recommended sight distance for points on the intersection approaches and obstructions such as buildings, parked cars, roadside structures, hedges, trees, walls, and the terrain itself do not exist within the sight triangle.

Exhibit 15 and 16 demonstrate the vantage points of northbound and southbound vehicles stopped at the study intersection. The photos were shot from the approximate point of where the driver would be located within a stopped vehicle desiring to enter/cross \(11^{\text {th }}\) Street.

\section*{Exhibit 15 - South Leg (Northbound) - Sight lines}

Exhibit 16 - North Leg (Southbound) - Sight lines

From the study area field review, it was identified that the sight line in the southwest quadrant may be jeopardized by the presence of overgrown vegetation. The left-most photo shown in Exhibit 15 illustrates the observed concern. The photo was taken in December with minimal foliage on the existing tree; however it is likely that much more foliage exist at other times of the year. Sight lines available for northbound/eastbound vehicles turning on and off of \(11^{\text {th }}\) Street are jeopardized by the presence of the sight line obstruction.

\section*{Current "DO NOT BLOCK INTERSECTION" Pavement Markings}

As mentioned previously, "DO NOT BLOCK INTERSECTION" style pavement markings have been installed on the inside lane of the westbound travel lanes at the study intersection. Exhibit 17 is a picture of the existing pavement marking feature.

\section*{Exhibit 17 - Existing "DO NOT BLOCK INTERSECTION" \\ Pavement Marking Feature}

The feature is intended to prevent westbound to southbound left-turn motorists from queuing or blocking traffic at the intersection. The feature is based off of the Manual on Uniform Traffic Control Devices (MUTCD) recognized style of marking referred to as "DO NOT BLOCK INTERSECTION" pavement markings. Section 3B. 17 of the MUTCD states that the pavement marking feature shall be accompanied by a sign (MUTCD R107) that reads "DO NOT BLOCK INTERSECTION" in advance of the pavement marking feature. As of the date of the field review, an accompanying sign was not installed at the intersection

Driver expectancy and education potentially may be a concern due to the lack/infrequent use of "DO NOT BLOCK INTERSECTION" pavement marking features in the region. An accompanying sign would likely assist with potential driver lack of comprehension and unexpected reactions.

It should also be noted that the current pavement marking feature is not a typical application of the "DO NOT BLOCK INTERSECTION" feature. The typical application is used across all travel lanes in a particular direction, not just one lane, at an intersection which is upstream of a signalized intersection or other feature that may cause traffic to queue and therefore block the upstream intersection. The intent of the application is not to prevent vehicles from completing a turning movement along a free-flow corridor, but rather to minimize the risk of queuing vehicles impeding the potential movements of conflicting movements. See Exhibit 18 for an illustrative view of the typical use of "DO NOT BLOCK INTERSECTION" pavement markings and the current application deployed in DeWitt.

The compliance rate of "DO NOT BLOCK INTERSECTION" signing has also been investigated through research publications. As part of the Transportation Research

September 26, 2013 - FINAL REPORT
\(11^{\text {th }}\) Street \& Maynard Way Intersection Safety Study
Record No. 1456, a research paper titled "Effectiveness of Do Not Block Intersection Signs" \({ }^{11}\) four sites were studied along an arterial roadway. The study found that three of the four sites to where the signs were deployed experienced no change in driver behavior. The fourth site experienced a minimal impact when the sign was installed. Although the study was focused on the use of signing as opposed to pavement marking, the results could potentially be inferred to the use of "DO NOT BLOCK INTERSECTION" pavement markings.

After-data of crash reports at the study intersection are not yet available to determine if potential trends/benefits exist from the application of the pavement marking feature.

Exhibit 18 - Uses of "DO NOT BLOCK INTERSECTION" Pavement Markings
UPSTREAM INTERSECTION
SIGNALIZED INTERSECTION

TYPICAL APPLICATION

\section*{DEWITT APPLICATION}

\footnotetext{
\({ }^{1}\) "Effectiveness of Do Not Block Intersection Signs", Transportation Research Record No. 1456, Authors: Gattis, JL \& Iqbal, Z, 1994
}

\section*{Movement of Left-Turning Vehicles from \(11^{\text {th }}\) Street}

During the field review, multiple vehicles were observed completing the following turning movements:
- Eastbound to northbound left-turn movements onto Maynard Way; and
- Westbound to southbound left-turn movements into the convenience store.

The observations are supported by the turning movement count information collected by the City of DeWitt as shown in Exhibit 9. Exhibit 19 provides a picture of a westbound to southbound left-turning vehicle yielding to an oncoming eastbound through vehicle (traveling in the inside lane) observed during the field review. As can be seen from Exhibit 19, the westbound left-turning vehicle is stopped over the "DO NOT BLOCK INTERSECTION" pavement markings.

Exhibit 19 - Example of Westbound Left-Turning Movement

Currently, left turning vehicles desiring to complete a left-turn movement utilize the inside lane of the through lanes to complete the movement. Due to the alignment skew of Maynard Way (north leg of intersection) and the convenience store access point (south leg of intersection), opposing left-turning vehicles which meet each other at the same time must decide right-of-way between them and compete for the same pavement area at the intersection. This unfavorable scenario is likely a large component of the large percentage of failure to yield right-of-way crashes at the study intersection. This scenario is illustrated within Exhibit 20.

\title{
Exhibit 20 - Conflicting Left-Turn Movement Scenario
}

\section*{CONSIDERED OPTIONS}

Concerns were noted and observations were made at the study intersection and have been described in the previous section. The following section explores options that were considered and may be of interest for improving the safety at the study intersection as well as along the \(11^{\text {th }}\) Street corridor. The proceeding mentioned options are not recommendations, but rather items that may have associated benefits as well as potential disadvantages. The proceeding mentioned options are arranged in no particular order. Final recommendations for the study intersection can be found within the Final Recommendations section of this report.

\section*{Sight Distance Triangle Obstruction Modification}

The existing vegetation located in the southwest quadrant of the study intersection should be trimmed. The trimming of the overgrown vegetation would aid in the visibility of and from northbound vehicles stopped along the convenience store access point.
The trimming of the overgrown vegetation would also increase the visibility and awareness of pedestrians using the sidewalk facilities along the south side of \(11^{\text {th }}\) Street.
The trimming of sight line restrictions along \(11^{\text {th }}\) Street within the City of DeWitt corporate limits is a function of the City and if the tree is located on private property, the actions should be coordinated with the property owner.

\section*{"DO NOT BLOCK INTERSECTION" Pavement Markings}

Due to the "DO NOT BLOCK INTERSECTION" pavement marking feature being recently installed, the City of DeWitt may desire to monitor the application to determine the effects of the pavement markings. At a later date, a before and after crash analysis comparison may be beneficial to determine the effects.
As per the MUTCD, it is recommended that the City of DeWitt install the accompanying regulatory sign (MUTCD R10-7) which reads "DO NOT BLOCK INTERSECTION". It is
recommended that the sign be installed in the northeast quadrant in advance of the pavement marking feature. The sign would assist with driver expectancy concerns and levels of compliance with regards to the intent of the pavement markings.

The image at right provides an illustrative view of the appearance of the "DO NOT BLOCK INTERSECTION" sign.

\section*{\(\mathbf{1 1}^{\text {th }}\) Street 4-Lane to 3-Lane Conversion}

R10-7

\section*{Overview:}

The \(11^{\text {th }}\) Street corridor could potentially be converted from a four-lane cross section to a three-lane cross section. The extents of the conversion could possibly terminate at the following locations:
- Between Iowa Highway 61 interchange and directly east of Maynard Way
- Between Iowa Highway 61 interchange and east of \(4{ }^{\text {th }}\) Avenue East (location of existing 4-Lane to 2 -Lane transition)
Peak hour turning movement counts were not available for other intersections along \(11^{\text {th }}\) Street. However from the lowa DOT 2010 AADT information along \(11^{\text {th }}\) Street in the vicinity of Maynard Way, AADT is approximately 5,100 vehicles per day (vpd). The AADT between \(8^{\text {th }}\) and \(9^{\text {th }}\) Avenue, which are east of Maynard Way and closer to the central business district, is approximately \(3,800 \mathrm{vpd}\). A three-lane cross section would likely provide benefits throughout the \(11^{\text {th }}\) Street corridor.

A three-lane cross section consists of one lane in each direction with a continuous twoway left turn lane between the two through lanes. See Exhibit 21 for an illustrative view of the \(11^{\text {th }}\) Street three-lane cross section through the study intersection.

The proposed cross section includes 4' shoulders, 12' through lanes, and a 16' two-way left turn lane. The Iowa DOT design manual requires a minimum of 12' for the two-way left turn lane.

It has been found that the conversion can improve safety and maintain acceptable Level-of-Service along corridors. Four-lane to three-lane undivided cross section conversion case study research has indicated a reduction of \(85^{\text {th }}\) percentile speeds of less than five miles per hour. However, a relatively dramatic 60 to 70 percent reduction in excessive speeding (traveling more than five miles per hour over the posted speed limit) was recorded. The total number of accidents was reduced by 17 to 62 percent along the corridors \({ }^{2}\).

It is recommended that a four-lane undivided cross section to a three-lane cross section conversion be considered feasible when the bi-directional peak-hour volumes are less than 1,500 vehicles per hour. Caution and extra consideration are warranted for potential conversions when the bi-directional peak-hour volume is between 1,500 and 1,750 vehicles per hour. Above 1,750 vehicles per hour, research has found a reduction in the Level-of-Service of the major roadway.

\footnotetext{
\({ }^{2}\) Compliments of Guidelines for the Conversion of Urban Four-Lane Undivided Roadways to Three-Lane Two-Way LeftTurn Lane Facilities, Iowa State University Center for Transportation Research and Education
}

\section*{Capacity:}

From the peak hour traffic count data collected by the City of DeWitt, the bi-directional peak hour volumes west of Maynard Way are 849 vehicles per hour in the AM peak hour and 962 vehicles per hour in the PM peak hour. The bi-directional volumes east of Maynard Way are 778 vehicles per hour in the AM peak hour and 987 vehicles per hour in the PM peak hour. The peak hour volumes along \(11^{\text {th }}\) Street in the vicinity of the study intersection are below the recommended caution levels.
A capacity analysis at the study intersection was performed including the three-lane cross section along \(11^{\text {th }}\) Street and the results of the analysis are documented in Exhibit 22.

Exhibit 22 - Study Intersection - Two-Way Left-Turn Lane Capacity Analysis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Scenario & Peak Hour & Intersection & M.O.E. & EB & WB & NB & SB & Overall \\
\hline With & \multirow{2}{*}{AM} & 11th Street \& & Delay & 1.1 & 1.3 & 19.3 & 21.7 & - \\
\hline Two-Way & & Maynard Way & LOS & A & A & C & C & C \\
\hline \multirow[t]{2}{*}{Left-Turn Lane} & \multirow[b]{2}{*}{PM} & 11th Street \& & Delay & 1.7 & 0.8 & 47.5 & 29.7 & - \\
\hline & & Maynard Way & LOS & A & A & E & D & E \\
\hline
\end{tabular}

Exhibit 22 above indicates that the study intersection continues to operate at a LOS C in AM peak hour. In the PM peak hour, operations decrease along the northbound approach (convenience store access) of the intersection. The delay increases from 32.2 seconds/vehicle to 47.5 seconds/vehicle resulting in a LOS E. The LOS E occurs for the northbound approach from the private access point of the convenience store and does not negatively influence the delay incurred along \(11^{\text {th }}\) Street.
In both peak hours, the dominant movements at the study intersection (eastbound and westbound movements) continue to operate with minimal delay. The delay incurred in fact decreases for both eastbound and westbound directions in both peak hours. This is due to left-turning motorists off of \(11^{\text {th }}\) Street utilizing a dedicated left-turn lane rather than obstructing the same direction through lane(s).

\section*{Operations Benefits/Concerns:}

Although operations slightly decrease along the minor roadways at the study intersection, the conversion to a three-lane cross section would offer many benefits along the \(11^{\text {th }}\) Street corridor. From field observations, the following benefits were noted:
- Improves pedestrian comfort and safety.
- Reduces pedestrian crossing distance across \(11^{\text {th }}\) Street.
- One lane in each direction would lend to a pace-car setting through the corridor. This phenomenon exists as one vehicle traveling the speed limit leads following vehicles and prevents them from driving at excessive speeds.
- The shy distance or comfortable distance between the vehicle and curb, for the outside lane traveling motorists along \(11^{\text {th }}\) Street would be increased.
- Semi-truck and passenger vehicle traffic would be shifted away from the \(11^{\text {th }}\) Street adjacent curb and sidewalk facilities, lending to increased pedestrian safety and homeowner/business quality of life.
- One lane in each direction would decrease/eliminate the dangerous overtaking scenarios. Overtaking is when a large vehicle is traveling in the outside lane and a smaller vehicle is traveling at a higher speed in the inside travel lane. A pedestrian or stopped vehicle along a side street may not notice the smaller vehicle, or its higher rate of speed, due to the vehicle being blocked by the slower moving large vehicle.
- One lane in each direction would offer safety benefits for vehicles making a left turn from \(11^{\text {th }}\) Street. Not only would the turning vehicles enjoy the benefit of a dedicated turn lane by removing them from the through lane(s), the vehicle would also have fewer \(11^{\text {th }}\) Street approach lanes to interpret. Also, the reduction of \(11^{\text {th }}\) Street approach lanes from two to one lane would eliminate the potential for higher speed vehicle traveling in the outside travel lane being blocked by slower moving or multiple vehicles in the inside lane. See Exhibit 23 for an illustrative view of this scenario.

As a result of the benefits listed above, the number of failure to yield caused crashes and broadside manner of crashes along the \(11^{\text {th }}\) Street corridor may be reduced.

Although it is expected the conversion would improve the safety through corridor, the use of a three-lane cross section at the study intersection does still pose potential operations concerns pertaining to left-turn movements from \(11^{\text {th }}\) Street.
From research, the safety at the study intersection would be expected to be improved by the inclusion of dedicated left-turn lanes as part of the three-lane cross section. Installation of dedicated left-turn lanes increases the safety of the intersection. The 2010 Highway Safety Manual reports a 19 percent potential reduction of crashes by installing left-turn lanes along both major-road approaches. Crash types that would particularly benefit from the installation of dedicated left-turn lanes are rear-end and left-turn crashes. It should be noted however that the preceding research findings were likely conducted at intersections with typical non-skewed geometry.

With the conversion from a 4-lane cross section to a three-lane cross section, opposing direction left-turning vehicles off of \(11^{\text {th }}\) Street could potentially meet one another as illustrated within Exhibit 24.

Exhibit 24 - 3-Lane Cross Section Opposing Direction Left-Turn Movements

Under the three-lane cross section scenario, the opposing direction left-turning vehicles would still need to decide right-of-way amongst them as there is a potential that they would need to utilize the same pavement surface area in order to complete their movement.
It is anticipated however that the three-lane cross section left-turning movement scenario is superior to the four-lane cross section scenario due to the \(11^{\text {th }}\) Street left-turning vehicles being in-line across from one another and therefore decreasing the distance required to cross in front of one another. Additionally, as previously stated as a benefit along the corridor, the left-turning vehicles would have one fewer \(11^{\text {th }}\) Street approach lanes to interpret as well as eliminating the potential for higher speed vehicle traveling in the outside travel lane being blocked by slower moving or multiple vehicles in the inside lane.

\section*{Sensitivity Analysis:}

A sensitivity capacity analysis was conducted which included the addition of dedicated left-turn lanes in addition to the two through movement travel lanes in each direction at the study intersection. The addition of dedicated left-turn lanes would require reconstruction of the roadway cross section through the study intersection in order to accommodate the five-lane cross section. The results of the capacity analysis are documented in Exhibit 25.

\section*{Exhibit 25 - Study Intersection - Dedicated Left-Turn Lane Addition Capacity Analysis}
\begin{tabular}{|c|c|c|l|c|c|c|c|c|}
\hline Scenario & Peak Hour & Intersection & M.O.E. & EB & WB & NB & SB & Overall \\
\hline \multirow{2}{*}{\begin{tabular}{c}
With \\
Dedicated \\
Left-Turn
\end{tabular}} & AM & \begin{tabular}{c}
11th Street \& \\
Maynard Way
\end{tabular} & Delay & 1.1 & 1.3 & 15.8 & 17.5 & - \\
\cline { 3 - 9 } & LOS & A & A & C & C & C \\
\hline Lane Addition & PM & \begin{tabular}{c}
11th Street \& \\
Maynard Way
\end{tabular} & \begin{tabular}{ll}
Delay
\end{tabular} & 1.7 & 0.8 & 30.2 & 24.3 & - \\
\cline { 4 - 10 } & LOS & A & A & D & C & D \\
\hline
\end{tabular}

From Exhibit 25 above, the overall study intersection continues to operate at a LOS C in AM peak hour. In the PM peak hour, operations improve along the northbound approach (convenience store access) of the intersection. The delay decreases from 47.5 seconds/vehicle to 30.2 seconds/vehicle resulting in a LOS D.

In both peak hours, the dominant movements at the study intersection (eastbound and westbound movements) continue to operate with the same minimal delay as the two-way left-turn lane three-lane cross section scenario.

\section*{Summary:}

The conversion from a 4-lane cross section to a 3-lane cross section along the corridor provides many potential benefits. At the study intersection itself under the 3-lane cross section scenario, concerns do still exist regarding the transfer of right-of-way between \(11^{\text {th }}\) Street opposing direction left-turning vehicles. It is however anticipated that the 3lane cross section would provide safer accommodations for left-turning vehicles from \(11^{\text {th }}\) Street at the study intersection.
Sensitivity analysis determined that dominant movements along the \(11^{\text {th }}\) Street corridor experience the same minimal delay traveling through the study intersection regardless of a 3-lane or 5 -lane \(11^{\text {th }}\) Street cross section.

As part of further study of the 3-lane cross section, the following items should be included, implications to existing pavement markings, signing and traffic signal head locations along the \(11^{\text {th }}\) Street corridor.

\section*{Access Management along 11 \({ }^{\text {th }}\) Street Corridor}

As defined by the Access Management Manual, published by the Transportation Research Board in 2003, "access management is the systematic control of the location, spacing, design and operation of driveways, median openings, interchanges, and street connections to a roadway. As previously mentioned, there are 30 access points and 7 cross street intersections (including Maynard Way) along \(11^{\text {th }}\) Street along the half-mile stretch from \(11^{\text {th }}\) Avenue westward to the John Deere dealership. Each access point creates an intersection condition with regards to traffic operations.

Over time, the City of DeWitt should consider the principals of access management to reduce the number of access points along the \(11^{\text {th }}\) Street corridor. The principals of access management recognize that access-related vehicular maneuvers and traffic volumes can pose serious, specific and accumulative consequences to the flow and safety of the street for all user types. The major benefits of access management include reduction in crash rates and improvements to traffic capacity through the corridor.

Consulting the Access Management Manual in should be considered while developing and implementing a long-range access management program. More information regarding the Access Management Manual can be found within Appendix F.

\section*{Installation of Traffic Signal}

From Chapter 4B of the MUTCD, a traffic signal provides the following advantages that could potentially yield safety benefits at the study intersection.
- Provide for the orderly movement of traffic: In the context of the study intersection, a traffic signal would assist with the transfer of right-of-way between \(11^{\text {th }}\) Street opposing direction left-turning vehicles.
- Reduce the frequency and severity of certain types of crashes, especially rightangle collisions: In the context of the study intersection, a traffic signal would decrease the probability of broadside/right-angle, failure to yield crashes.

A traffic signal warrant analysis was performed at the study intersection and concluded that the study intersection satisfied two of the nine warrants for traffic signal installation as described in the MUTCD.

It is recommended that a traffic signal be considered and potentially programmed for as funding becomes available. Installation of a traffic signal would increase the safety of the study intersection. NCHRP Report \(491^{3}\) reports a 33 percent reduction in all crashes when a traffic signal is installed at a 4-leg intersection not previously controlled by a traffic signal. The same study determined a 67 percent reduction with regards to rightangle crashes.

The use of split phase left-turn signal phasing along \(11^{\text {th }}\) Street is recommended. Under this three-phase signal pattern, eastbound and westbound movements would have separate assignment of right-of-way and the northbound and southbound movements would share a phase. The ITE Traffic Signal Timing Manual (2009) acknowledges the use of split phasing when intersection geometry results in partially conflicting vehicle paths through the same space to complete their movements. Split phasing avoids the conflicts of opposing left turn vehicle paths. The use of split phasing would likely assist with the westbound and eastbound left-turn failure to yield to oncoming through motorist pattern of crashes that was observed through review of the crash data.
Two capacity analyses of the study intersection were performed, both including the installation of a traffic signal system utilizing split phasing westbound/eastbound left-turn movements. One analysis included the existing geometry and four-lane cross section along \(11^{\text {th }}\) Street and the second included the three-lane cross section along \(11^{\text {th }}\) Street. The results of the study intersection capacity analyses are documented in Exhibit 26 and Exhibit 27.

\section*{Exhibit 26 - Capacity Analysis with Traffic Signal and Existing Four-Lane Cross Section}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Scenario & Peak Hour & Intersection & M.O.E. & EB & WB & NB & SB & Overall \\
\hline Existing & \multirow[b]{2}{*}{AM} & 11th Street \& & Delay & 4.9 & 4.6 & 7.0 & 8.5 & \\
\hline Lane Use & & Maynard Way & LOS & A & A & A & A & A \\
\hline With Signal & \multirow{2}{*}{PM} & 11th Street \& & Delay & 4.4 & 4.5 & 7.8 & 8.7 & - \\
\hline System & & Maynard Way & LOS & A & A & A & A & A \\
\hline
\end{tabular}

\footnotetext{
\({ }^{3}\) McGee, Hugh and Taori,Sunil. NCHRP Report 491: Crash Experience Warrant for Traffic Signals. National Cooperative Highway Research Program (NCHRP), TRB, NRC. Washington, DC: National Academy Press, 2003.
}

Exhibit 27 - Capacity Analysis with Traffic Signal and Two-Way Left-Turn Lane
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Scenario & Peak Hour & Intersection & M.O.E. & EB & WB & NB & SB & Overall \\
\hline With & \multirow{2}{*}{AM} & 11th Street \& & Delay & 5.5 & 4.8 & 8.1 & 9.5 & - \\
\hline Two-Way & & Maynard Way & LOS & A & A & A & A & A \\
\hline Left-Turn & \multirow[b]{2}{*}{PM} & 11th Street \& & Delay & 4.5 & 5.0 & 9.1 & 10.3 & - \\
\hline Lane \& Signal & & Maynard Way & LOS & A & A & A & B & A \\
\hline
\end{tabular}

Exhibits 26 and 27 above indicate that the study intersection would operate at a LOS A in both the AM and PM peak hours regardless of the intersection geometry. In both the peak hours, delays along \(11^{\text {th }}\) Street increase slightly from the non-signalized intersection analyses; however the northbound and southbound approach delays are significantly reduced. Under both scenarios above, minimal delays are encountered along any of the four intersection approaches. The capacity of the study intersection would benefit from the use of a traffic signal system.
The list below contains items that should be evaluated as part of further study and/or design of the signal system.
- Vehicle Signal Heads - The following items should be considered:
o Use of LED signal heads to reduce energy consumption.
o Use of split phasing east/west movements.
- Street Name Signs - Use of street names signs mounted to all traffic signal mast arms to aid in motorist navigation.
- Pedestrian Accommodations - Use of pedestrian signal heads and push buttons for movements across \(11^{\text {th }}\) Street and Maynard Way. The pedestrian devices would aid in orderly and safe movement of pedestrians across the legs of the intersection. Crosswalks across \(11^{\text {th }}\) Street at the study intersection do not currently exist.
- Signal Poles - Evaluate the placement of the signal poles with respect to pedestrian push button access and lateral sidewalk accessibility needs. Chapter 4 E of the MUTCD could be used as reference.
- Vehicle Detection Equipment - Evaluate the use of vehicle detection equipment to be consistent with the City of DeWitt's existing traffic signal systems.
With any potential traffic signal addition or modification, consideration should be given to Section 12A-2 of the Iowa DOT Design Manual regarding accessible sidewalk requirements. Section 12A-2 contains requirements based upon the Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way (July \(26^{\text {th }}\), 2011) (PROWAG). The DOT Manual and PROWAG state that where elements are altered or added (traffic or pedestrian signal) to existing pedestrian facilities, the pedestrian circulation path is not required to be modified, however, elements that are added shall be made accessible to the maximum extent feasible.

\section*{South Leg Realignment}

Due to the alignment skew of Maynard Way (north leg of intersection) and the convenience store access point (south leg of intersection) opposing eastbound and westbound left-turning vehicles which meet each other at the same time must decide right-of-way between themselves at the intersection. This unfavorable scenario is likely a large component of the large percentage of failure to yield right-of-way crashes at the study intersection.

The overall safety of the intersection would likely improve if the north and south legs of the intersection were not skewed. It is recommended that the south leg (convenience store access) be shifted to the east and aligned with the north leg of the intersection to achieve a typical intersection orientation.

It is understood however that this improvement would require substantial geometric modifications and would likely require right-of-way alterations with the affected property owners (Casey's and adjacent light commercial building). The two properties could potentially share the realigned south leg of the intersection. Other infrastructure obstacles include, but are not limited to, associated commercial signing, fire hydrant and overhead utility lines/poles.

It should be noted that the traffic signal system could be installed at the study intersection under current geometric conditions and the traffic signal safety benefits would still exist.

See Exhibit 28 for an illustrative view of the south leg realignment improvements. The inclusion of the recommended traffic signal and three-lane cross section is also shown to demonstrate the overall improvement recommendation.

\section*{RECOMMENDED IMPROVEMENTS}

Below is a list of recommendations that should be considered in the short term and longer term. Traditionally, short term recommendations are those that should be able to be implemented fairly quickly and inexpensively; whereas long term recommendations are those that may require additional prior consideration and planning as well as procurement of funding.

The following recommendations are anticipated to improve the safe passage of vehicles through the study intersection. The list is arranged in order of suggested implementation as funding becomes available. Refer to the Considered Options section of the report for more detail regarding the individual recommendations.

\section*{Short Term Recommendations}
- Remove/modify sight distance obstruction located in the southwest quadrant
- Install "DO NOT BLOCK INTERSECTION" regulatory sign (MUTCD R10-7)
- Monitor installation of "DO NOT BLOCK INTERSECTION" pavement markings
- Convert \(11^{\text {th }}\) Street from a four-lane cross section facility to a three-lane cross section in combination with the final short term bullet.
- Install a split-phased traffic signal (it is understood however that the installation of a traffic signal is not a low-cost measure)

\section*{Long Term Recommendations}
- Realign the south leg of the intersection
- Implement access management along \(11^{\text {th }}\) Street corridor

In summary, the corridor would achieve substantial benefits from the implementation of a three-lane cross section. However at the study intersection, the installation of a splitphase traffic signal would most significantly improve traffic flow and safety from the orderly assignment of right-of-way. Furthermore, the realignment of the south leg of the intersection would also reduce safety risk of \(11^{\text {th }}\) Street opposing direction left-turn movements through the study intersection.

\section*{OPINION OF PROBABLE COSTS}

An order of magnitude opinion of probable cost for the short and long term recommendations presented above is included below.
\begin{tabular}{|l|c|l|}
\hline & Cost Estimate & \\
\hline SHORT TERM: & & \multicolumn{1}{c|}{ Notes } \\
\hline "DO NOT BLOCK INTERSECTION" Signing & \(\$ 300-\$ 500\) & Construction costs only \\
\hline 4-Lane to 3-Lane Conversion & \begin{tabular}{c}
\(\$ 20,000-\$ 30,000\) \\
Per Mile
\end{tabular} & Construction costs only \\
\hline Traffic Signal System & \(\$ 150,000\) & Further study necessary \\
\hline LONG TERM: & & \\
\hline South Leg Realignment & - & Further study necessary \\
\hline Access Management & Further study necessary \\
\hline \begin{tabular}{l}
NOTES: \\
* This opinion represents approximate construction quantities only and does not provided a detailed list of \\
expected project pay items. The opinion is to be used as a planning number only. Actual costs may vary, as \\
detailed design plans are prepared. \\
*Cost do not include any permanent right-of-way and temporary construction easement costs. \\
*Costs represent current dollars as of report date.
\end{tabular} \\
\hline
\end{tabular}

Although the recommended traffic signal system needs further evaluation to determine a more accurate cost estimate, an industry typical figure of \(\$ 150,000\) can be used as an installation cost of the complete traffic signal system at the study intersection for use within a benefit/cost analysis. A benefit/cost analysis was performed using the monetary figure presented above along with an estimated improvement life of 15 years. Crash reduction factors (CRF) for various safety countermeasures are available from the Crash Modification Factors Clearinghouse website which is sponsored by the Federal Highway Administration (FHWA). A crash reduction factor is used to compute the expected number of crashes after implementing a given countermeasure at a specific site. The following crash reduction factor was obtained from the clearinghouse for the benefit/cost analysis:
- Install a Traffic Signal (Stop Controlled Prior) - 33\% CRF

From the information presented above, a benefit-cost ratio of 1.68 was calculated for the study Intersection. Through additional analysis, a cumulative reduction factor of 20\% was determined to be necessary to achieve a benefit-cost ratio over 1.0 for the study intersection.

The benefit-cost analysis can be found in Appendix G of this report.

\section*{POTENTIAL FUNDING SOURCES}

Many funding sources may be available while pursuing funding for elements of the project recommendations.

\section*{ICAAP}

Funding may be available under the "Iowa Clean Air Attainment Program" (ICAAP) which funds highway/street projects which help maintain lowa's clean air quality by reducing transportation-related emissions. Eligible highway/street projects must be on the federal-aid system, which includes all federal functional class routes except local and rural minor collectors. \(11^{\text {th }}\) Street is classified as rural major collector under the Clinton

County region Iowa DOT Federal Functional Classification System Map (Dated -
Revised June 14, 2010). The application deadline for ICAAP funding is October \(1^{\text {st }}\) of each year. The average length of time for acceptance decision is four months. In order to qualify for funding, a local match of at least 20 percent is required and the project should fall within one of four categories. The intersection improvement project would fall into the category of reducing emissions via traffic flow improvements providing a direct benefit to air quality by addressing ozone, carbon monoxide, or particulate matter PM2.5 or \(\mathrm{PM}-10\). Each of the preceding pollutants must be addressed, and a reduction calculation must be provided within the application.

\section*{TSIP}

Funding for traffic safety improvements on public roads under county, city or state jurisdiction may be available through the "Traffic Safety Improvement Program" (TSIP). The application deadline for TSIP funding is August \(15^{\text {th }}\) of each year (recently changed from June \(15^{\text {th }}\) to August \(15^{\text {th }}\)). The crash history for the intersection showed a higher rate than the statewide average which may assist in competing for site specific funding due to accident history. Also, the second qualification category for funding line includes the "purchase of materials for installation of new traffic control devices such as signs or signals, or replacement of obsolete signs or signals". Site-specific funding cannot exceed \(\$ 500,000\) per project. Application forms are available from the lowa DOT, and application is made to the Iowa DOT Office of Traffic and Safety.
Further information on potential funding sources is available on the lowa DOT website at http://www.iowadot.gov/fundguid.htm, Information sheets on each of the programs mentioned are provided in Appendix \(\mathbf{H}\) of this report.

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix A - CMAT Crash Reports}

\section*{lowa DOT Office of Traffic \& Safety}

County: \(\qquad\) Prepared by: \(\qquad\) Date Prepared: \(\qquad\) Aug 1, 2013 Intersection: 11th Street and Maynard Way

\section*{Improvement}

Proposed Improvement(s):

Traffic Volume Data
Source: Iowa DOT 2010 Traffic Count Maps
2010 Date of traffic count

Daily Entering Vehicles by Approach (or AADT / 2)

\section*{2,253,875 Current Annual Entering Veh., AEV = DEV * 365 \\ 6,175 veh / day, Final Year DEV, FDEV}
- MEV, Total Million Entering Veh. Over life of Project, TMEV
\(\qquad\) Projected Traffic Growth (0\%-10\%), G
6,175 Current Daily Entering Vehicles, DEV
\[
T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}
\]

\section*{Crash Data}

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\quad \$ 0 \quad: \quad \$ 0 \quad=\quad-\quad: 1
\]

\section*{ACCIDENT AND RELATED DATA FOR RURAL AND MUNICIPAL INTERSECTIONS IN IOWA}

Based on 1983 thru 1987 Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Field Description} & \multicolumn{4}{|c|}{RURAL} & \multicolumn{3}{|r|}{MUNICIPAL} & \\
\hline & Primary with Primary & Primary with Secondary & Secondary with Secondary & Total Rural & Primary with Primary & Primary with City Stree & City Street with City Street & Total Municipal \\
\hline Number of Intersections & 93 & 345 & 134 & 572 & 162 & 1,129 & 1,553 & 2,844 \\
\hline Average Number of Accidents / Year & 1.6 & 1.1 & 0.8 & 1.1 & 4.8 & 4.1 & 3.0 & 3.6 \\
\hline Average Dollar Loss / Year * & \$52,200 & \$44,200 & \$37,300 & \$43,900 & \$53,800 & \$43,100 & \$26,800 & \$34,800 \\
\hline Average Daily Entering Vehicles & 4,500 & 4,000 & 2,200 & 3,600 & 12,800 & 12,800 & 10,500 & 11,500 \\
\hline Average Accident Rate / MEV & 1.0 & 0.8 & 1.0 & 0.9 & 1.0 & 0.9 & 0.8 & 0.8 \\
\hline Lower Limits of Statistical Rates & & & & & & & & \\
\hline 90 \% Confidence Level (\(\mathrm{K}=1.282\)) & 1.9 & 1.8 & 2.8 & 2.1 & 1.7 & 1.6 & 1.6 & 1.6 \\
\hline 95 \% Confidence Level (K=1.645) & 2.1 & 2.0 & 3.2 & 2.4 & 1.9 & 1.8 & 1.8 & 1.8 \\
\hline 99.5 \% Confidence Level (K=2.576) & 2.8 & 2.7 & 4.1 & 3.2 & 2.4 & 2.3 & 2.4 & 2.4 \\
\hline
\end{tabular}

BY TRAFFIC VOLUME CLASS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Field Description} & \multicolumn{6}{|c|}{RURAL} & \multicolumn{6}{|c|}{MUNICIPAL} \\
\hline & \[
\begin{gathered}
\hline 1 \\
- \\
999
\end{gathered}
\] & \[
\begin{gathered}
1,000 \\
- \\
2,499
\end{gathered}
\] & \[
\begin{gathered}
\hline 2,500 \\
- \\
4,999
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 5,000 } \\
-\quad \\
9,999
\end{gathered}
\] & \[
\begin{gathered}
\hline 10,000 \\
\& \\
\text { Over } \\
\hline
\end{gathered}
\] & Total Rural & \[
\begin{gathered}
1 \\
- \\
2,499
\end{gathered}
\] & \[
\begin{gathered}
\hline 2,500 \\
- \\
4,999
\end{gathered}
\] & \[
\begin{gathered}
5,000 \\
- \\
9,999
\end{gathered}
\] & 10,000
-
24,999 & \begin{tabular}{l}
\[
25,000
\] \\
\& \\
Over
\end{tabular} & Total Municip. \\
\hline Number of Intersections & 68 & 191 & 191 & 97 & 25 & 572 & 85 & 363 & 988 & 1,238 & 170 & 2,844 \\
\hline Average Number of Accidents / Year & 0.5 & 0.8 & 1.1 & 1.7 & 3.8 & 1.1 & 0.9 & 1.5 & 2.0 & 4.6 & 10.6 & 3.6 \\
\hline Average Dollar Loss / Year * & \$46,400 & \$38,200 & \$43,700 & \$47,600 & \$67,100 & \$43,900 & \$20,600 & \$20,500 & \$20,100 & \$43,500 & \$94,700 & \$34,800 \\
\hline Average Daily Entering Vehicles & 650 & 1,750 & 3,600 & 6,750 & 14,500 & 3,650 & 1,900 & 3,900 & 7,450 & 15,050 & 30,450 & 11,500 \\
\hline Average Accident Rate / MEV & 2.1 & 1.2 & 0.9 & 0.7 & 0.7 & 0.9 & 1.3 & 1.0 & 0.7 & 0.8 & 1.0 & 0.8 \\
\hline Lower Limits of Statistical Rates & & & & & & & & & & & & \\
\hline 90\% Confidence Level (\(\mathrm{K}=1.282\)) & 3.7 & 2.1 & 1.4 & 1.3 & 1.3 & 2.1 & 2.9 & 1.9 & 1.4 & 1.5 & 1.6 & 1.6 \\
\hline 95\% Confidence Level (\(\mathrm{K}=1.645\)) & 4.1 & 2.4 & 1.6 & 1.5 & 1.5 & 2.4 & 3.3 & 2.2 & 1.6 & 1.7 & 1.8 & 1.8 \\
\hline 99.5\% Confidence Level (K=2.576) & 5.2 & 3.0 & 2.0 & 1.9 & 1.9 & 3.2 & 4.3 & 2.8 & 2.1 & 2.2 & 2.2 & 2.4 \\
\hline
\end{tabular}

\footnotetext{
* Dollar Loss Value Based on: Fatality - \$435,000

Injury - \$ 15,000
Plus Actual Property Damage
}

Bureau of Transportation Safety Iowa Department of Transportation
Prepared January, 1989

\section*{Driver and Time Summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{Crash Time of Day Summary:} \\
\hline From & 00:00 & 02:00 & 04:00 & 06:00 & 08:00 & 10:00 & 12:00 & 14:00 & 16:00 & 18:00 & 20:00 & 22:00 & & & \\
\hline To & 01:59 & 03:59 & 05:59 & 07:59 & 09:59 & 11:59 & 13:59 & 15:59 & 17:59 & 19:59 & 21:59 & 23:59 & NR & Total & \% \\
\hline SUN & - & - & - & - & - & 1 & 1 & - & - & - & - & - & - & 2 & 10 \\
\hline MON & - & - & - & - & - & - & - & - & 2 & - & - & - & - & 2 & 10 \\
\hline TUE & - & - & - & 1 & - & - & - & - & 1 & - & - & - & - & 2 & 10 \\
\hline WED & - & - & - & - & - & - & 1 & - & - & 1 & - & - & - & 2 & 10 \\
\hline THU & - & - & - & - & 1 & - & - & - & - & - & - & - & - & 1 & 5 \\
\hline FRI & - & - & - & 1 & 3 & 1 & 3 & - & 2 & - & - & - & - & 10 & 48 \\
\hline SAT & - & - & - & - & - & - & 1 & - & - & 1 & - & - & - & 2 & 10 \\
\hline Tot. & & & & 2 & 4 & 2 & 6 & & 5 & 2 & & & & 21 & \\
\hline \% & & & & 10 & 19 & 10 & 29 & & 24 & 10 & & & & & 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Driver Age/Gender Summary:} & \multicolumn{3}{|l|}{Drug/Alcohol Summary:} \\
\hline Age & Male & Female & NR & Drivers & \% & & Total & \% \\
\hline <14 & - & - & - & & & Drug & & \\
\hline 14 & - & 1 & - & 1 & 2 & Alcohol, Less than Statutory & & \\
\hline 15 & - & - & - & & & Alcohol, Statutory & 1 & 5 \\
\hline 16 & - & 2 & - & 2 & 5 & Drug/Alcohol, Less than Statutory & & \\
\hline 17 & - & - & - & & & Drug/Alcohol, Statutory & & \\
\hline 18 & 1 & - & - & 1 & 2 & Refused & & \\
\hline 19 & - & 3 & - & 3 & 7 & Under Influence of Alc/Drugs/Meds & & \\
\hline 20 & 1 & - & - & 1 & 2 & None Indicated & 20 & 95 \\
\hline 21 to 24 & 1 & 2 & - & 3 & 7 & Total Crashes & 21 & 100 \\
\hline 25 to 29 & 2 & - & - & 2 & 5 & & & \\
\hline 30 to 34 & 3 & - & - & 3 & 7 & Fixed Object Struck Summary: & & \\
\hline 35 to 39 & 2 & 2 & - & 4 & 10 & & Vehs. & \% \\
\hline 40 to 44 & 1 & 2 & - & 3 & 7 & Bridge/Bridge rail/Overpass & & \\
\hline 45 to 49 & 2 & 1 & - & 3 & 7 & Underpass/Structure Support & & \\
\hline 50 to 54 & - & - & - & & & Culvert & & \\
\hline 55 to 59 & 2 & 3 & - & 5 & 12 & Ditch/Embankment & & \\
\hline 60 to 64 & - & 1 & - & 1 & 2 & Curb/Island/Raised Median & 1 & 2 \\
\hline 65 to 69 & 1 & - & - & 1 & 2 & Guardrail & & \\
\hline 70 to 74 & 3 & - & - & 3 & 7 & Concrete Barrier & & \\
\hline 75 to 79 & - & 1 & - & 1 & 2 & Tree & & \\
\hline 80 to 84 & - & - & - & & & Pole - Utility/Light/Etc & & \\
\hline 85 to 89 & 1 & 1 & - & 2 & 5 & Sign Post & & \\
\hline 90 to 94 & - & 1 & - & 1 & 2 & Mailbox & & \\
\hline 95 plus & - & - & - & & & Impact Attenuator & & \\
\hline NR & 1 & - & - & 1 & 2 & Other Fixed Object & & \\
\hline Drivers & 21 & 20 & 0 & 41 & & None & 40 & 98 \\
\hline \% & 51 & 49 & 0 & & 100 & Total Vehicles & 41 & 100 \\
\hline
\end{tabular}

\section*{Selection Filter:}
```

((YEAR = 2008 or YEAR = 2009 or YEAR = 2010 or YEAR = 2011 or YEAR = 2012))

```

\section*{Analyst: Shannon}

Notes: 11th Street \& Maynard Way

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{cl}
\hline 2008418540 & \(01 / 11 / 200817: 40\) \\
County:23 & City:De Witt
\end{tabular}\(\quad 11 T H\) ST and MAYNARD WAY

Major Cause: FTY from parked position
Roadway Type:Intersection: T - intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: \(0 \quad\) Light Conditions: Dark - roadway lighted
Minor Injuries: \(0 \quad\) Weather Conditions: Clear
Possible Injuries: \(0 \quad\) Drug/Alc Involved: none indicated
Unknown Injuries: \(0 \quad\) Property Damage: \(\$ 8000 \quad\) Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & not reported & South & 0 \\
\hline Veh Action: & Turning left & Essentially straight & 0 \\
\hline Configuration: & Van or mini-van & 4-tire light truck & 0 \\
\hline Driver Age: & 60 & 14 & 0 \\
\hline Driver Gender: & F & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & FTY from parked position & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2008443910 & \(05 / 27 / 2008\) 16:05 \\
County:23 & City:De Witt
\end{tabular}\(\quad\) ST and MAYNARD WAY

Major Cause: FTY making left turn
Roadway Type:Intersection: Four-way intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Property Damage: \$7300
Number of Vehicles: 2
\begin{tabular}{|l||l|}
\hline Unit 2 & Unit 3 \\
West & 0 \\
Turning left & 0 \\
Passenger car & 0 \\
59 & 0 \\
F \\
Normal & 0 \\
FTY making left turn & 0 \\
not reported & 0 \\
none & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{|cl|}
\hline 2008455318 & \(08 / 08 / 2008\) 13:10 \\
County:23 & City:De Witt
\end{tabular}\(\quad\) ST and MAYNARD WAY

Major Cause: Other improper action
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Rear-end
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage: \(\$ 2000\)
Number of Vehicles: 2

Major Cause: FTY making left turn
Roadway Type:Not reported

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Partly cloudy
Drug/Alc Involved:Alcohol: Statutory
Property Damage: \$5500
Number of Vehicles: 2

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{cl}
\hline 2009489654 & \(01 / 15 / 2009\) 08:35 \\
County:23 & City:De Witt
\end{tabular}\(\quad\) ST and MAYNARD WAY

Major Cause: FTY from stop sign
Roadway Type:Intersection: T - intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Snow

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Cloudy
Possible Injuries. 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$2000
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & South & not reported & 0 \\
\hline Veh Action: & Stopped for sign/signal & Essentially straight & 0 \\
\hline Configuration: & Passenger car & 4-tire light truck & 0 \\
\hline Driver Age: & 41 & 35 & 0 \\
\hline Driver Gender: & F & & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & FTY from stop sign & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2009499699 & \(03 / 23 / 200916: 30\) \\
County:23 & City:De Witt
\end{tabular} 11TH ST measuring 50 Feet East from 11 TH ST and MAYNARD WAY

Major Cause: Other: No improper action
Roadway Type:Non-intersection: No special feature

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Non-collision
Surface Conditions: Wet
Light Conditions: Daylight
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Property Damage: \$1000
Number of Vehicles: 1
\begin{tabular}{|c|c|}
\hline Unit 2 & Unit 3 \\
\hline 0 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|cl|}
\hline 2009513569 & \(06 / 26 / 2009\) 10:30 \\
County:23 & City:De Witt
\end{tabular}\(\quad 1 \mathrm{TH}\) ST and MAYNARD WAY

Major Cause: FTY making left turn
Roadway Type:Intersection: T - intersection

Severity:Minor
Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$6000
Number of Vehicles: 2
\begin{tabular}{|l||l|}
\hline Unit 2 & Unit 3 \\
South & 0 \\
Turning left \\
Passenger car \\
unknown & 0 \\
M \\
\begin{tabular}{l}
Normal \\
FTY making left turn \\
not reported \\
none
\end{tabular} & \begin{tabular}{l}
0 \\
0 \\
0 \\
0
\end{tabular} \\
\hline
\end{tabular}

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{|ll|}
\hline 2009543223 & \(12 / 08 / 200907: 55\) \\
County:23 & City:De Witt
\end{tabular}\(\quad 11 \mathrm{TH}\) ST and MAYNARD WAY

Major Cause: Driving too fast for conditions
Roadway Type:Intersection: T - intersection
Severity:PDO Manner of Crash: Broadside
Fatalities: 0
Major Injuries: 0
Surface Conditions: Wet

Minor Injuries: 0
Light Conditions: Daylight

Possible Injuries: 0
Weather Conditions: Snow
Possible Injuries: 0 Drug/Alc Involved:none indicated
\begin{tabular}{|c|c|c|c|c|}
\hline Unknown Injur & \multicolumn{2}{|l|}{juries: \(0 \quad\) Property Damage: \(\$ 2500\)} & \multicolumn{2}{|r|}{Number of Vehicles: 2} \\
\hline & Unit 1 & Unit 2 & Unit 3 & \\
\hline Init Trav Dir: W & West & South & 0 & \\
\hline Veh Action: E & Essentially straight & Slowing/stopping & 0 & \\
\hline Configuration: 2 & 2-axle 6-tire truck & Sport utility vehicle & 0 & \\
\hline Driver Age: 5 & 55 & & 0 & \\
\hline Driver Gender: M & M & & & \\
\hline Driver Cond: N & Normal & Normal & 0 & \\
\hline Drivr Contr 1: n & none & Too fast for conditions & 0 & \\
\hline Drivr Contr 2: n & not reported & not reported & 0 & \\
\hline Fixed Object: n & none & none & 0 & \\
\hline
\end{tabular}

Major Cause: Ran stop sign
Roadway Type:Intersection: T - intersection

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0
\begin{tabular}{r|l||}
Init Trav Dir: & Unit 1 \\
Veh Action: & South \\
Turning left \\
Configuration: & Passenger car \\
Driver Age: & 16 \\
Driver Gender: & F \\
Driver Cond: & Normal \\
Drivr Contr 1: & Ran stop sign \\
Drivr Contr 2: & not reported \\
Fixed Object: & none
\end{tabular}

Manner of Crash: Broadside
Surface Conditions: Other
Light Conditions: Dark - roadway lighted
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \(\$ 5000 \quad\) Number of Vehicles: 2

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{|ll}
\hline \begin{tabular}{ll}
2010596821 \\
County:23 & 10/20/2010 18:10 \\
City:De Witt
\end{tabular} &
\end{tabular}

Major Cause: FTY making left turn
Roadway Type:Non-intersection: Business drive
Severity:PDO Manner of Crash: Angle, oncoming left turn
Fatalities: 0
Major Injuries: 0
Surface Conditions: Dry

Minor Injuries: 0
Light Conditions: Daylight
ossible Injuries: 0
Weather Conditions: Clear
Possible Injuries:
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \(\$ 2500\)
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & South & 0 \\
\hline Veh Action: & Turning left & Essentially straight & 0 \\
\hline Configuration: & Passenger car & Sport utility vehicle & 0 \\
\hline Driver Age: & 21 & 41 & 0 \\
\hline Driver Gender: & M & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & FTY making left turn & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2010604124 & 11/28/2010 10:00 \\
County:23 & City:De Witt
\end{tabular}\(\quad 11 \mathrm{TH} \mathrm{ST}\)

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{|ll}
2010605292 & \(12 / 10 / 2010\) 08:15 \\
County:23 & City:De Witt
\end{tabular} MAYNARD WAY and 11TH ST

Major Cause: Swerving/evasive action
Roadway Type:Intersection: T - intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Rear-end
Surface Conditions: Ice
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage: \$5000
Number of Vehicles: 2
\begin{tabular}{|l|l|}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 & \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2010607989 & \(12 / 10 / 2010\) 08:20 \\
County:23 & City:De Witt
\end{tabular}\(\quad\)\begin{tabular}{l}
MAYARD WAY and 11 TH ST
\end{tabular}

Major Cause: Other improper action
Roadway Type:Intersection: T - intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0

Manner of Crash: Rear-end
Surface Conditions: Snow
Light Conditions: Daylight
Weather Conditions: Snow
Drug/Alc Involved: none indicated
Property Damage: \$4000
Number of Vehicles: 2
\begin{tabular}{|l|l|}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 & \\
0
\end{tabular}

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{|ll}
\hline 2010608386 & \(12 / 22 / 2010\) 12:10 \\
County:23 & City:De Witt
\end{tabular} MAYNARD WAY and 11TH ST

Major Cause: FTY making left turn
Roadway Type:Intersection: T - intersection

Severity:Minor
Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Property Damage: \$8000
Number of Vehicles: 2
\begin{tabular}{|l||l||}
\hline Unit 2 & Unit 3 \\
South & 0 \\
Turning left \\
2-axle 6-tire truck & 0 \\
48 \\
M \\
Normal & 0 \\
FTY making left turn & 0 \\
not reported \\
none & 0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|l|}
\hline 2011641670 & 07/29/2011 08:40 \\
County:23 & City:De Witt &
\end{tabular}

Major Cause: FTY making left turn
Roadway Type:Non-intersection: Business drive

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \$6000
Number of Vehicles: 2
\begin{tabular}{|l|l|}
\hline Unit 3 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{ll}
2011642908 & \(08 / 06 / 2011\) 12:55 \\
County:23 & City:De Witt
\end{tabular} MAYNARD WAY and 11TH ST

Major Cause: FTY making left turn
Roadway Type:Intersection: T - intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Broadside
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
\begin{tabular}{l|l||l||l||}
\hline Unit 1 & Unit 2 \\
Init Trav Dir: & South & Unit 3 \\
Veh Action: & Essentially straight & West \\
Configuration: & Passenger car & Turning left \\
Driver Age: & 19 & Passenger car \\
Driver Gender: & F & 16 \\
Driver Cond: & Normal & F \\
Drivr Contr 1: & none & Normal \\
Drivr Contr 2: & not reported & FTY making left turn & 0 \\
Fixed Object: & none & not reported & 0 \\
\hline
\end{tabular}
County:23 City:De Witt

Major Cause:FTY making left turn
Roadway Type:Intersection: T - intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash:Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved: none indicated
Property Damage: \(\$ 2100\)
Number of Vehicles: 2
\begin{tabular}{|l||l|}
\hline Unit 2 & Unit 3 \\
West & 0 \\
Essentially straight & 0 \\
Van or mini-van & 0 \\
58 & 0 \\
M & 0 \\
Normal & 0 \\
none & 0 \\
not reported & 0 \\
none & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}

City of DeWitt TEAP
\begin{tabular}{|ll}
\hline 2012686140 & \(05 / 13 / 2012\) 12:45 \\
County:23 & City:De Witt
\end{tabular} MAYNARD WAY and 11TH ST

Major Cause: FTY making left turn
Roadway Type:Non-intersection: Business drive
Severity:Minor Manner of Crash: Non-collision
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: \(0 \quad\) Light Conditions: Daylight
Minor Injuries: 1
Weather Conditions: Clear
Possible Injuries: 0
Drug/Alc Involved: none indicated
Unknown Injuries: 0
Property Damage: \$2000
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & East & 0 \\
\hline Veh Action: & Essentially straight & Turning left & 0 \\
\hline Configuration: & Motorcycle & Passenger car & 0 \\
\hline Driver Age: & 41 & 73 & 0 \\
\hline Driver Gender: & M & M & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & Swerved to avoid & FTY making left turn & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}

Major Cause: FTY making left turn
Roadway Type:Non-intersection: Business drive

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Angle, oncoming left turn
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Partly cloudy
Drug/Alc Involved: none indicated
Property Damage: \$2000
Number of Vehicles: 2
\begin{tabular}{|l||l|}
\hline Unit 2 & Unit 3 \\
East & 0 \\
Essentially straight & 0 \\
Passenger car & 0 \\
88 & 0 \\
F \\
Normal & 0 \\
none & 0 \\
not reported & 0 \\
none & 0 \\
0
\end{tabular}

\section*{Crash Detail Report}

City of DeWitt TEAP
Report Version 1.3 Aug 2006
\begin{tabular}{|cl|}
\hline 2012694945 & \(07 / 16 / 2012\) 17:53 \\
County:23 & City:De Witt
\end{tabular} MAYNARD WAY and 11TH ST

\section*{Major Cause: FTY from stop sign}

Roadway Type:Intersection: T - intersection

Severity:PDO
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Broadside
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Clear
Drug/Alc Involved:none indicated
Property Damage: \(\$ 7000\)
Number of Vehicles: 2
\begin{tabular}{|l|l||}
\hline Unit 3 \\
0 \\
0 \\
0 & \\
0 & \\
0 \\
0 & \\
0 & \\
0 & \\
\hline
\end{tabular}

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix B - Iowa DOT Provided Count Data}

TRAFFIC FLOW MAP OF
DEWITT
CLINTON COUNTY
2006 ANNUAL AVERAGE DAILY TRAFFIC

LEGEND
recoroer only
MANUAL count
\(\square\)

TRAFFIC FLOW MAP OF
DE witt
\(\therefore \operatorname{Ba}^{1}\)
CLINTON COUNTY
2010 ANNUAL AVERAGE DAILY TRAFFIC

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix C - City of DeWitt Collected Count Data}

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix D - Synchro Analysis Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 5.2 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Vol, veh/h & 61 & 377 & 3 & 44 & 281 & 18 & 7 & 4 & 29 & 29 & 15 & 120 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & 100 & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 76 & 78 & 38 & 69 & 91 & 50 & 88 & 50 & 60 & 66 & 63 & 71 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 0 & 1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Mvmt Flow & 80 & 483 & 8 & 64 & 309 & 36 & 8 & 8 & 48 & 44 & 24 & 169 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor1} & \multicolumn{5}{|c|}{Minor2} \\
\hline Conflicting Flow All & 345 & 0 & 0 & 491 & 0 & 0 & 942 & 1120 & 246 & 860 & 1106 & 172 \\
\hline Stage 1 & - & - & - & - & - & - & 648 & 648 & - & 454 & 454 & \\
\hline Stage 2 & - & - & - & - & - & - & 294 & 472 & - & 406 & 652 & \\
\hline Follow-up Headway & 2.2 & - & - & 2.2 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.3 \\
\hline Pot Capacity-1 Maneuver & 1225 & - & - & 1083 & - & - & 221 & 208 & 760 & 253 & 212 & 848 \\
\hline Stage 1 & - & - & - & - & - & - & 430 & 469 & - & 560 & 573 & \\
\hline Stage 2 & - & - & - & - & - & - & 695 & 562 & - & 598 & 467 & \\
\hline Time blocked-Platoon, \% & & - & - & & - & - & & & & & & \\
\hline Mov Capacity-1 Maneuver & 1225 & - & - & 1083 & - & - & 140 & 175 & 760 & 201 & 179 & 848 \\
\hline Mov Capacity-2 Maneuver & - & - & - & - & - & - & 140 & 175 & - & 201 & 179 & \\
\hline Stage 1 & - & - & - & - & - & - & 391 & 427 & - & 510 & 531 & \\
\hline Stage 2 & - & - & - & - & - & - & 493 & 521 & - & 500 & 425 & \\
\hline
\end{tabular}
\begin{tabular}{lccrr}
Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 1.4 & 1.5 & 16.1 & 17.8 \\
HCM LOS & & \(C\) & \(C\)
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
Minor Lane / Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 & SBLn2 \\
\hline Capacity (veh/h) & 387 & 1225 & - & - & 1083 & - & - & 201 & 512 \\
HCM Lane V/C Ratio & 0.166 & 0.066 & - & - & 0.059 & - & - & 0.146 & 0.405 \\
HCM Control Delay (s) & 16.1 & 8.145 & 0.3 & - & 8.532 & 0.2 & - & 25.9 & 16.7 \\
\hline HCM Lane LOS & C & A & A & & A & A & D & C \\
HCM 95th \%tile Q(veh) & 0.589 & 0.21 & - & - & 0.187 & - & - & 0.5 & 1.945
\end{tabular}

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 5.7 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Vol, veh/h & 81 & 433 & 5 & 49 & 397 & 57 & 18 & 4 & 23 & 28 & 13 & 76 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & 100 & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 72 & 97 & 42 & 88 & 90 & 62 & 64 & 50 & 72 & 88 & 46 & 79 \\
\hline Heavy Vehicles, \% & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline Mvmt Flow & 112 & 446 & 12 & 56 & 441 & 92 & 28 & 8 & 32 & 32 & 28 & 96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor1} & \multicolumn{5}{|c|}{Minor2} \\
\hline Conflicting Flow All & 533 & 0 & 0 & 458 & 0 & 0 & 1023 & 1321 & 229 & 1050 & 1281 & 267 \\
\hline Stage 1 & - & - & - & - & - & - & 677 & 677 & & 598 & 598 & \\
\hline Stage 2 & - & - & - & - & - & - & 346 & 644 & & 452 & 683 & \\
\hline Follow-up Headway & 2.2 & - & - & 2.2 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.34 \\
\hline Pot Capacity-1 Maneuver & 1045 & - & - & 1114 & - & - & 193 & 158 & 780 & 184 & 167 & 725 \\
\hline Stage 1 & - & - & - & - & - & - & 414 & 455 & - & 461 & 494 & \\
\hline Stage 2 & - & - & - & - & - & - & 649 & 471 & - & 562 & 452 & \\
\hline Time blocked-Platoon, \% & & - & - & & - & - & & & & & & \\
\hline Mov Capacity-1 Maneuver & 1045 & - & - & 1114 & - & - & 119 & 125 & 780 & 141 & 133 & 725 \\
\hline Mov Capacity-2 Maneuver & - & - & - & - & - & - & 119 & 125 & - & 141 & 133 & \\
\hline Stage 1 & - & - & - & - & - & - & 354 & 389 & - & 394 & 458 & \\
\hline Stage 2 & - & - & - & - & - & - & 490 & 437 & - & 451 & 386 & \\
\hline
\end{tabular}
\begin{tabular}{lccrc}
Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 2.1 & 0.9 & 32.2 & 25.6 \\
HCM LOS & & & D & D
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
\hline Minor Lane / Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 & SBLn2 \\
\hline Capacity (veh/h) & 199 & 1045 & - & - & 1114 & - & - & 141 & 321 \\
HCM Lane V/C Ratio & 0.342 & 0.108 & - & - & 0.05 & - & - & 0.15 & 0.421 \\
HCM Control Delay (s) & 32.2 & 8.86 & 0.4 & - & 8.402 & 0.2 & - & 35 & 24.1 \\
HCM Lane LOS & D & A & A & & A & A & & E & C \\
HCM 95th \%tile Q(veh) & 1.434 & 0.361 & - & - & 0.158 & - & - & 0.514 & 2.006
\end{tabular}

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined
\begin{tabular}{lrrrrrrrrrrrrr}
\hline Intersection \\
\hline Intersection Delay, s/veh & 5.9 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor1} & \multicolumn{5}{|c|}{Minor2} \\
\hline Conflicting Flow All & 345 & 0 & 0 & 491 & 0 & 0 & 1199 & 1120 & 487 & 1130 & 1106 & 327 \\
\hline Stage 1 & - & - & - & - & - & - & 648 & 648 & - & 454 & 454 & \\
\hline Stage 2 & - & - & - & - & - & - & 551 & 472 & - & 676 & 652 & \\
\hline Follow-up Headway & 2.2 & - & - & 2.2 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.3 \\
\hline Pot Capacity-1 Maneuver & 1225 & - & - & 1083 & - & - & 164 & 208 & 585 & 183 & 212 & 719 \\
\hline Stage 1 & - & - & - & - & - & - & 462 & 469 & - & 589 & 573 & \\
\hline Stage 2 & - & - & - & - & - & - & 522 & 562 & - & 446 & 467 & \\
\hline Time blocked-Platoon, \% & & - & - & & - & - & & & & & & \\
\hline Mov Capacity-1 Maneuver & 1225 & - & - & 1083 & - & - & 103 & 183 & 585 & 147 & 186 & 719 \\
\hline Mov Capacity-2 Maneuver & - & - & - & - & - & - & 103 & 183 & - & 147 & 186 & \\
\hline Stage 1 & - & - & - & - & - & - & 432 & 438 & - & 551 & 539 & \\
\hline Stage 2 & - & - & - & - & - & - & 359 & 529 & - & 375 & 437 & \\
\hline
\end{tabular}
\begin{tabular}{lccrr}
Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 1.1 & 1.3 & 19.3 & 21.7 \\
HCM LOS & & \(C\) & \(C\)
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
Minor Lane / Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 & SBLn2 \\
\hline Capacity (veh/h) & 316 & 1225 & - & - & 1083 & - & - & 147 & 448 \\
HCM Lane V/C Ratio & 0.203 & 0.066 & - & - & 0.059 & - & - & 0.199 & 0.463 \\
HCM Control Delay (s) & 19.3 & 8.145 & - & - & 8.532 & - & - & 35.5 & 19.8 \\
\hline HCM Lane LOS & C & A & & & A & & E & C \\
HCM 95th \%tile Q(veh) & 0.748 & 0.21 & - & - & 0.187 & - & - & 0.712 & 2.397
\end{tabular}

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 6.7 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Vol, veh/h & 81 & 433 & 5 & 49 & 397 & 57 & 18 & 4 & 23 & 28 & 13 & 76 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & 150 & - & - & 150 & - & - & - & - & - & 100 & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 72 & 97 & 42 & 88 & 90 & 62 & 64 & 50 & 72 & 88 & 46 & 79 \\
\hline Heavy Vehicles, \% & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline Mvmt Flow & 112 & 446 & 12 & 56 & 441 & 92 & 28 & 8 & 32 & 32 & 28 & 96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor1} & \multicolumn{5}{|c|}{Minor2} \\
\hline Conflicting Flow All & 533 & 0 & 0 & 458 & 0 & 0 & 1338 & 1321 & 452 & 1295 & 1281 & 487 \\
\hline Stage 1 & - & - & - & - & - & - & 677 & 677 & - & 598 & 598 & \\
\hline Stage 2 & - & - & - & - & - & - & 661 & 644 & - & 697 & 683 & \\
\hline Follow-up Headway & 2.2 & - & - & 2.2 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.336 \\
\hline Pot Capacity-1 Maneuver & 1045 & - & - & 1114 & - & - & 131 & 158 & 612 & 141 & 167 & 576 \\
\hline Stage 1 & - & - & - & - & - & - & 446 & 455 & - & 492 & 494 & \\
\hline Stage 2 & - & - & - & - & - & - & 455 & 471 & - & 435 & 452 & \\
\hline Time blocked-Platoon, \% & & - & - & & - & - & & & & & & \\
\hline Mov Capacity-1 Maneuver & 1045 & - & - & 1114 & - & - & 82 & 134 & 612 & 113 & 141 & 576 \\
\hline Mov Capacity-2 Maneuver & - & - & - & - & - & - & 82 & 134 & - & 113 & 141 & \\
\hline Stage 1 & - & - & - & - & - & - & 398 & 406 & - & 439 & 469 & \\
\hline Stage 2 & - & - & - & - & - & - & 338 & 447 & - & 360 & 403 & \\
\hline
\end{tabular}
\begin{tabular}{lccrr}
Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 1.7 & 0.8 & 47.5 & 29.7 \\
HCM LOS & & \(E\) & D
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
Minor Lane / Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 & SBLn2 \\
\hline Capacity (veh/h) & 150 & 1045 & - & - & 1114 & - & - & 113 & 293 \\
HCM Lane V/C Ratio & 0.454 & 0.108 & - & - & 0.05 & - & - & 0.188 & 0.461 \\
HCM Control Delay (s) & 47.5 & 8.86 & - & - & 8.402 & - & - & 44.1 & 27.4 \\
\hline HCM Lane LOS & E & A & & & A & & E & D \\
HCM 95th \%tile Q(veh) & 2.073 & 0.361 & - & - & 0.158 & - & - & 0.656 & 2.298
\end{tabular}

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Intersection Delay, s/veh & 4.9 & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Vol, veh/h & 61 & 377 & 3 & 44 & 281 & 18 & 7 & 4 & 29 & 29 & 15 & 120 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & 150 & - & - & 150 & - & - & - & - & - & 100 & - & - \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 76 & 78 & 38 & 69 & 91 & 50 & 88 & 50 & 60 & 66 & 63 & 71 \\
\hline Heavy Vehicles, \% & 0 & 2 & 0 & 0 & 1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Mvmt Flow & 80 & 483 & 8 & 64 & 309 & 36 & 8 & 8 & 48 & 44 & 24 & 169 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor1} & \multicolumn{5}{|c|}{Minor2} \\
\hline Conflicting Flow All & 345 & 0 & 0 & 491 & 0 & 0 & 942 & 1120 & 246 & 860 & 1106 & 172 \\
\hline Stage 1 & - & - & - & - & - & - & 648 & 648 & - & 454 & 454 & \\
\hline Stage 2 & - & - & - & - & - & - & 294 & 472 & - & 406 & 652 & \\
\hline Follow-up Headway & 2.2 & - & - & 2.2 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.3 \\
\hline Pot Capacity-1 Maneuver & 1225 & - & - & 1083 & - & - & 221 & 208 & 760 & 253 & 212 & 848 \\
\hline Stage 1 & - & - & - & - & - & - & 430 & 469 & - & 560 & 573 & \\
\hline Stage 2 & - & - & - & - & - & - & 695 & 562 & - & 598 & 467 & \\
\hline Time blocked-Platoon, \% & & - & - & & - & - & & & & & & \\
\hline Mov Capacity-1 Maneuver & 1225 & - & - & 1083 & - & - & 145 & 183 & 760 & 208 & 186 & 848 \\
\hline Mov Capacity-2 Maneuver & - & - & - & - & - & - & 145 & 183 & - & 208 & 186 & \\
\hline Stage 1 & - & - & - & - & - & - & 402 & 438 & - & 523 & 539 & \\
\hline Stage 2 & - & - & - & - & - & - & 500 & 529 & - & 514 & 437 & \\
\hline
\end{tabular}
\begin{tabular}{lccrr}
Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 1.1 & 1.3 & 15.8 & 17.5 \\
HCM LOS & & & \(C\) & \(C\)
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
Minor Lane / Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 & SBLn2 \\
\hline Capacity (veh/h) & 396 & 1225 & - & - & 1083 & - & - & 208 & 522 \\
HCM Lane V/C Ratio & 0.162 & 0.066 & - & - & 0.059 & - & - & 0.141 & 0.397 \\
HCM Control Delay (s) & 15.8 & 8.145 & - & - & 8.532 & - & - & 25.1 & 16.4 \\
\hline HCM Lane LOS & C & A & & & A & & D & C \\
HCM 95th \%tile Q(veh) & 0.573 & 0.21 & - & - & 0.187 & - & - & 0.481 & 1.888
\end{tabular}

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined
\begin{tabular}{lrrrrrrrrrrrrr}
\hline Intersection \\
\hline Intersection Delay, s/veh & 5.3 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor1} & \multicolumn{5}{|c|}{Minor2} \\
\hline Conflicting Flow All & 533 & 0 & 0 & 458 & 0 & 0 & 1023 & 1321 & 229 & 1050 & 1281 & 267 \\
\hline Stage 1 & - & - & - & - & - & - & 677 & 677 & - & 598 & 598 & \\
\hline Stage 2 & - & - & - & - & - & - & 346 & 644 & - & 452 & 683 & \\
\hline Follow-up Headway & 2.2 & - & - & 2.2 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.34 \\
\hline Pot Capacity-1 Maneuver & 1045 & - & - & 1114 & - & - & 193 & 158 & 780 & 184 & 167 & 725 \\
\hline Stage 1 & - & - & - & - & - & - & 414 & 455 & - & 461 & 494 & \\
\hline Stage 2 & - & - & - & - & - & - & 649 & 471 & - & 562 & 452 & \\
\hline Time blocked-Platoon, \% & & - & - & & - & - & & & & & & \\
\hline Mov Capacity-1 Maneuver & 1045 & - & - & 1114 & - & - & 126 & 134 & 780 & 149 & 141 & 725 \\
\hline Mov Capacity-2 Maneuver & - & - & - & - & - & - & 126 & 134 & - & 149 & 141 & \\
\hline Stage 1 & - & - & - & - & - & - & 369 & 406 & - & 411 & 469 & \\
\hline Stage 2 & - & - & - & - & - & - & 502 & 447 & - & 471 & 403 & \\
\hline
\end{tabular}
\begin{tabular}{llcrc}
Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 1.7 & 0.8 & 30.2 & 24.3 \\
HCM LOS & & & D
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
\hline Minor Lane / Major Mvmt & NBLn1 & EBL & EBT & EBR & WBL & WBT & WBR & SBLn1 & SBLn2 \\
\hline Capacity (veh/h) & 210 & 1045 & - & - & 1114 & - & - & 149 & 334 \\
HCM Lane V/C Ratio & 0.324 & 0.108 & - & - & 0.05 & - & - & 0.142 & 0.404 \\
HCM Control Delay (s) & 30.2 & 8.86 & - & - & 8.402 & - & - & 33.1 & 22.9 \\
HCM Lane LOS & D & A & & & A & & & D & C \\
HCM 95th \%tile Q(veh) & 1.338 & 0.361 & - & - & 0.158 & - & - & 0.483 & 1.893
\end{tabular}

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & \% & 7 & & 4 & & \(\dagger\) & \[
p
\] & \[
t
\] & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * \(\uparrow\) & & & * \(\uparrow\) & & & \& & & \({ }^{1}\) & \(\uparrow\) & \\
\hline Volume (veh/h) & 61 & 377 & 3 & 44 & 281 & 18 & 7 & 4 & 29 & 29 & 15 & 120 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow veh/h/ln & 190.0 & 186.8 & 190.0 & 190.0 & 187.6 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 \\
\hline Lanes & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Cap, veh/h & 205 & 1303 & 23 & 227 & 1148 & 140 & 203 & 71 & 282 & 532 & 47 & 333 \\
\hline Arrive On Green & 0.41 & 0.41 & 0.41 & 0.41 & 0.41 & 0.41 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 \\
\hline Sat Flow, veh/h & 495 & 3153 & 54 & 549 & 2778 & 338 & 100 & 307 & 1221 & 1369 & 205 & 1441 \\
\hline Grp Volume(v), veh/h & 298 & 0 & 273 & 215 & 0 & 194 & 64 & 0 & 0 & 44 & 0 & 193 \\
\hline Grp Sat Flow(s),veh/h/ln & 1844 & 0 & 1859 & 1848 & 0 & 1816 & 1627 & 0 & 0 & 1369 & 0 & 1646 \\
\hline Q Serve (g_s), s & 2.5 & 0.0 & 2.3 & 1.7 & 0.0 & 1.6 & 0.0 & 0.0 & 0.0 & 0.6 & 0.0 & 2.3 \\
\hline Cycle Q Clear(g_c), s & 2.5 & 0.0 & 2.3 & 1.7 & 0.0 & 1.6 & 0.7 & 0.0 & 0.0 & 2.3 & 0.0 & 2.3 \\
\hline Prop In Lane & 0.27 & & 0.03 & 0.30 & & 0.19 & 0.12 & & 0.75 & 1.00 & & 0.88 \\
\hline Lane Grp Cap(c), veh/h & 762 & 0 & 768 & 764 & 0 & 751 & 556 & 0 & 0 & 532 & 0 & 381 \\
\hline V/C Ratio(X) & 0.39 & 0.00 & 0.36 & 0.28 & 0.00 & 0.26 & 0.12 & 0.00 & 0.00 & 0.08 & 0.00 & 0.51 \\
\hline Avail Cap(c_a), veh/h & 1475 & 0 & 1487 & 1479 & 0 & 1453 & 1454 & 0 & 0 & 581 & 0 & 439 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 4.6 & 0.0 & 4.5 & 4.4 & 0.0 & 4.3 & 6.9 & 0.0 & 0.0 & 8.3 & 0.0 & 7.5 \\
\hline Incr Delay (d2), s/veh & 0.3 & 0.0 & 0.3 & 0.2 & 0.0 & 0.2 & 0.1 & 0.0 & 0.0 & 0.1 & 0.0 & 1.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.5 & 0.0 & 0.4 & 0.3 & 0.0 & 0.3 & 0.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.8 \\
\hline Lane Grp Delay (d), s/veh & 4.9 & 0.0 & 4.8 & 4.6 & 0.0 & 4.5 & 7.0 & 0.0 & 0.0 & 8.4 & 0.0 & 8.6 \\
\hline Lane Grp LOS & A & & A & A & & A & A & & & A & & A \\
\hline Approach Vol, veh/h & & 571 & & & 409 & & & 64 & & & 237 & \\
\hline Approach Delay, s/veh & & 4.9 & & & 4.6 & & & 7.0 & & & 8.5 & \\
\hline Approach LOS & & A & & & A & & & A & & & A & \\
\hline \multicolumn{13}{|l|}{Timer} \\
\hline Assigned Phs & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Phs Duration (\(G+Y+R \mathrm{c}\)), s & & 13.3 & & & 13.3 & & & 8.9 & & & 8.9 & \\
\hline Change Period (Y+Rc), s & & 4.0 & & & 4.0 & & & 4.0 & & & 4.0 & \\
\hline Max Green Setting (Gmax), s & & 18.0 & & & 18.0 & & & 18.0 & & & 6.0 & \\
\hline Max Q Clear Time (g_c+11), s & & 4.5 & & & 3.7 & & & 2.7 & & & 4.3 & \\
\hline Green Ext Time (p_c), s & & 4.8 & & & 5.0 & & & 1.5 & & & 0.3 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 5.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & A & & & & & & & & & \\
\hline Notes & & & & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
AM Peak Hour 6/24/2013 Existing Cross Section w Signal
Wiles
}

Synchro 8 Report
Page 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & 4 & \[
4
\] & 4 & \(p\) & \[
\rangle
\] & \(\dagger\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * \(\uparrow\) & & & * \({ }^{\text {W }}\) & & & \$ & & \({ }^{1}\) & \(\uparrow\) & \\
\hline Volume (veh/h) & 81 & 433 & 5 & 49 & 397 & 57 & 18 & 4 & 23 & 28 & 13 & 76 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow veh/h/ln & 190.0 & 188.5 & 190.0 & 190.0 & 187.2 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 & 184.3 & 190.0 \\
\hline Lanes & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Cap, veh/h & 315 & 1326 & 37 & 149 & 1218 & 267 & 301 & 89 & 154 & 502 & 76 & 261 \\
\hline Arrive On Green & 0.45 & 0.45 & 0.45 & 0.45 & 0.45 & 0.45 & 0.21 & 0.21 & 0.21 & 0.21 & 0.21 & 0.21 \\
\hline Sat Flow, veh/h & 697 & 2941 & 82 & 330 & 2700 & 592 & 407 & 428 & 741 & 1389 & 366 & 1255 \\
\hline Grp Volume(v), veh/h & 297 & 0 & 273 & 314 & 0 & 275 & 68 & 0 & 0 & 32 & 0 & 124 \\
\hline Grp Sat Flow(s), veh/h/ln & 1850 & 0 & 1871 & 1855 & 0 & 1767 & 1576 & 0 & 0 & 1389 & 0 & 1621 \\
\hline Q Serve(g_s), s & 2.5 & 0.0 & 2.2 & 2.6 & 0.0 & 2.4 & 0.0 & 0.0 & 0.0 & 0.5 & 0.0 & 1.5 \\
\hline Cycle Q Clear(g_c), s & 2.5 & 0.0 & 2.2 & 2.6 & 0.0 & 2.4 & 0.7 & 0.0 & 0.0 & 2.1 & 0.0 & 1.5 \\
\hline Prop In Lane & 0.38 & & 0.04 & 0.18 & & 0.34 & 0.41 & & 0.47 & 1.00 & & 0.77 \\
\hline Lane Grp Cap(c), veh/h & 834 & 0 & 844 & 837 & 0 & 797 & 545 & 0 & 0 & 502 & 0 & 338 \\
\hline V/C Ratio(X) & 0.36 & 0.00 & 0.32 & 0.38 & 0.00 & 0.34 & 0.12 & 0.00 & 0.00 & 0.06 & 0.00 & 0.37 \\
\hline Avail Cap(c_a), veh/h & 1498 & 0 & 1514 & 1502 & 0 & 1431 & 1501 & 0 & 0 & 1396 & 0 & 1382 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 4.2 & 0.0 & 4.1 & 4.3 & 0.0 & 4.2 & 7.7 & 0.0 & 0.0 & 8.9 & 0.0 & 8.0 \\
\hline Incr Delay (d2), s/veh & 0.3 & 0.0 & 0.2 & 0.3 & 0.0 & 0.3 & 0.1 & 0.0 & 0.0 & 0.1 & 0.0 & 0.7 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.4 & 0.0 & 0.4 & 0.4 & 0.0 & 0.4 & 0.2 & 0.0 & 0.0 & 0.1 & 0.0 & 0.5 \\
\hline Lane Grp Delay (d), s/veh & 4.5 & 0.0 & 4.4 & 4.5 & 0.0 & 4.4 & 7.8 & 0.0 & 0.0 & 8.9 & 0.0 & 8.6 \\
\hline Lane Grp LOS & A & & A & A & & A & A & & & A & & A \\
\hline Approach Vol, veh/h & & 570 & & & 589 & & & 68 & & & 156 & \\
\hline Approach Delay, s/veh & & 4.4 & & & 4.5 & & & 7.8 & & & 8.7 & \\
\hline Approach LOS & & A & & & A & & & A & & & A & \\
\hline \multicolumn{13}{|l|}{Timer} \\
\hline Assigned Phs & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Phs Duration (\(G+Y+R \mathrm{c}\)), s & & 14.6 & & & 14.6 & & & 9.0 & & & 9.0 & \\
\hline Change Period (\(\mathrm{Y}+\mathrm{Rc}\)), s & & 4.0 & & & 4.0 & & & 4.0 & & & 4.0 & \\
\hline Max Green Setting (Gmax), s & & 19.0 & & & 19.0 & & & 20.0 & & & 20.0 & \\
\hline Max Q Clear Time (g_c+l1), s & & 4.5 & & & 4.6 & & & 2.7 & & & 4.1 & \\
\hline Green Ext Time (p_c), s & & 6.0 & & & 6.0 & & & 1.1 & & & 1.1 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 5.1 & & & & & & & & & \\
\hline HCM 2010 LOS & & & A & & & & & & & & & \\
\hline Notes & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 6 & & & & \(\dagger\) & \(p\) & \[
\rangle
\] & \(\downarrow\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & \(\uparrow\) & & \({ }^{1}\) & \(\uparrow\) & & & \& & & \({ }^{1}\) & \(\hat{\beta}\) & \\
\hline Volume (veh/h) & 61 & 377 & 3 & 44 & 281 & 18 & 7 & 4 & 29 & 29 & 15 & 120 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow veh/h/ln & 190.0 & 186.3 & 190.0 & 190.0 & 187.2 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 \\
\hline Lanes & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Cap, veh/h & 832 & 840 & 14 & 832 & 757 & 88 & 177 & 74 & 286 & 554 & 48 & 337 \\
\hline Arrive On Green & 0.46 & 0.46 & 0.46 & 0.46 & 0.46 & 0.46 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 \\
\hline Sat Flow, veh/h & 1810 & 1828 & 30 & 1810 & 1646 & 192 & 91 & 317 & 1224 & 1369 & 205 & 1441 \\
\hline Grp Volume(v), veh/h & 80 & 0 & 491 & 64 & 0 & 345 & 64 & 0 & 0 & 44 & 0 & 193 \\
\hline Grp Sat Flow(s), veh/h/ln & 1810 & 0 & 1858 & 1810 & 0 & 1838 & 1632 & 0 & 0 & 1369 & 0 & 1646 \\
\hline Q Serve(g_s), s & 0.7 & 0.0 & 5.1 & 0.5 & 0.0 & 3.3 & 0.0 & 0.0 & 0.0 & 0.7 & 0.0 & 2.7 \\
\hline Cycle Q Clear(g_c), s & 0.7 & 0.0 & 5.1 & 0.5 & 0.0 & 3.3 & 0.8 & 0.0 & 0.0 & 1.5 & 0.0 & 2.7 \\
\hline Prop In Lane & 1.00 & & 0.02 & 1.00 & & 0.10 & 0.12 & & 0.75 & 1.00 & & 0.88 \\
\hline Lane Grp Cap(c), veh/h & 832 & 0 & 854 & 832 & 0 & 845 & 536 & 0 & 0 & 554 & 0 & 384 \\
\hline V/C Ratio(X) & 0.10 & 0.00 & 0.57 & 0.08 & 0.00 & 0.41 & 0.12 & 0.00 & 0.00 & 0.08 & 0.00 & 0.50 \\
\hline Avail Cap(c_a), veh/h & 1527 & 0 & 1568 & 1249 & 0 & 1269 & 1257 & 0 & 0 & 1180 & 0 & 1136 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 4.0 & 0.0 & 5.2 & 3.9 & 0.0 & 4.7 & 8.0 & 0.0 & 0.0 & 8.6 & 0.0 & 8.7 \\
\hline Incr Delay (d2), s/veh & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 & 0.3 & 0.1 & 0.0 & 0.0 & 0.1 & 0.0 & 1.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.1 & 0.0 & 1.2 & 0.1 & 0.0 & 0.7 & 0.2 & 0.0 & 0.0 & 0.2 & 0.0 & 0.9 \\
\hline Lane Grp Delay (d), s/veh & 4.0 & 0.0 & 5.8 & 4.0 & 0.0 & 5.0 & 8.1 & 0.0 & 0.0 & 8.6 & 0.0 & 9.7 \\
\hline Lane Grp LOS & A & & A & A & & A & A & & & A & & A \\
\hline Approach Vol, veh/h & & 571 & & & 409 & & & 64 & & & 237 & \\
\hline Approach Delay, s/veh & & 5.5 & & & 4.8 & & & 8.1 & & & 9.5 & \\
\hline Approach LOS & & A & & & A & & & A & & & A & \\
\hline \multicolumn{13}{|l|}{Timer} \\
\hline Assigned Phs & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Phs Duration (\(G+Y+R \mathrm{c}\)), s & & 16.0 & & & 16.0 & & & 10.1 & & & 10.1 & \\
\hline Change Period (\(\mathrm{Y}+\mathrm{Rc}\)), s & & 4.0 & & & 4.0 & & & 4.0 & & & 4.0 & \\
\hline Max Green Setting (Gmax), s & & 22.0 & & & 18.0 & & & 18.0 & & & 18.0 & \\
\hline Max Q Clear Time (g_ctli), s & & 7.1 & & & 5.3 & & & 2.8 & & & 4.7 & \\
\hline Green Ext Time (p_c), s & & 4.9 & & & 4.6 & & & 1.5 & & & 1.4 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 6.2 & & & & & & & & & \\
\hline HCM 2010 LOS & & & A & & & & & & & & & \\
\hline Notes & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & \[
4
\] & 9 & \(p\) & \[
1
\] & \(\downarrow\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & \(\uparrow\) & & \({ }^{7}\) & \(\uparrow\) & & & \& & & \({ }^{1}\) & \(\uparrow\) & \\
\hline Volume (veh/h) & 81 & 433 & 5 & 49 & 397 & 57 & 18 & 4 & 23 & 28 & 13 & 76 \\
\hline Number & 7 & 4 & 14 & 3 & 8 & 18 & 5 & 2 & 12 & 1 & 6 & 16 \\
\hline Initial Q (Qb), veh & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus Adj & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Adj Sat Flow veh/h/ln & 190.0 & 188.2 & 190.0 & 190.0 & 186.9 & 190.0 & 190.0 & 190.0 & 190.0 & 190.0 & 184.3 & 190.0 \\
\hline Lanes & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline Cap, veh/h & 916 & 923 & 25 & 916 & 759 & 158 & 266 & 84 & 142 & 442 & 71 & 245 \\
\hline Arrive On Green & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 & 0.51 & 0.20 & 0.20 & 0.20 & 0.20 & 0.20 & 0.20 \\
\hline Sat Flow, veh/h & 1810 & 1824 & 49 & 1810 & 1501 & 313 & 390 & 430 & 729 & 1389 & 366 & 1255 \\
\hline Grp Volume(v), veh/h & 112 & 0 & 458 & 56 & 0 & 533 & 68 & 0 & 0 & 32 & 0 & 124 \\
\hline Grp Sat Flow(s),veh/h/ln & 1810 & 0 & 1873 & 1810 & 0 & 1814 & 1550 & 0 & 0 & 1389 & 0 & 1621 \\
\hline Q Serve(g_s), s & 0.9 & 0.0 & 4.3 & 0.4 & 0.0 & 5.5 & 0.0 & 0.0 & 0.0 & 0.6 & 0.0 & 1.8 \\
\hline Cycle Q Clear(g_c), s & 0.9 & 0.0 & 4.3 & 0.4 & 0.0 & 5.5 & 1.9 & 0.0 & 0.0 & 2.4 & 0.0 & 1.8 \\
\hline Prop In Lane & 1.00 & & 0.03 & 1.00 & & 0.17 & 0.41 & & 0.47 & 1.00 & & 0.77 \\
\hline Lane Grp Cap(c), veh/h & 916 & 0 & 948 & 916 & 0 & 918 & 492 & 0 & 0 & 442 & 0 & 317 \\
\hline V/C Ratio(X) & 0.12 & 0.00 & 0.48 & 0.06 & 0.00 & 0.58 & 0.14 & 0.00 & 0.00 & 0.07 & 0.00 & 0.39 \\
\hline Avail Cap(c_a), veh/h & 1419 & 0 & 1469 & 1554 & 0 & 1558 & 1257 & 0 & 0 & 1156 & 0 & 1151 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & 3.5 & 0.0 & 4.3 & 3.4 & 0.0 & 4.6 & 9.0 & 0.0 & 0.0 & 10.5 & 0.0 & 9.4 \\
\hline Incr Delay (d2), s/veh & 0.1 & 0.0 & 0.4 & 0.0 & 0.0 & 0.6 & 0.1 & 0.0 & 0.0 & 0.1 & 0.0 & 0.8 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile Back of Q (50\%), veh/ln & 0.2 & 0.0 & 0.9 & 0.1 & 0.0 & 1.2 & 0.3 & 0.0 & 0.0 & 0.2 & 0.0 & 0.6 \\
\hline Lane Grp Delay (d), s/veh & 3.5 & 0.0 & 4.7 & 3.4 & 0.0 & 5.2 & 9.1 & 0.0 & 0.0 & 10.6 & 0.0 & 10.2 \\
\hline Lane Grp LOS & A & & A & A & & A & A & & & B & & B \\
\hline Approach Vol, veh/h & & 570 & & & 589 & & & 68 & & & 156 & \\
\hline Approach Delay, s/veh & & 4.5 & & & 5.0 & & & 9.1 & & & 10.3 & \\
\hline Approach LOS & & A & & & A & & & A & & & B & \\
\hline \multicolumn{13}{|l|}{Timer} \\
\hline Assigned Phs & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Phs Duration (\(G+Y+R \mathrm{c}\)), s & & 17.6 & & & 17.6 & & & 9.4 & & & 9.4 & \\
\hline Change Period (\(\mathrm{Y}+\mathrm{Rc}\)), s & & 4.0 & & & 4.0 & & & 4.0 & & & 4.0 & \\
\hline Max Green Setting (Gmax), s & & 21.0 & & & 23.0 & & & 19.0 & & & 19.0 & \\
\hline Max Q Clear Time (g_ctli), s & & 6.3 & & & 7.5 & & & 3.9 & & & 4.4 & \\
\hline Green Ext Time (p_c), s & & 6.0 & & & 6.1 & & & 1.0 & & & 1.0 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline HCM 2010 Ctrl Delay & & & 5.6 & & & & & & & & & \\
\hline HCM 2010 LOS & & & A & & & & & & & & & \\
\hline Notes & & & & & & & & & & & & \\
\hline
\end{tabular}

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix E - Traffic Signal Warrant Analysis Results}

\section*{Signal Warrant Analysis}

Location: City of DeWitt, IA Intersection: 11th Street \& Maynard Way Project \# 40120022.04

\section*{Page 2 of 4}
\begin{tabular}{lllc}
COUNTY & CLINTON & WARRANTS MET & 2 \\
PREPARED BY & TYLER WILES & WARRANTS NOT MET & 7 \\
DATE & Jul-13 & 85th \%ILE SPEED & \(<40\) \\
\hline \hline
\end{tabular}

\section*{TRAFFIC VOLUMES}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Time } & \multicolumn{3}{|c|}{ Main Street } & Side Street \\
\cline { 2 - 5 } & EB & WB & Total & Major App. \\
\hline 6AM & & & \((0)\) & \\
\hline 7AM & 376 & 315 & \((691)\) & 138 \\
\hline 8AM & 318 & 301 & \((619)\) & 114 \\
\hline 9AM & & & \((0)\) & \\
\hline 10AM & & & \((0)\) & \\
\hline 11PM & & & \((0)\) & \\
\hline 12PM & & & \((0)\) & \\
\hline 1PM & & & \((0)\) & \\
\hline 2PM & & & \((0)\) & \\
\hline 3PM & 368 & 376 & \((744)\) & 96 \\
\hline 4PM & 511 & 501 & \((1012)\) & 104 \\
\hline 5PM & 482 & 468 & \((950)\) & 122 \\
\hline 6PM & & & \((0)\) & \\
\hline 7PM & & & \((0)\) & \\
\hline & \(\mathbf{2 0 5 5}\) & \(\mathbf{1 9 6 1}\) & \(\mathbf{(4 0 1 6)}\) & \(\mathbf{5 7 4}\) \\
\hline
\end{tabular}

\section*{FOUR HOUR VOLUME WARRANT}

\section*{PEAK HOUR VOLUME WARRANT}

\section*{Signal Warrant Analysis}

Location: City of DeWitt, IA Intersection: 11th Street \& Maynard Way
Project \# 40120022.04

\section*{Page 3 of 4}
\begin{tabular}{lllc}
COUNTY & CLINTON & WARRANTS MET & 2 \\
PREPARED BY & TYLER WILES & WARRANTS NOT MET & 7 \\
DATE & Jul-13 & 85th \%ILE SPEED & \(<40\)
\end{tabular}

WARRANT 1 - CONDITION A

Condition A-Minimum Vehicular Volume
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Number of lanes for moving traffic on each approach} & \multicolumn{4}{|l|}{Vehicles per hour on major street (total of both approaches)} & \multicolumn{4}{|l|}{Vehicles per hour on higher-volume minor-street approach (one direction only)} \\
\hline Major Street & Minor Street & 100\% \({ }^{\text {a }}\) & 80\% \({ }^{\text {b }}\) & 70\% & 56\% \({ }^{\text {d }}\) & \(100 \%{ }^{\text {a }}\) & 80\% \({ }^{\circ}\) & 70\% \({ }^{\text {c }}\) & 56\% \({ }^{\text {d }}\) \\
\hline 1 & 1 & 500 & 400 & 350 & 280 & 150 & 120 & 105 & 84 \\
\hline 2 or more & 1 & 600 & 480 & 420 & 336 & 150 & 120 & 105 & 84 \\
\hline 2 or more & 2 or more & 600 & 480 & 420 & 336 & 200 & 160 & 140 & 112 \\
\hline 1 & 2 or more & 500 & 400 & 350 & 280 & 200 & 160 & 140 & 112 \\
\hline
\end{tabular}

\section*{WARRANT 1 - CONDITION B}

Condition B-Interruption of Continuous Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Number of lanes for moving traffic on each approach} & \multicolumn{4}{|l|}{Vehicles per hour on major street (total of both anproaches)} & \multicolumn{4}{|l|}{Vehicles per hour on higher-volume minor-street approach (one diraction only)} \\
\hline Major Street & Minor Street & 100\% \({ }^{\text {a }}\) & 80\% \({ }^{\text {b }}\) & 70\% & 56\% \({ }^{\text {d }}\) & 100\% \({ }^{\text {a }}\) & 80\% \({ }^{\circ}\) & 70\% \({ }^{\text {c }}\) & 56\% \({ }^{\text {d }}\) \\
\hline 1 & 1 & 750 & 600 & 525 & 420 & 75 & 60 & 53 & 42 \\
\hline 2 or more & 1 & 900 & 720 & 630 & 504 & 75 & 60 & 53 & 42 \\
\hline 2 or more & 2 or more & 900 & 720 & 630 & 504 & 100 & 80 & 70 & 56 \\
\hline 1 & 2 or more & 750 & 600 & 525 & 420 & 100 & 80 & 70 & 56 \\
\hline
\end{tabular}
a Basic minimum hourly volume
\({ }^{\mathrm{b}}\) Used for combination of Conditions A and B after adequate trial of other remedial measures
\({ }^{\text {c }}\) May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000
\({ }^{d}\) May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

\section*{Signal Warrant Analysis}

Location: City of DeWitt, IA Intersection: 11th Street \& Maynard Way
Project \# 40120022.04

\section*{Page 4 of 4}
\begin{tabular}{lllc}
COUNTY & CLINTON & WARRANTS MET & 2 \\
PREPARED BY & TYLER WILES & WARRANTS NOT MET & 7 \\
DATE & Jul-13 & 85th \%ILE SPEED & \(<40\)
\end{tabular}

\section*{NOTES}

Turning movement counts collected by the City of DeWitt in May and June of 2013 at the intersection were used for the traffic signal warrant analysis.

\section*{RECOMMENDATION}

The analysis indicates that a traffic signal is warranted by two of the nine MUTCD warrants.
Specific warrant notes include:
- Warrant 1 (Eight Hour Vehicle): The City of DeWitt collected turning movement counts include five of the eight necessary hours. The data of the collected five hours confirm that traffic volumes do not satisfy Warrant 1 volume criteria for either Condition A or Condition B.
- Warrant 2 (Four Hour Vehicle): The City of DeWitt collected turning movement counts include four of the four necessary hours. The data of the collected four hours confirm that traffic volumes satisfy Warrant 2 volume criteria.
- Warrant 3 (Peak Hour Vehicle): The City of DeWitt collected turning movement counts include AM peak hour and PM peak hour data. The 4-5PM hour data confirm that traffic volumes satisfy Warrant 3 volume criteria.
- Warrant 4 (Pedestrian): Based on traffic volumes at this location, Warrant 4 would require at least 75 pedestrians per hour for four different hours or greater than 93 pedestrians in a peak hour. Pedestrian volumes were counted for five hours combined between the AM and PM peak hours. The necessary pedestrian volumes did not satisfy Warrant 4 volume criteria.
- Warrant 5 (School Crossing): Warrant 5 would require at least 25 pedestrians per hour during the highest crossing hour. Pedestrian volumes were counted for five hours combined between the AM and PM peak hours. The necessary pedestrian volumes did not satisfy Warrant 5 volume criteria.

HR Green, Inc.
September 26, 2013 - FINAL REPORT

Appendix F - Additional Information on the Access Management Manual

\title{
Access Management Manual TRB Committee Documents the State of the Art
}

\author{
KRISTINE M. WILLIAMS
}

The author is Program Director, Planning and Corridor Management, Center for Urban Transportation Research, University of South Florida, Tampa. She is a member of the TRB Committee on Access Management.

With growing congestion and traffic demand, the need for effective corridor management strategies is greater than ever. These strategies include access management, which involves the systematic control of the location, spacing, design, and operation of driveways, median openings, interchanges, and street connections, as well as median and auxiliary lane treatments and the spacing of traffic signals.

Agencies are updating or expanding access management activities to realize a variety of benefits:
- Preserving or improving public safety,
- Extending the life of major roadways,
- Reducing traffic congestion and delay,
- Supporting alternative transportation modes, and
- Improving the appearance and quality of the built environment.

In the past few decades, substantial research has advanced the state of the practice. This research, combined with new agency policies, plans, and programs, has provided insights into the impacts of access management techniques, has identified best practices, and has produced guidelines. The information, however, is dispersed across a variety of sources, making it difficult for practitioners to locate, evaluate, and apply.

In 1996, the TRB Committee on Access Management initiated a project to compile the best information on the subject into a single, comprehensive resource documenting the state of the art. The Access Management Manual, published by TRB in May, is the culmination of this multiyear effort. The manual was prepared by the Center for Urban Transportation Research at the University of South Florida, with oversight and assistance from the committee and its subcommittees. The Federal

Aesthetics with access management and without (inset).

\section*{Why Is Access Management Necessary?}

Failure to manage access is associated with the following adverse social, economic, and environmental impacts:
- Increased numbers of vehicle crashes;
- More collisions involving pedestrians and cyclists;

Accelerated reduction in roadway efficiency;
- Unsightly commercial strip development;
- Degradation of scenic landscapes;
- More cut-through traffic in residential areas, because arterials are overburdened;
- Homes and businesses adversely affected by the widening of roads; and
- Increased commuting time, fuel consumption, and vehicle emissions, as driveways and traffic signals intensify congestion and delay along major roads.

The Access Management Manual is available in print and in CD-ROM from TRB [www.TRB.org/trb/ bookstore/ or call 202-339-32 I 3; book, \$80 (\$60, affiliates); CD-ROM, \$60 (\$45, affiliates); book and CD-ROM, \$100 (\$75, affiliates)].

Highway Administration provided funding for the project, and the Florida Department of Transportation served as project manager.

\section*{Practitioners and Stakeholders}

Access management has many dimensions, cutting across jurisdictions, organizational lines, and professions. A goal of the project, therefore, was to provide information for a diverse audience.

The primary audience is the practitioner engaged in access management with a state transportation agency, local government, or metropolitan planning organization (MPO), or as a consultant in planning, engineering, or urban design. The manual offers practical information about the development and implementation of programs, including corridor access management plans, codes, and access design.

Another key audience consists of stakeholders, such as developers, elected and appointed officials, attorneys, and neighborhood groups involved in or affected by access management actions. The manual provides information to help stakeholders understand and evaluate proposed access management actions and potential alternatives. Educational information covers principles of access management, the impacts of access management techniques, regulatory best practices, right-of-way and legal considerations, and effective access design.

\section*{Techniques and Guidance}

The Access Management Manual presents techniques for implementation, as well as guidance on how to develop and administer effective access management programs. The manual addresses a

\section*{Access Management Manual Table of Contents}
variety of circumstances that state, regional, and local agencies may encounter. The chapters offer practical information that draws on the knowledge of the many experienced practitioners who participated in development of the manual.

In particular, the manual presents detailed information on
- Principles and effects of access management;
- Steps in developing an access management program or corridor access management plan;
- Access management techniques and their potential advantages, disadvantages, and applications, with examples;
- How to develop and assign access categories to roadways;
- The role of states, MPOs, and local governments;
- The interrelationship with land development and how to address access management in the context of comprehensive planning and land development regulation;
- The rationale for spacing standards and how to choose appropriate standards for connections, signals, corner clearance at intersections, and interchange areas;
- Information on the location and design of access features, such as driveways, medians, auxiliary lanes, and service roads (Figure 1);
- When to choose a median instead of a continuous two-way left-turn lane;
- Case examples of agency policies, plans, practices, and programs;
- State statute and regulatory prototypes;
- The permitting and administrative processes and how to handle deviations from standards;
- How to work with the public on access management issues; and
- Legal considerations that guide program development and implementation.

\section*{Updating and Advancing}

The manual is part of an ongoing effort by the TRB Committee on Access Management to disseminate useful, high-quality information on the state of the art. Plans are under way to promote access management research and to identify best practices; case studies and field studies are being encouraged.

Other initiatives look to integrate access management into traditional transportation processes and programs. The committee plans to update the manual regularly, to incorporate the latest research findings and agency experiences.

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix G - Benefit/Cost Analysis Results}

\section*{lowa DOT Office of Traffic \& Safety}

County: \(\qquad\) Prepared by: \(\qquad\) Date Prepared: Aug 2, 2013

Intersection: 11th Street and Maynard Way
Improvement
Proposed Improvement(s): Intersection Upgrades Include: Installation of Traffic Signal
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\$ 150,000}} & \multicolumn{3}{|l|}{Estimated Improvement Cost, EC 15} & Est. Improvement Life, years, Y \\
\hline & & \multicolumn{3}{|l|}{Other Annual Cost (after initial year), AC 33} & Crash Reduction Factor (integer), CRF \\
\hline \multirow[t]{2}{*}{\$} & \$ & Present Value Other Annual Costs, OC & & 4.0\% & Discount Rate (time value of \$), INT \\
\hline & & \(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\) & \$ & 150,000 & Present Value Cost, COST = EC + OC \\
\hline
\end{tabular}

Traffic Volume Data
Source:
Iowa DOT 2010 Traffic Count Maps
2010
Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

> 2,253,875 Current Annual Entering Veh., AEV = DEV * 365
> 6,175 veh / day, Final Year DEV, FDEV
> 33.81 MEV, Total Million Entering Veh. Over life of Project, TMEV
\(\qquad\) Projected Traffic Growth (0\%-10\%), G
6,175 Current Daily Entering Vehicles, DEV
\[
T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}
\]

\section*{Crash Data}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 2008 & First full year --> 2012 & \multirow[t]{2}{*}{Last full year} & \multicolumn{4}{|c|}{5.0 years, Time Period, \(\mathbf{T}\)} \\
\hline & & Additional months & & \multicolumn{4}{|c|}{values as of Dec. 2007} \\
\hline & 0 & \multirow[t]{2}{*}{Fatal Crashes \(\longrightarrow\)} & \multicolumn{2}{|l|}{0 Fatalities @} & \multicolumn{2}{|l|}{\$3,500,000 \$} & \\
\hline & & & 0 Major Inj & uries @ & \$240,000 & \$ & - \\
\hline & 6 & \multirow[t]{2}{*}{Injury Crashes} & \multicolumn{2}{|l|}{3 Minor Injuries @} & \$48,000 & \$ & 144,000 \\
\hline & & & 4 & Injuries @ & \$25,000 & \$ & 100,000 \\
\hline & 15 & \multirow[t]{2}{*}{Property Damage Only} & (assumed co & ost per crash) & \$2,700 & \$ & - \\
\hline & & & \multicolumn{3}{|l|}{-OR- enter all Property Costs of all crashes:} & \$ & 98,400 \\
\hline & 21 & Total Crashes, TA & \multicolumn{3}{|r|}{Total \$ Loss, LOSS} & \$ & 342,400 \\
\hline & 4.20 & \multicolumn{2}{|l|}{Current Crashes / Year, AA = TA \(/ \mathrm{T}\)} & \multicolumn{4}{|r|}{1.86 Crashes / MEV, Crash Rate, CR} \\
\hline \$ & 16,305 & \multicolumn{3}{|l|}{Cost per Crash, AVC = LOSS / TA} & \multicolumn{3}{|l|}{R = TA x 10^6 / (DEV x \(365 \times \mathrm{T})\)} \\
\hline & 63.0 & \multicolumn{2}{|l|}{Total Expected Crashes, TECR = CR x TMEV} & \$ 251,258 & & & \\
\hline & 1.39 & \multicolumn{2}{|l|}{Crash Costs Avoided in First Year, AAR x AVC} & \multicolumn{4}{|c|}{Crashes, BENEFIT} \\
\hline \$ & \[
\begin{array}{r}
22,598 \\
20.8
\end{array}
\] & \multicolumn{2}{|l|}{Total Avoided Crashes, TECR x CRF/ 100} & \multicolumn{4}{|l|}{\(B E N .=\frac{A V C \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)\)} \\
\hline
\end{tabular}

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 251,258 \quad: \quad \$ 150,000 \quad=\frac{1.68}{: 1}
\]

HR Green, Inc.
September 26, 2013 - FINAL REPORT

\section*{Appendix H - Potential Funding Sources}

\section*{Iowa Clean Air Attainment Program (ICAAP)}

\section*{Intent of program}

This program funds highway/street, transit, bicycle/pedestrian, or freight projects or programs which help maintain lowa's clean air quality by reducing transportation-related emissions. Eligible highway/street projects must be on the federal-aid system, which includes all federal functional class routes except local and rural minor collectors.

\section*{Who is eligible to request funding?}

The state, a county or a city may sponsor an application or may co-sponsor for private, non-profit organizations and individuals. Transit systems may apply directly.

\section*{Qualifications for funding}
- A local match of at least 20 percent is required.
- Eligible projects will fall into one of the following categories:
- those which reduce emissions via traffic flow improvements and provide a direct benefit to air quality by addressing ozone, carbon monoxide, or particulate matter PM-2.5 or PM-10 (all of these pollutant emissions must be addressed, and a reduction calculation must be provided by the applicant for all types of projects listed);
- those which reduce vehicle miles of travel;
- those which reduce single-occupant vehicle trips; or
- other transportation improvement projects to improve air quality or reduce congestion.

Net operating costs of new transit services are eligible for up to three years (at 80 percent federal/ 20 percent local participation).

\section*{Type of submittal required}

Application forms must be submitted with emission reduction calculations and supporting documentation of congestion reduction and/or travel reduction assumptions. Applications are available from the DOT at www.iowadot.gov/forms/index.htm or at www.iowadot.gov/systems planning/icaap.htm

\section*{Requested amount - minimum/maximum}

Minimum \$20,000 total project cost

\section*{Application deadline}

October 1, statewide competitive application
Special project requirements - Highway projects
- Projects must be let by the DOT.
- Federal Highway Administration (FHWA) environmental concurrence is required.
- Right-of-way activities must comply with applicable federal and state laws.
- Plans and specifications must be prepared by an lowa licensed professional engineer.
- If federal-aid dollars are used for a consulting engineer, the Federal-Aid Consultant Selection Process must be used.
- DOT design criteria should be used for the appropriate road classification.
- Approval by the DOT of plans and specifications is required.
- Compliance with regulations regarding the following is required:
- federal equal employment opportunity;
- use of disadvantaged business enterprises;
- Occupational Safety and Health Administration provisions; and
- federal (Davis-Bacon) wage rates.

For those projects on federal-aid routes, refer to FHWA form 1273, "Required Contract Provisions, Federal-Aid Construction Contracts," for more information. Materials testing, construction inspection and final project acceptance must be done according to DOT procedures.

\section*{Special Project Requirements - Transit projects}
- Capital improvements require adherence to approved transit procurement procedures and equipment specifications.
- Project candidates must be part of an approved five-year Capital Improvement Program.
- Federally funded projects must comply with requirements regarding:
- civil rights protections;
- use of disadvantaged business enterprises;
- competitive procurement;
- bus testing;
- pre- and post-procurement audits; and
- drug and alcohol testing.

\section*{Type of approval required}
- project evaluation committee/DOT staff recommendation, with lowa Transportation Commission approval
- inclusion of selected projects in the Statewide Transportation Improvement Program
- Regional Planning Affiliations and Metropolitan Planning Organizations must also include selected projects in their respective Transportation Improvement Program
- FHWA and FTA final approval of the STIP
- authorization by FHWA of projects prior to proceeding with work or with advertisement of the project for receipt of bids

Transit projects must be approved by FTA as part of either a direct or a statewide grant.

\section*{Average length of time for acceptance decision}

Four months
Program's annual funding level
Approximately \(\$ 4.7\) million
More information/applications
lowa Department of Transportation
Office of Systems Planning
800 Lincoln Way
Ames, lowa 50010
515-239-1681
www.iowadot.gov/systems_planning/icaap.htm

Traffic Safety Improvement Program - Also known as "TSIP," "Traffic Safety Funds," "TSF," or "Half-Percent"

\section*{Intent of program}

The Traffic Safety Improvement Program provides funding for traffic safety improvements or studies on any public roads under county, city or state jurisdiction.

\section*{Who is eligible to request funding?}

State, county or city

\section*{Qualifications for funding}

Eligible projects will fall into one of three categories:
- construction or improvement of traffic safety and operations at a specific site with an accident history;
- purchase of materials for installation of new traffic control devices such as signs or signals, or replacement of obsolete signs or signals; or
- transportation safety research, studies or public information initiatives such as sign inventory, work zone safety and accident data.

\section*{Type of submittal required}

Application forms are available from the DOT or at www.iowadot.gov/tsip.htm.

\section*{Application amount minimum/maximum}

Site-specific project funding cannot exceed \(\$ 500,000\) per project.

\section*{Application deadline}

June 15 is the deadline for all types of projects.

\section*{Special project requirements}

Refer to the lowa Administrative Code, Sec. 761, Chapter 164.

\section*{Type of approval required}

DOT staff, along with a city/county committee, recommends prioritization of projects to the lowa
Transportation Commission, which then approves funding of specific projects.
- Site-specific projects are evaluated by benefit/cost ratio analysis and other criteria.
- Funding for traffic control devices is awarded on the basis of safety benefits of eligible applications, the annual funding level and other criteria.
- Funding for research, studies and public information initiatives is awarded on the basis of safety research needs, impact on safety, the annual funding level, and other criteria.

\section*{Average length of time for acceptance decision}

Applications due: June 15
Iowa Transportation Commission decision: usually by December
Funding available: July 1 (Funds may be available sooner for special cases.)

\section*{Program's annual funding level}

The program's annual funding level is one-half percent of lowa's Road Use Tax Fund (approximately \(\$ 5.4\) million per year). Total funding for all traffic control device projects cannot exceed \(\$ 500,000\) annually. Total funding for all research studies and public information initiatives cannot exceed \(\$ 500,000\) annually.

\section*{More information/applications}
lowa Department of Transportation
Office of Traffic and Safety
800 Lincoln Way
Ames, lowa 50010
515-239-1 267

\section*{PROJECT DESCRIPTION}

The intersection of \(11^{\text {th }}\) Street, Maynard Way and Casey's business driveway experiences both operational problems and a high crash rate. In an attempt to identify solutions, the City of DeWitt, in cooperation with the Iowa DOT utilized TEAP funding resulting in a report dated September \(26^{\text {th }}\), 2013. The report outlined potential solutions for mitigating the relatively high crash rate at the Maynard Way \& \(11^{\text {th }}\) Street intersection. Having deliberated and explored the potential solutions offered in the report, the City has asked IIW, P.C. to evaluate other potential solutions including various lane configurations and traffic signals. IIW, P.C. also investigated funding of the proposed improvements through the lowa DOT Traffic Safety Improvement Program (TSIP).

The 2013 report suggested the following recommendations:
Short Term:
A. Remove/modify sight distance obstruction located in the southwest quadrant.
B. Install "DO NOT BLOCK INTERSECTION" regulatory sign.
C. Monitor installation of "DO NOT BLOCK INTERSECTION" pavement markings.
D. Convert \(11^{\text {th }}\) Street from a 4-lane cross section facility to a 3-lane cross section in combination with item E.
E. Install a split-phased traffic signal.

Long Term:
A. Realign the south leg of the intersection.
B. Implement access management along \(11^{\text {th }}\) Street corridor.

Short Term items A, B, \& C have been implemented; however, crashes and motorists complaints continue to occur. The "Do Not Block Intersection" pavement markings were installed in the fall of 2012. The sign was installed sometime after the pavement markings.

This report further explores the traffic signal option, with and without changing the cross section from a 4-lane facility to a 3-lane or 5-lane facility.

\section*{EXISTING CONDITIONS}
\(11^{\text {th }}\) Street (old Highway 30) is an east-west 4-lane facility, with two eastbound and two westbound lanes, through DeWitt and is classified as a major collector on federal functional classification maps. \(11^{\text {th }}\) Street, in the area of Maynard Way, is 45 feet wide with curbs on both sides. There are sidewalks on the north and south side of \(11^{\text {th }}\) Street. The speed limit on \(11^{\text {th }}\) Street is posted at 35 mph , and traffic is free flow at the Maynard Way intersection.

Maynard Way, the north leg of the intersection, is an average width of 36 feet with a posted speed limit of 25 mph . At the intersection, a 12 foot lane exists in the northbound direction and two 12 foot lanes are marked southbound for left and right turns. Although no lane is marked for through traffic, a few vehicles do travel through the intersection into the driveway servicing Casey's General Store, typically from the right turn lane.

Maynard Way has curb and gutter on both sides. There is a sidewalk on the east side of Maynard Way. Maynard Way is controlled by a stop sign at \(11^{\text {th }}\) Street.

The south leg of the intersection is the eastern-most of two access points to Casey's General Store. This 36 foot wide 2-way driveway functions as the northbound approach on this intersection, and is skewed to the west from Maynard Way approximately 20 feet from centerline to centerline. Casey's driveway does not have any traffic control devices or pavement markings.

\section*{SUMMARY OF CRASH HISTORY}

Copies of crash reports from January, 2010 to Present were provided to IIW, P.C. by the City of DeWitt Police Department for the study intersection. There were 19 crashes reported at the intersection during that period. 15 of the 19 reported crashes were angle or broadside type crashes, 3 were rear-end crashes, and 1 noncollision involving a motorcycle driver that lost control. The following is a summary of the crash history.

By year:
- 19 Total crashes
- 2010-5
- 3 angle
- 2 rear-end
- 2011-3
- 2 angle
- 1 rear-end
- 2012-4
- 2 angle
- 1 broadside
- 1 non-collision
- 2013-3
- 1 angle
- 2 broadside
- 2014-4 angle

7 of the 15 angle or broadside crashes were directly attributed to another vehicle in the intersection blocking the view of one of the drivers involved in the crash. Also, the non-collision was attributed to another vehicle obstructing the view of the driver.

Contributing Factors:
- 19 Total Crashes
- 7 angle/broadside - view obstructed by another vehicles in the intersection.
- 5 angle/broadside - failure to yield making a left turn, the narrative did not state any cause.
- 2 angle/broadside - driver blinded by morning sun.
- 1 angle - involved an ambulance traveling fast.
- 1 non-collision - motorcycle took evasive action and lost control. Driver turning left did not see motorcycle due to another vehicle blocking view.
- 2 rear-end - icy conditions.
- 1 rear-end - vehicle on 11th St. turning right, had to come to a complete stop due to a pedestrian and was rear ended.

Injuries
- 0 Fatalities
- 8 Injury Crashes
- The 8 crashes resulted in 5 minor injuries and 8 possible injuries.
- 11 Property Damage Only
- \$115,600 Property Damages for all 19 crashes

There was no apparent pattern of accidents based on time of day, or age of driver. See Exhibit 1 - Crash Diagram.

\section*{APPARENT CAUSES OF CRASHES}

There appear to be 3 primary causes of a majority of the crashes. First, the geometry of the intersection can be confusing with the north and south legs, Maynard Way and Casey's driveway, offset. Second, because of the 4-lane configuration of \(11^{\text {th }}\) Street, vehicles in the intersection block the view for other motorists; and third, there is a relatively large volume of traffic using the intersection.

The non-typical geometrics of the intersection can be confusing. With the offset northbound and southbound approach, drivers may be confused as to who has the right-of-way. The driving paths for the left turns from \(11^{\text {th }}\) Street overlap such that eastbound and westbound left turns cannot occur simultaneously. Also, northbound vehicles from Casey's to Maynard Way must make a jog through the intersection since the approaches do not line up. Finally, drivers on \(11^{\text {th }}\) Street turning onto Maynard Way or into Casey's parking lot may not understand where they should stop to wait for a gap in traffic so the intersection can continue to be accessed by other drivers who have the right-of-way. For example, the police commented that drivers do not understand what the DO NOT BLOCK INTERSECTION hatch marks mean. See Exhibit 2.

The second primary cause of crashes appears to be that vehicles stopped or traveling through the intersection block the view for other motorists trying to navigate the intersection. It was specifically noted in 7 of the accident reports that the drivers cited for failure to yield making a left turn did not see the approaching vehicle because of another vehicle in the intersection blocking their view. See Exhibit 3 \& 4.

And the third cause of crashes appears to be the relatively large volume of traffic on \(11^{\text {th }}\) Street reduces the opportunity of vehicles on Maynard Way or Casey's driveway to enter \(11^{\text {th }}\) Street. Currently, the North and South legs of the intersection operate at a level of service of ' \(D\) ' and ' \(F\) ' respectively. Drivers become impatient and take more chances. The intersection delay is calculated by using the Highway Capacity Manual (HCM). It is the estimated average delay that motorists will experience. According to the HCM , a delay of \(0-10\) seconds is equivalent to a level of service (LOS) ' \(A\) ', 11-20 seconds is ' \(B\) ', 21-35 seconds is ' \(C\) ', \(36-55\) seconds is ' \(D\) ', 55-80 seconds is ' \(E\) ', and 81 seconds or more delay is ' \(F\) '. Level of service ' \(A\) ' is free flow traffic and level of service ' \(E\) ' \& ' \(F\) ' are typically unacceptable and improvements are needed.

\section*{PRACTICAL OPTIONS}

When properly used, traffic control signals are valuable devices for the control of vehicular and pedestrian traffic. They assign the right-of-way to the various traffic movements and therefore greatly influence traffic flow. They also reduce the frequency of angle collisions, but may increase the frequency of rear-end crashes. There are 9 traffic signal warrants listed in the Manual on Uniform Traffic Control Devices, (MUTCD). While a traffic signal should not be installed unless one or more of the warrants are met, the satisfaction of a traffic signal warrant does not require the installation of a traffic signal.

An analysis by HR Green in 2013 of the intersection of \(11^{\text {th }}\) Street and Maynard Way shows that 2 of the 9 signal warrants were met, Warrant 2-4 Hour Vehicular Volume and Warrant 3 - Peak Hour. With the addition of Kwik Star at the intersection since those counts were taken, it can be assumed that the traffic volumes within the intersection have increased, and those 2 traffic signal warrants will still be met.

Another consideration when evaluating the practical options is agricultural traffic. \(11^{\text {th }}\) Street is the only viable route for agricultural traffic to get from the west side of town to the east side of town, since slow moving equipment is prohibited from using US 30 and US 61 around DeWitt.

With the installation of a traffic signal, pedestrian traffic should be a consideration. Traffic counts showed some pedestrians using the intersection, and it can be assumed that more will cross at this location with a traffic signal installed. P.M. traffic counts have 12 pedestrians crossing Casey's driveway, 2 pedestrians crossing Maynard Way approach, and 2 pedestrians crossing \(11^{\text {th }}\) Street on the east side of the intersection, between 3:00 P.M. and 6:00 P.M. Each option below will assume that pedestrian signals will be installed as part of the traffic signal; however, without a topographic survey of this area, it is difficult to determine if pedestrian crossings can be constructed to meet ADA requirements.

The benefit/cost ratio used in each option below is from the lowa DOT TSIP funding instructions. The cost involves the construction cost of the solution, and other annual costs, i.e. cost of operating and maintaining a traffic signal, over the estimated service life. For the purpose of a life-cycle analysis, the estimated service life of a traffic signal is 15 years.

The benefit is derived by evaluating the costs of crashes over a specific time frame and using a crash reduction factor to try to determine the number of crashes avoided by implementing the improvement. The crash reduction factor is dependent on the type of improvement and changes with each option below. A higher crash reduction factor indicates that more crashes will be reduced, and the benefit side of the ratio will increase. However, as the crash reduction factor goes up, the cost of the improvement will generally rise also.

The cycle length shown for each option is the estimated maximum time it will take for the traffic signal to cycle through green, yellow, and red for each approach. The cycle length will be less if traffic volumes are low. It is assumed that there will be vehicle detection on each intersection approach leg, which means the green indication for any approach will only be activated if a vehicle is present, and the length of time the signal stays green will depend on the number of vehicles present.

The preliminary construction cost estimate is only an estimate. Without a topographic survey, assumptions were made regarding right-of-way, underground utilities, etc. Also, bid prices were estimated based on previous projects, but may differ from future projects. TSIP funding covers construction cost up to \(\$ 500,000\); however, engineering and design costs are the responsibility of the municipality. That cost is estimated as Unfunded Additional Cost below and includes approximate cost for design, survey, construction staking and construction inspection.

\section*{Option \#1}

Install a traffic signal at the intersection of \(11^{\text {th }}\) Street and Maynard Way with a separate phase for each approach. This is referred to as a 4-phase option. When each approach would have a green indication, the other 3 approaches would have a red indication. See Exhibit 5.
- Pros
- Would address all angle collisions occurring at the intersection.
- Would not involve any geometric changes at the intersection, so it would be less costly than other options.
- \(11^{\text {th }}\) Street would continue to have 2 through lanes in each direction which would not restrict agricultural traffic.
- A traffic signal will provide a pedestrian crossing of 11h Street.
- Cons
- By allowing only one approach to go at a time, vehicle delay (average length of time a motorist waits at a red light) would be higher than some other options.
- At least one direction on \(11^{\text {th }}\) Street will always be stopped.
- Would not improve the offset geometry of the north/south leg.
- Cost
- Preliminary Construction Cost Estimate is \(\$ 184,700\). Unfunded Additional Cost is \$61,500.
- Crash reduction factor is 34.4.
- Benefit/Cost Ratio is 2.81 (A benefit/cost ratio of 1.8 has been funded by TSIP in the past).
- Intersection Level of Service
- 85 second cycle length for the traffic signal.
- Intersection Delay 28.3 seconds.
- Level of Service C.

\section*{Option \#2}

Install traffic signal at the intersection of \(11^{\text {th }}\) Street and Maynard Way, and widen Casey's driveway to better align with Maynard Way. With Casey's driveway and Maynard Way aligned, both northbound and southbound traffic could have a green light at the same time, and share green time, thereby reducing delay compared to Option 1. This would be a 3 phase traffic signal. See Exhibit 6.
- Pros
- Would address all angle collisions occurring at the intersection.
- 3 traffic signal phases, resulting in less time waiting at a red light.
- \(11^{\text {th }}\) Street would continue to have 2 through lanes in each direction, which would not restrict agricultural traffic.
- A traffic signal will provide a pedestrian crossing of 11h Street.
- Cons
- Geometric improvements are more costly than some options.
- At least one direction on \(11^{\text {th }}\) Street will always be stopped.
- Cost
- Preliminary Construction Cost Estimate is \(\$ 199,600\), Unfunded Additional Cost is \(\$ 63,000\).
- Crash reduction factor is 34.4.
- Benefit/Cost Ratio is 2.62 (A benefit/cost ratio of 1.8 has been funded by TSIP in the past).
- Intersection Level of Service
- 65 second cycle length for the traffic signal.
- Intersection Delay 18.1 seconds.
- Level of Service B.

\section*{Option \#3}

Install a traffic signal at the intersection of \(11^{\text {th }}\) Street and Maynard Way and adjust pavement markings on \(11^{\text {th }}\) Street to have a 3 lane cross section, 1 through lane, and 1 left turn lane in each direction. Prior to the intersection, the middle lane would be a Two-way Left Turn Lane (TWLTL). Changing from a 4 lane cross section to a 3 lane cross section is referred to by the Federal Highway Administration (FHWA) as a Road Diet. See Exhibit 7.

According to the FHWA, there is strong research that shows Road Diets promote safety by reducing vehicle speeds and reducing vehicle conflicts. Studies indicate a 19 to 47 percent reduction in overall crashes when a Road Diet is installed on a previously 4 lane undivided facility. On a 4 lane undivided road, vehicle speeds can vary between travel lanes, and drivers frequently slow or change lanes due to slower or stopped vehicles. Drivers may also weave in and out of traffic lanes at high speeds. In contrast, on 3 lane roads with TWLTL's, the vehicle speed differential is limited by the speed of the lead vehicle in the through lane, and though vehicles are separated from left turning vehicles.

Also, there is better visibility for left turning traffic. Currently, vehicles on \(11^{\text {th }}\) Street turning left have to yield to two lanes of traffic, and their view of oncoming traffic in the outside lane may be obscured by vehicles in the inside lane. For Option 3, the left turn lanes are opposite each other allowing left turning motorists to better see approaching traffic in the oncoming thru lane. Thus Road Diets can reduce the vehicle speed differential and vehicle interactions, which can reduce the number and severity of vehicle-to-vehicle crashes.

An option that may be included with a Road Diet is bike lanes. \(11^{\text {th }}\) street is currently \(44^{\prime}\) wide from face of curb to face of curb, with (4) \(11^{\prime}\) lanes. With a TWLTL, a possible configuration is a \(5^{\prime}\) bike lane, \(11^{\prime}\) travel lane, \(12^{\prime}\) two-way left turn lane, \(11^{\prime}\) travel lane, and \(5^{\prime}\) bike lane for a total of \(44^{\prime}\). The beginning and ending of the TWLTL along \(11^{\text {th }}\) Street would be evaluated and a recommendation given to the Council if this option is chosen.
- Pros
- Would address all angle collisions occurring at the intersection and at other driveways and intersections within the 3 lane section.
- Could accommodate a bicycle lane in each direction.
- According to FHWA, could improve safety along \(11^{\text {th }}\) Street corridor, not just at the Maynard Way intersection.
- A traffic signal will provide a pedestrian crossing of 11th Street.
- Cons
- By putting all through traffic into one lane, would have to give through traffic a longer green time than if 2 through lanes, thus increasing delay.
- Very dependent on driver behavior. If drivers are not familiar with a TWLTL, may cause problems elsewhere along the corridor.
- Unsure of impact to agricultural traffic. With bicycle lane, ag traffic would have \(16^{\prime}\), without impacting on TWLTL.
- Cost
- Preliminary Construction Cost Estimate is \(\$ 224,800\), Unfunded Additional Cost is \$70,000.
- Crash reduction factor is 46.7.
- Benefit/Cost Ratio is 2.98 (A benefit/cost ratio of 1.8 has been funded by TSIP in the past).
- Intersection Level of Service
- 85 second cycle length for the traffic signal.
- Intersection Delay 31.9 seconds.
- Level of Service C.

\section*{Option \#3A}

By combining Option 2 \& 3, the operation of the intersection will be better than Option 3 alone. By widening Casey's driveway and better aligning it with Maynard Way, both north bound and south bound traffic could go at the same time, and share green time, thereby reducing delay compared to Option 3.
- Combining Option 2 (Widening Casey's driveway) with Option 3 (TWLTL)
- 60 second cycle length for the traffic signal.
- Intersection Delay 19.0 seconds.
- Intersection Level of Service B.
- Preliminary Construction Cost Estimate is \(\$ 234,400\). Unfunded Additional Cost is \$71,000.
- Crash reduction factor is 46.7.
- Benefit/Cost Ratio is 2.86 (A benefit/cost ratio of 1.8 has been funded by TSIP in the past).

\section*{Option \#4}

Widen the intersection by \(6^{\prime}\) on both sides and install a traffic signal to accommodate 2 through lanes and a left turn lane in each direction (5 lane cross section). See Exhibit 8.
- Pros
- Would address all angle collisions occurring at the intersection.
- Less delay at the intersection with 2 through lanes and a dedicated left turn lane.
- Intersection would appear more like a typical urban intersection and reduce confusion.
- Would not restrict agricultural traffic.
- A traffic signal will provide a pedestrian crossing of 11 h Street.
- Cons
- Most costly. Would have to widen intersection for 300 ' taper plus length of turn lanes in both directions.
- Cost
- Preliminary Construction Cost Estimate is \(\$ 336,300\). Unfunded Additional Cost is \$107,000.
- Crash reduction factor is 52.1 .
- Benefit/Cost Ratio is 2.41 (A benefit/cost ratio of 1.8 has been funded by TSIP in the past).
- Intersection Level of Service
- 85 second cycle length for the traffic signal.
- Intersection Delay 21.2 seconds.
- Level of Service C.

\section*{Option \#4A}

By combining Option 2 \& 4, the operation of the intersection will be better than option 4 alone. By widening Casey's driveway and better aligning it with Maynard Way, both north bound and south bound traffic could go at the same time, and share green time, thereby reducing delay compared to Option 4.
- Combining Option 2 (Widening Casey's driveway with Option 4 (5 lane cross-section)
- 65 second cycle length for the traffic signal.
- Intersection Delay 13.6 seconds.
- Intersection Level of Service B.
- Preliminary Construction Cost Estimate is \(\$ 338,700\). Unfunded Additional Cost is \$107,000.
- Crash reduction factor is 52.1.
- Benefit/Cost Ratio is 2.39 (A benefit/cost ratio of 1.8 has been funded by TSIP in the past).

\section*{Summary}

The following table breaks down the delay for each option by approach. The second table summarizes the overall results for the intersection.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ SUMMARY OF DELAY PER APPROACH } \\
\hline & \begin{tabular}{c}
Existing \\
Conditions \\
(sec,LOS)
\end{tabular} & \begin{tabular}{c}
Option 1 \\
(sec,LOS)
\end{tabular} & \begin{tabular}{c}
Option 2 \\
(sec,LOS)
\end{tabular} & \begin{tabular}{c}
Option 3 \\
(sec,LOS)
\end{tabular} & \begin{tabular}{c}
Option 3A \\
(sec,LOS)
\end{tabular} & \begin{tabular}{c}
Option 4 \\
(sec,LOS)
\end{tabular} & \begin{tabular}{c}
Option 4A \\
(sec,LOS)
\end{tabular} \\
\hline \begin{tabular}{l}
Eastbound \\
\(11^{\text {th }}\) Street
\end{tabular} & \(3.1, \mathrm{~A}\) & \(26.6, \mathrm{C}\) & \(16.7, \mathrm{~B}\) & \(31.2, \mathrm{C}\) & \(14.1, \mathrm{~B}\) & \(19.0, \mathrm{~B}\) & \(11.5, \mathrm{~B}\) \\
\hline \begin{tabular}{l}
Westbound \\
\(11^{\text {th }}\) Street
\end{tabular} & \(0.9, \mathrm{~A}\) & \(25.9, \mathrm{C}\) & \(15.9, \mathrm{~B}\) & \(23.1, \mathrm{C}\) & \(17.5, \mathrm{~B}\) & \(17.2, \mathrm{~B}\) & \(11.0, \mathrm{~B}\) \\
\hline \begin{tabular}{l}
Northbound \\
Casey's
\end{tabular} & \(85.0, \mathrm{~F}\) & \(28.1, \mathrm{C}\) & \(19.4, \mathrm{~B}\) & \(30.5, \mathrm{C}\) & \(19.8, \mathrm{~B}\) & \(27.3, \mathrm{C}\) & \(18.6, \mathrm{~B}\) \\
\hline \begin{tabular}{l}
Southbound \\
Maynard Way
\end{tabular} & \(39.7, \mathrm{D}\) & \(26.5, \mathrm{C}\) & \(20.1, \mathrm{C}\) & \(29.2, \mathrm{C}\) & \(20.6, \mathrm{C}\) & \(23.6, \mathrm{C}\) & \(19.3, \mathrm{~B}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{SUMMARY OF OVERALL INTERSECTION PER OPTION} \\
\hline \[
\begin{aligned}
& \frac{c}{0} \\
& \text { 밈 } \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
Cycle \\
Length \\
(sec.)
\end{tabular} & Average Intersection Delay (sec.) & Level of Service of overall intersection & Crash Reduction Factor & Benefit, average cost of crashes avoided (dollars) & Estimated Construction Cost (dollars) & \begin{tabular}{l}
Unfunded \\
Add'l \\
Cost \\
(dollars)*
\end{tabular} & Benefit/ Cost Ratio ** \\
\hline 1 & 85 & 28.3 & C & 34.4 & 551,219 & 184,700 & 61,500 & 2.81 \\
\hline 2 & 65 & 18.1 & B & 34.4 & 551,219 & 199,600 & 63,000 & 2.62 \\
\hline 3 & 85 & 31.9 & C & 46.7 & 701,130 & 224,800 & 70,000 & 2.98 \\
\hline 3 & 60 & 19.0 & B & 46.7 & 701,130 & 234,400 & 71,000 & 2.86 \\
\hline 4 & 85 & 21.2 & C & 52.1 & 836,443 & 336,300 & 107,000 & 2.41 \\
\hline 4 & 65 & 13.6 & B & 52.1 & 836,443 & 338,700 & 107,000 & 2.39 \\
\hline
\end{tabular}
* Approximate cost including Design, Survey, Construction Staking and Construction Inspection
** Cost used in ratio is Estimated Construction Cost plus other annual costs such as maintenance or operating expenses

\section*{OPTIONS CONSIDERED, BUT NOT PRACTICAL}
- No Action
- Operationally, the side street approaches do not work well. Maynard Way has a delay of 39.7 seconds for southbound traffic, and Casey's driveway has a delay of 85.0 seconds for northbound traffic. This is a level of service of 'D' and ' \(F\) ' respectively, and is typically unacceptable. As delays increase, drivers sometimes become impatient and take more risks. The benefit for this option would be the dollars saved by not making any improvements. The cost would be a societal cost of the future crashes. Currently, 3.8 crashes are occurring per year, with an average cost of \(\$ 38,000\) per crash, for a total cost to society of \(\$ 144,400\) per year. By implementing one of the options above, the reduction in the societal costs would cover the cost of the improvement in a just a few years.
- Roundabout
- For a double lane roundabout, the outer edges of the circulatory roadway would be a minimum of 150 ' diameter. Right-of-way in this area is approximately \(100^{\prime}\), so a roundabout would greatly infringe on private property.
- Realign Casey's driveway without installing a traffic signal
- This would address the confusion of the offset intersection, but would not address almost half of the crashes occurring to vehicles turning onto \(11^{\text {th }}\) Street from Maynard Way or Casey's driveway. Casey's was approached about this option, but was not receptive to the idea.
- 3 Phase Traffic Signal with Current Roadway configuration
- Without dedicated left turn lanes on \(11^{\text {th }}\) Street, or separate phases for Eastbound/Westbound traffic, drivers making a left turn into Casey's or Maynard Way would continue to yield to oncoming traffic, the same as they do without a traffic signal. While this option would address the crashes occurring to vehicles turning onto \(11^{\text {th }}\) Street from Maynard Way or Casey's driveway, it would not address almost half of the crashes occurring from vehicles on \(11^{\text {th }}\) Street turning into Casey's or Maynard Way.

\section*{RECOMMENDATIONS}

Operationally, the intersection functions well with Option 2 or 4 A because \(11^{\text {th }}\) Street continues to have 4lane capacity and with the realignment of the North/South intersections the signal timing can be most efficient. Both Option 2 and 4A have a Benefit/Cost Ratio over 1.8, which has been the criteria for funding in the past.

Option 2 is a lower cost option, but does not provide the full safety impacts (is not predicted to reduce the same number of crashes) as Option 4A. Option 4A provides the highest Crash Reduction Factor, which means that it is predicted to prevent the most crashes. By combining safety with the intersection operation, Option 4A is the recommended option if the funding of that level is available. If funding for Option 4A is not available, Option 2 is recommended.

\section*{TSIP REQUIREMENTS}

The Traffic Safety Improvement Program (TSIP) is administered by the lowa DOT and allocates Traffic Safety Funds for qualified improvements. To be considered for funding, an application has to be received by the Office of Traffic \& Safety by August 15. Final approval is given by mid-December, and funds are available for use on July 1. TSIP Program Funding Level comes from one half of one percent (\(0.5 \%\)) of lowa's Road Use Tax Fund. Approximately \(\$ 5\) million per year is available for site specific projects, such as this location in DeWitt. TSIP awards cannot exceed \(\$ 500,000\) per project and cannot be used for routine maintenance, contract administration, design, or construction engineering and inspection. Below, the specific application requirements are addressed.
A. Application Certifications or Resolutions - Approval by the applying local government must be dated within the past 12 months.
B. Narrative describing existing conditions, the proposed concept, and safety justification - A narrative describing existing conditions is contained in Attachment 1, and a description of the proposed concept and safety justification will be included after a concept is chosen.
C. Itemized breakdown of all costs - An approximate cost of each option has been included, and the itemized costs will be included in the application once an option is chosen.
D. Time Schedule - This will be developed after an option is chosen.
E. Map - Included in Attachment 2.
F. Color pictures of the project site - Included in Attachment 3.
G. Plan view - Included as exhibits for each option.
H. Aerial Photograph - Included in Attachment 4.
I. Copies of Actual Investigating Officer's Report of Motor Vehicle Accident - Obtained and will be submitted with application.
J. Recent traffic volumes and/or turning movement counts - Traffic counts from 2013 were used in this report along with a trip generation analysis. Kwik Star has been built since the traffic counts were taken, so a customary method of estimating trips generated by Kwik Star was performed and those additional traffic volumes were added to the 2013 counts. The customary method used the Institute of Transportation Engineers (ITE) Trip Generation Manual for a Gasoline/Service Station with Convenience Market and Car Wash. Traffic count data will be submitted with the application along with a detailed explanation of trip generation assumptions.
K. Traffic Signal Layout, Phasing, and Detector Locations - Layouts and phasing are included as exhibits with each option. Once an option is chosen, vehicle detector locations will be established. However, it is assumed that all approaches will have vehicle detectors.
L. Benefit/Cost Ratio worksheet - Historically, funded applications have had B/C ratios of 1.8:1, or more. A benefit/cost ratio was developed for each option using the approximate cost developed. Once an option is chosen, the benefit/cost ratio worksheet will be completed and included in the application.

\section*{ATTACHMENT 1}

\section*{Existing Conditions}
\(11^{\text {th }}\) Street (old Highway 30) is an east-west 4-lane facility through DeWitt and is classified as a major collector on federal functional classification maps. \(11^{\text {th }}\) Street, in the area of Maynard Way, is 45 feet wide with curbs on both sides. There are sidewalks on the north and south side of \(11^{\text {th }}\) Street. The speed limit on \(11^{\text {th }}\) Street is posted at 35 mph .

Maynard Way is a north-south 2-lane facility, and is an average of 36 feet wide. At the intersection, a 12 foot lane exists in the northbound direction and two 12 foot lanes are marked southbound for left and right turns. Although no lane is marked for through traffic, a few vehicles do travel through the intersection into Casey's General Store, typically from the right turn lane. Maynard Way has curb and gutter on both sides. There is a sidewalk on the east side of Maynard Way. Maynard Way is controlled by a stop sign. The speed limit posted on Maynard Way is 25 mph .

On the south side of the intersection is the eastern-most of two access points to Casey's General Store. This 36 foot wide two-way driveway functions as the northbound approach on this intersection, and is skewed to the west from Maynard Way approximately twenty feet from centerline to centerline. Casey's driveway does not have any traffic control devices or pavement markings.

Land uses at the intersection consists of trailer/camper dealership on the northwest quadrant, Kwik Star gas station with convenience store and car wash on the northeast quadrant, Casey's General Store with gas station on the southwest quadrant, and a small office building on the southeast quadrant.

Due to the alignment skew of Maynard Way and Casey's General Store access, westbound vehicles stopped in the inside lane waiting to make a left turn into Casey's block the view for other motorists trying to navigate the intersection. It was specifically noted in 7 of the accident reports that the drivers cited for failure to yield making a left turn did not see the approaching vehicle because of another vehicle in the intersection blocking their view. Therefore, a Do Not Block Intersection sign was installed by the City for westbound vehicles, and Do Not Block Intersection pavement markings were installed in the inside westbound through lane as shown on the next page. The Do Not Block Intersection pavement markings were installed in Fall, 2012. The sign was installed sometime after the pavement markings.

Attachment 4

\section*{MAYNARD WAY}

Kwik Star (gas station, convenience store,
\(11^{\text {TH }}\) STREET
\(\qquad\)

\(11^{\text {TH }}\) STREET

WALK

Office
Building
\begin{tabular}{|c|}
\hline Casey's General \\
Store \\
\hline
\end{tabular}

CASEY'S DRIVEWAY

EXHIBIT 2
Existing Conditions

\title{
\(13^{\text {TH }}\) AVENUE NORTH (NORTH \(2^{\text {ND }}\) STREET TO NORTH \(4^{\text {TH }}\) STREET)
}

\section*{4 LANE TO 3 LANE CONVERSION FEASIBILITY STUDY}

To be used as Narrative for the 2015 Traffic Safety Improvement Program Grant Application.

August 11, 2015

\section*{APPENDIX A}

\section*{Application Resolution}

\section*{RESOLUTION APPROVING OFFICIAL ENDORSEMENT OF FUNDING APPLICATION TO IOWA DEPARTMENT OF TRANSPORTRAION FOR THE 2015 TRAFFIC SAFETY IMPROVEMENT PROGRAM FOR THE \(13^{\text {TH }}\) AVENUE NORTH THREE-LANE CONVERSION PROJECT}

WHEREAS, the Iowa Department of Transportation is accepting applications for the Traffic Safety Improvement Program (TSIP) on August 15, 2015; and,

WHEREAS, the TSIP allows cities and counties throughout Iowa to apply for funding for traffic safety improvements on public roads under local jurisdiction; and,

WHEREAS, the crash history and traffic volumes along \(13^{\text {th }}\) Avenue North, from North \(2^{\text {nd }}\) Street to North \(4^{\text {th }}\) Street, indicate that conversion to a Three-Lane Road with a TwoWay Center Left-Turn Lane would improve safety and efficiency of the roadway segment; and,

WHEREAS, the City Engineering Department has prepared a TSIP grant application in the amount of \(\$ 200,000\) to the Iowa DOT, which would fund the conversion of \(13^{\text {th }}\) Avenue North to a Three-Lane Road with a Two-Way Center Left-Turn Lane, from North \(2^{\text {nd }}\) Street to North \(4^{\text {th }}\) Street; and,

THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF CLINTON, IOWA that the that the City Council is supportive of the Traffic Safety Improvement Program Funding Application for the \(13^{\text {th }}\) Avenue North Three-Lane Conversion Project in the amount of \(\mathbf{\$ 2 0 0}, \mathbf{0 0 0}\). The City Engineering Department is hereby authorized to submit the funding application on or before August 15, 2015.

BE IT FURTHER RESOLVED BY THE CITY COUNCIL OF THE CITY OF CLINTON, IOWA that the City of Clinton will be fully responsible for the maintenance of all improvements constructed related to the 13 th Avenue North Three-Lane Conversion Project.

ADOPTED: August 11, 2015

\section*{APPENDIX B}

Narrative

\section*{Feasibility Study Introduction}

The objective of this study is to investigate the feasibility of converting \(13^{\text {th }}\) Avenue North from a four-lane roadway to a three-lane roadway from North \(2^{\text {nd }}\) Street to \(200^{\prime}\) west of North \(4^{\text {th }}\) Street, or a distance of approximately \(1 / 4\) mile. This study was done in advance of application for the Traffic Safety Improvement Program Grant. This study serves as a narrative for the 2015 TSIP Grant Application.

The conversion of four-lane roadways to three-lanes has occurred in many cases throughout the State of Iowa over the past several years. In certain situations, conversion of a four-lane undivided roadway to a three-lane cross-section has been proven to produce acceptable operational results and improved safety results.

Attached to this report in Appendix M-1 is a four page tech transfer summary entitled "Four-Lane to ThreeLane Conversions", published by the Center for Transportation Research and Education (CTRE), Iowa State University in April of 2006. The findings of the CTRE study included a \(21 \%\) reduction in total crash frequency and a \(29 \%\) reduction in total crash rate. For this reason, along with additional operational benefits, the feasibility of converting Springdale Drive to a three-lane road should be considered.

Attached to this report, in Appendix M-2, is a federal highway administration one page statistical report of four-lane to three-lane conversions in the State of Iowa. Fifteen different sites across the state show drastic crash reduction statistics in the years after the conversions. The data from that study (attached) shows an average of 23.74 crashes/mile in the years before the conversion, and 12.19 crashes/mile in the years after the conversion, or an approximate \(47 \%\) total crash reduction.

It is postulated that a conversion of \(13^{\text {th }}\) Avenue North in Clinton, Iowa to a three-lane roadway with a twoway center left-turn lane would yield tangible safety and operational benefits if implemented. The following feasibility study will quantify this assumption so that the proper decision can be made.

\section*{Overview of Existing Conditions}

The existing cross-section of \(13^{\text {th }}\) Avenue North is a 41 -foot wide roadway, from back of curb to back of curb, including four 10 -foot wide through lanes which are very narrow by today's standards. The inside lanes function as shared through lanes and left turn lanes at all intersections and driveways along \(13^{\text {th }}\) Avenue North. This has caused many accidents over the past ten years, as is shown below in this report. The speed limit is now posted at 30 mph along this stretch of \(13^{\text {th }}\) Avenue North from North \(4^{\text {th }}\) Street to North \(2^{\text {nd }}\) Street,
but increases to 35 mph west of North \(4^{\text {th }}\) Street. but increases to 35 mph west of North \(4^{\text {th }}\) Street.

The 13th Avenue North corridor has experienced an increase in traffic volume over the past several years. The following table shows a summary of traffic counts on the various sections of \(13^{\text {th }}\) Avenue North. The most recent Iowa DOT traffic count conducted in 2014 (preliminary) was used. Approximated Traffic Counts for 2035 were calculated using \(2 \%\) traffic growth per year. Traffic is not expected to increase at this pace for 20 consecutive years, so this is a very conservative estimate, developed in order to project the highest possible volume of traffic generated over this time period.
\begin{tabular}{|l|l|r|}
\hline \multicolumn{3}{|c|}{ 13th Avenue North Traffic Counts 2015 } \\
\hline From & To & AADT \\
\hline N 2ND STREET & PERSHING BLVD & 4,721 \\
\hline PERSHING BLVD & N 3RD STREET & 5,179 \\
\hline N 3RD STREET & N 4TH STREET & 6,516 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline \multicolumn{3}{|c|}{ 13th Avenue North Traffic Counts 2035 } \\
\hline From & To & AADT \\
\hline N 2ND STREET & PERSHING BLVD & 7,015 \\
\hline PERSHING BLVD & N 3RD STREET & 7,696 \\
\hline N 3RD STREET & N 4TH STREET & 9,682 \\
\hline
\end{tabular}

Generally, three-lane roadways have the capacity to carry up to \(17,000 \mathrm{vpd}\) without problems. The traffic volume along \(13^{\text {th }}\) Avenue North is not expected to increase to that extent over the next twenty, and probably forty years.

\section*{Four-lane to Three-lane Conversions}

The strategy associated with the 4-lane to 3-lane conversion is best discussed in the 2001 CTRE Report. The following is an excerpt from this report:

Four-lane undivided roadways in urban areas can experience a degradation of service and/or safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of roadway has a dramatic effect on both of these factors. The solution identified for these problems is typically the addition of a raised median or two-way left-turn lane (TWLTL). The mobility and safety benefits of these actions have been proven and are discussed in this report along with some general cross section selection guidelines. The cost and right-of-way impacts of these actions are widely accepted. These guidelines focus on the evaluation and analysis of an alternative to the typical four-lane undivided cross section improvement approach described above. It has been found that the conversion of a four-lane undivided cross section to three-lanes (i.e., one lane in each direction and a TWLTL) can improve safety and maintain an acceptable level of service. Please refer to the diagram below for a visual explanation of the conversion.

Figine 1b. Founlano Undivided Roadway Converston to a ThreeLanc Cross Section.
There is a misconception that a four-lane roadway will invariably provide necessary capacity and safety as traffic continues to increase. In fact, as urban traffic volumes increase, so can the propensity for left-turning traffic to create the opposite effect. That is, a large amount of left-turning traffic is actually known to cause congestion and vehicle accidents. These left-turning vehicles stop in the inside through lane, which causes last-second lane changes by oncoming vehicles. With a conversion to a three-lane roadway, this occurrence would cease as the center left turn lane would allow a safe queue of left-turning traffic, whilst allowing through traffic to pass safely in each of the dedicated through lanes. There is also a drastic reduction in conflict points, as shown by the diagrams below.

Four-Lane Undivided

Tites-Lano
 Rondway pud Thirce-Lane Cross Section (10).

In addition to the benefit of adding a queueing lane, the conversion will provide other safety benefits. With the conversion to a three-lane, the through lanes are reduced from 2 to 1 lane in each direction. This eliminates the common "shadowing" effect caused by two lanes of traffic moving in each direction. The shadowing effect, as depicted in the diagram below, is when a left-turning vehicle is impaired from viewing traffic in the opposite outside lane because of vehicle obstruction traveling in the inside lane. This shadowing effect would be eliminated by conversion to a three-lane roadway.

Nigure 5. Major-Street Left-Turn Sight Distance for Urban Four-Lanc Undivided Roadway and Three-Lane Cross Section (10).

The most frequent concern voiced by citizens when discussing the conversion of a four-lane road to a threelane road is the ceding of capacity born from reducing lanes from 4 to 3 . However, for certain volumes of traffic, in certain urban areas, a three-lane roadway will actually provide a safer operational benefit than a four-lane roadway. For corridors with a high rate of left turning vehicles, a three-lane roadway, inclusive of a center turn lane, is a safer and more efficient alternative to a traditional four-lane roadway.

\section*{Feasibility Determination Factors}

The Engineering Policy used in this report is the feasibility determination method, which has been used in previous projects in Clinton, with respect to the decision of converting an existing four-lane road to a threelane road with a two-way center left turn lane. The following feasibility determination factors are considered to determine if \(13^{\text {th }}\) Avenue North should be recommended for conversion to a three-lane roadway with a TWLTL from North \(2^{\text {nd }}\) Street to North \(4^{\text {th }}\) Street.

\section*{1. Roadway Function}

The objective of this function is to match the intended roadway function to the actual designed function of roadway provided to the public. In the case of a typical four-lane undivided roadway, the intended function is increased mobility of traffic. That is, four-lane roadways are intended to convey large amounts of traffic from Point A to Point B. Conversely, three-lane roadways with TWLTL serve less of a mobility function and more of an access function. For roadways with a significant number of existing accesses along the route, a three-lane roadway with a center TWLTL is possibly a better match of roadway function.

In the case of \(13^{\text {th }}\) Avenue North, over 26 access points exist from North \(2^{\text {nd }}\) Street to \(200^{\prime}\) west of North \(4^{\text {th }}\) Street, or an access about every \(50^{\prime}\). This includes three public street intersections in both directions, three alleyway intersections in both directions, and 14 private driveways. For the purpose of this feasibility study, I have concluded that \(13^{\text {th }}\) Avenue North matches the roadway function for a three-lane roadway with a TWLTL. Though a considerable amount traffic is conveyed through the entire corridor with mobility in mind, the relatively low traffic counts would indicate that a three-lane roadway with a TWLTL is a tenable change to the community. Further, this stretch of \(13^{\text {th }}\) Avenue North is at the far east end of the route, which means that most drivers must prepare to turn onto \(4^{\text {th }}\) Street, \(3^{\text {rd }}\) Street, or \(2^{\text {nd }}\) Street when traveling this segment of \(13^{\text {th }}\).

\section*{2. Total Traffic Volume}

Successful case study conversions of four-lane undivided roadways to three-lane cross-sections have been done on roadways in Iowa with volumes between 2,200 and 13,700 vpd. Research has shown that the threelane conversion should be considered feasible with volumes of less than 17,000 vpd. As shown above in the traffic volume tables, current traffic counts are between 4,700 and 6,600 along this segment of \(13^{\text {th }}\) Avenue North.

Further, using a traffic growth factor of \(2 \%\) per year for the next 20 years, traffic is not expected to increase to even \(10,000 \mathrm{vpd}\), still far below the threshold of \(17,000 \mathrm{vpd}\). As stated earlier in the report, the \(2 \%\) per year for 20 years is a conservative estimate. There will likely be no need to widen to 5 lanes at any time during the period covered in this study, if ever. It is very likely that this road would see improved safety and operational level of service after the conversion to a three-lane road with a TWLTL.

The traffic data indicates that there should be no mobility challenges or reduced levels of service due to conversion of \(13^{\text {th }}\) Avenue North to a three-lane roadway with a TWLTL. For the purposes of this feasibility study, I have concluded that \(13^{\text {th }}\) Avenue North matches the total traffic volume determination factor for a three-lane roadway with a TWLTL, and this should not change in the future.

\section*{3. Turning Volume \& Patterns}

Existing left-turning volumes are high at the following locations, per the attached Iowa DOT turning movement exhibits:
- Intersection with North \(4^{\text {th }}\) Street (11 Left Turns during Peak 15 minute period)
- Intersection with North \(3^{\text {rd }}\) Street (49 Left Turns during Peak 15 minute period)
- Intersection with North \(2^{\text {nd }}\) Street (42 Left Turns during Peak 15 minute period)

A "shadowing" effect is currently present at intersections with North \(4^{\text {th }}\) Street, Pershing Blvd, and North \(3^{\text {rd }}\) Street, due to the two parallel through lanes opposite the left-turning vehicles. There are also traffic backups experienced at each of these intersections due to the left-turn queue in a non-dedicated lane. If converted to a three-lane roadway with a TWLTL, the functionality of these intersections would actually increase with respect to left-turning vehicles. Following are brief descriptions of the major shadowing issue existing at \(13^{\text {th }}\) Avenue North \& North \(3^{\text {rd }}\) Street.
- Intersection of \(13^{\text {th }}\) Avenue North \(\&\) North \(3^{\text {rd }}\) Street.

This is a signalized intersection, with only permissive left turns from east-bound directions on \(13^{\text {th }}\) Avenue North. This intersection shows up on the Iowa DOT's Top 200 list of possible traffic safety improvement candidates, currently ranked \#106. The crash data at this intersection is discussed later in the report. Many of the crashes at the intersection are related to left-turning traffic operating in a permissive-only function in a narrow, inside shared lane. Traffic safety would be greatly enhanced by a protected left turn lane on \(13^{\text {th }}\) Avenue North, which could be accomplished with the conversion of \(13^{\text {th }}\) Avenue North to a three-lane road. The data compiled by the Iowa DOT for the Top 200 list is included within the appendix of this report.

All other intersections and driveways within the project area would receive a safety and operation benefit from a three-lane conversion. With the abundance of access points along \(13^{\text {th }}\) Avenue North, left turns are quite prevalent along almost any section of the roadway. For the purposes of this feasibility study, I have concluded that \(13^{\text {th }}\) Avenue North matches the turning volume and pattern determination factor for a three-lane roadway with a TWLTL. Left-turning traffic during 15 minute peak periods are high at several intersections. Further, the combination of all left-turning movements related to total traffic counts are enough to suggest that the corridor would benefit from a TWLTL throughout the corridor.

\section*{4. Weaving, Speed, \& Queue}

Traffic on \(13^{\text {th }}\) Avenue North has a propensity to weave in and out of the narrow lanes, which can at times be dangerous. Traffic will no longer be able to conduct this weaving maneuver with the reduction to one through lane in each direction that comes with a three-lane conversion. This would have an added safety benefit to through traffic throughout the corridor.

Traffic exiting driveways and un-signalized intersections may experience added delay due to the reduction in through lanes. However, this inconvenient delay is likely to be tempered due to the decreased complexity in exiting onto \(13^{\text {th }}\) Avenue North. Traffic would no longer need to consider or negotiate multiple lanes of traffic when turning onto \(13^{\text {th }}\) Avenue North.

Speeding is a problem on \(13^{\text {th }}\) Avenue North, as evidenced by the \(85^{\text {th }}\) percentile speed on the roadway of over 40 mph . There are also instances of speeders traveling at reckless speeds of over 45 mph on \(13^{\text {th }}\) Avenue North, when trying to make it through all traffic signals on the current four lane corridor. Speed would be effectively controlled by the conversion to a three-lane road, as the through lane reduction to one in each direction would limit vehicle passing.

For the purposes of this feasibility study, I have concluded that \(13^{\text {th }}\) Avenue North matches the speeding determination factor for a three-lane roadway with a TWLTL. Speeding is expected to be mitigated by a threelane conversion, as excessive speeders will have no through lane in which to overtake slower traffic.

\section*{5. Accident Type \& Patterns}

Overall, accident rates along this \(13^{\text {th }}\) Avenue North corridor have been well above the statewide average over the past ten years. When breaking the corridor down into four segments, the patterns are more easily discussed as follows.

Crash data was available throughout the corridor from the Iowa Crash Mapping Analysis Tool. Table 1, on the following page, provides a summary of the computed crash severities and types for the years 2004 through 2013. A summary of the intersection and corridor segment crash rates can be found in Table 2 and Table 3 on the following Page.

Table 1: Intersection Crash Summary (2004-2013)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Intersection } & \multicolumn{5}{|c|}{ Crash Severity } & \multicolumn{3}{c|}{ Common Crash Types } \\
\cline { 2 - 10 } & Total & Fatal & Major & Minor & Possible & Property & Rear End & FTY & Other \\
\hline North 4th Street & 42 & 0 & 0 & 10 & 7 & 30 & 4 & 21 & 17 \\
\hline North 3rd Street & 48 & 0 & 3 & 6 & 32 & 27 & 1 & 26 & 21 \\
\hline North 2nd Street & 27 & 0 & 1 & 3 & 8 & 18 & 3 & 11 & 13 \\
\hline
\end{tabular}

Table 2: Intersection Crash Analysis (2004-2013)
\begin{tabular}{|c|c|c|c|c|}
\hline Intersection & ADT & \begin{tabular}{c}
Total \\
Crashes
\end{tabular} & \begin{tabular}{c}
Crash \\
Rate
\end{tabular} & \begin{tabular}{c}
Average Crash \\
Rate
\end{tabular} \\
\hline North 4th Street & 12661 & 42 & 0.91 & 0.7 \\
\hline North 3rd Street & 11932 & 48 & 1.10 & 0.7 \\
\hline North 2nd Street & 15234 & 27 & 0.49 & 0.7 \\
\hline
\end{tabular}

Table 3: Corridor Segment Crash Analysis (2004-2013)
\begin{tabular}{|c|c|c|c|c|}
\hline Section & ADT & \begin{tabular}{c}
Total \\
Crashes
\end{tabular} & \begin{tabular}{c}
Crash \\
Rate
\end{tabular} & \begin{tabular}{c}
Average Crash \\
Rate
\end{tabular} \\
\hline 4th St to 3rd St & 6628 & 89 & 53.96 & 4.3 \\
\hline 3rd St to 2nd St & 5229 & 51 & 21.38 & 4.3 \\
\hline
\end{tabular}

As shown on Tables \#2 and \#3 above, traffic accidents are above the state wide averages for accidents at similar intersections and road types. Based on this data, it is evident that improvements are warranted along \(13^{\text {th }}\) Avenue North.

\section*{North \(4^{\text {th }}\) Street to North \(2^{\text {nd }}\) Street general traffic accident discussion}

Over the past ten years, there have been 140 reported incidents of variable cause, which equates to 34.69 accidents per Million Vehicle Miles Traveled. This number of crashes is nearly ten times the statewide average, which is significant enough to warrant further investigation into the cause of the accidents.

An Iowa DOT Traffic Accident report for North \(3^{\text {rd }}\) Street and \(13^{\text {th }}\) Avenue North is included within the Appendix M-3 of this report. This report shows accidents involving 59 vehicles within the 5 -year window of 2009-2013. The majority of these accidents were caused by "Ran Traffic Signal".

Upon investigation of accidents within the corridor of \(13^{\text {th }}\) Avenue North from North \(2^{\text {nd }}\) Street to North \(4^{\text {th }}\) Street, using CMAT, it was discovered that almost half of these crashes involved either a left-turning vehicle on \(13^{\text {th }}\) Avenue North to North \(3^{\text {rd }}\) Street or North \(4^{\text {th }}\) Street or two vehicles traveling in the same direction on \(13^{\text {th }}\) Avenue North. It is very likely that these types of accidents will be avoided in the future if \(13^{\text {th }}\) Avenue North is converted to a three-lane roadway.

For the benefit cost analysis included within the appendix of this report, we use the previous five years of accident data throughout the corridor, as determined by CMAT. The total number of crashes within this roadway segment is 53 , which is shown on Table 4 below.

Table 4: Corridor Crash Analysis (2010-2014)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{ Crash Severity } \\
\cline { 2 - 7 } & Total & Fatal & Major & Minor & Possible & Property \\
\hline \(13^{\text {th }}\) Avenue North & 53 & 0 & 2 & 8 & 11 & 31 \\
\hline
\end{tabular}

The 53 crashes on the above table equate to a total loss value of \(\$ 1,947,200\) as shown on the attached Cost Benefit Analysis Sheet. When cross referenced with the total cost of improvements, a benefit cost analysis above a \(4: 1\) is given for this three lane conversion project. The crash reduction factor (CRF) of 25 is taken from the Crash Modification Factors Clearinghouse.

\section*{Accident Data Conclusions:}

There is enough historical accident data to suggest that a reduction in traffic accidents throughout this corridor would be reduced with a conversion of \(13^{\text {th }}\) Avenue North to a three-lane road with a TWLTL. Judging by the data research along this corridor and the police officer accident reports attached, there have been numerous accidents over the past ten years that are directly related to the following features of the \(13^{\text {th }}\) Avenue North corridor:
- A lack of a dedicated left-turn lane for east- and west-bound traffic at North \(4^{\text {th }}\) Street, North \(3^{\text {rd }}\) Street, and Pershing Blvd. These inside lanes are now shared with through traffic. This causes a majority of left turns to be permissive at the signalized intersections, which is a concern when turning traffic is dealing with the shadowing effect presented by the two opposing lanes of traffic.
- The existence of narrow, parallel, side by side through lanes on \(13^{\text {th }}\) Avenue North; which causes speeding and weaving types of traffic. This is another cause of accidents on the roadway. The conversion to a three lane road would limit these types of accidents.

For the purposes of this feasibility study, I have concluded that \(13^{\text {th }}\) Avenue North matches the accident type and pattern determination factor for a three-lane roadway with a TWLTL. It can be said with confidence that the accident rates along this corridor would decrease in the future if \(13^{\text {th }}\) Avenue North were converted to a three-lane road from North \(2^{\text {nd }}\) Street to North \(4^{\text {th }}\) Street.

\section*{6. Pedestrian \& Bike Activity}

An additional benefit to the proposed conversion is a safer pedestrian crossing at all intersections. Presently, pedestrians must cross four lanes of through traffic. Upon implementation of the three-lane road conversion, the crossing would be much safer, as the number of crossed through lanes would be reduced to two. For the purposes of this feasibility study, I have concluded that \(13^{\text {th }}\) Avenue North matches the pedestrian activity determination factor for a three-lane roadway with a TWLTL.

\section*{7. Right of Way Availability and Cost}

There is little Right of Way available to pursue other options when considering the conversion of treatments along this corridor. Adding a median or converting to five lanes will be cost prohibitive in the future. Converting to three lanes will be a minor cost relative to other more substantial improvements.

\section*{8. Signalization Factors}

Traffic signal infrastructure will need to be adjusted to account for a changed lane at the intersections North \(4^{\text {th }}\) Street, and North \(3^{\text {rd }}\) Street. Upon inspection, all of the poles and mast arms at \(4^{\text {th }}\) Street and \(3^{\text {rd }}\) Street are rusted and dented, which could create additional problems.

It is necessary to replace the signal pole and install a longer mast arm at the NW corner of \(N 4^{\text {th }}\) St and the SE corner of \(N 3^{\text {rd }} \mathrm{St}\), so that the arrows protected left-turn phase for these protected left-turn movements are directly above the center line of the road.

In fact; all poles, mast arms, and signalization components should be replaced at \(\mathrm{N} 3^{\text {rd }}\) St \(\& \mathrm{~N} 4^{\text {th }}\) St as a part of this project, due to the obsolete and degraded nature of the existing signalization components. It would not be advisable to replace only one pole \& mast arm per intersection, as it could cause additional confusion to motorists.

It is known that the signalization at North \(2^{\text {nd }}\) Street will not need to be replaced, as it was installed in 2005 and it set up with video detection and for a three lane westerly approach. Also, the controllers at North \(4^{\text {th }}\) Street and North \(3^{\text {rd }}\) Street were installed in 2014, in order to provide wireless coordination between all three intersections. All other signalization infrastructure at North \(4^{\text {th }}\) Street and North \(3^{\text {rd }}\) Street should be replaced as part of this project, if a three-lane conversion is to occur, including video detection and LED luminaires.

\section*{10. Project Benefits}

The problems currently facing \(13^{\text {th }}\) Avenue North are described as follows, along with mitigation factors to be expected by converting \(13^{\text {th }}\) Avenue North to a three-lane road with a center, left-turn lane:
1. Too much speeding traffic between North \(4^{\text {th }}\) Street and North \(2^{\text {nd }}\) Street. This is a location frequently enforced by the Clinton Police Department. The most recent speed study done on \(13^{\text {th }}\) Avenue North (from North \(4^{\text {th }}\) Street to Springdale Drive) showed \(85^{\text {th }}\) percentile speeds of over 40 mph .

Without the ability to pass in the inside or outside through lane (because only one through lane exists), traffic will drive at a speed consistent with the normal flow of traffic. Though the overall \(85^{\text {th }}\) percentile speeds are not expected to decrease much, the excessive high-end speeding will assuredly decrease, due to the inability of vehicles to pass in paralleling through lanes.
2. \(13^{\text {th }}\) Avenue North is 41 feet wide, from back of curb to back of curb, causing unfortunately narrow lanes between North \(2^{\text {nd }}\) Street and North \(4^{\text {th }}\) Street. All four lanes are 10 feet wide, which does not allow for safe side-by-side travel, contributing to the relatively high crash rate in this corridor.

Lanes need to be at least 11 feet wide, and are normally designed at 12 feet wide to safely accommodate modern vehicles. If a four-lane roadway were to be designed by today's engineering standards, it would need to be a minimum of 51 feet wide, and preferably 55 feet wide.
3. There are presently 26 access points from North \(2^{\text {nd }}\) Street to just west of North \(4^{\text {th }}\) Street (intersections, alleys, and residential driveways). This is a higher than usual number for the present standard of roadway. This causes a higher number of left-turning vehicles than the street can handle in its current layout, when comingled with through traffic in the center lane.

The increased visibility and decreased delay of turning traffic are factors that will contribute most to fewer accidents.
4. The inside lanes accommodate a combination of through traffic and left turning traffic. This causes confusion and delay at busy intersections, especially at the intersection of \(13^{\text {th }}\) Avenue North and North \(3^{\text {rd }}\) Street.

The current layout contributes to the need for a dedicated left-turn lane at certain intersections. Luckily, instead of costly pavement improvements, the roadway can be re-striped to include a two-way, center left-turn lane at minimal cost. The City is constructing an asphalt overlay in 2015, which will be an opportune time to convert to a three-lane road.
5. The relatively high number of vehicle accidents, for current traffic volumes, is discussed in the threelane conversion report. Traffic accidents are expected to be reduced throughout the corridor if this project is constructed.
- The three-lane conversion involves two, 12-foot-wide outer lanes and a 13 -foot center turn lane. This allows a \(1.5^{\prime}\) offset of traveled way from the curb line. This alone will decrease accidents, as traffic will have more room for error as the lane widens.
- The inclusion of dedicated left-turn lanes throughout the corridor will allow for safe queuing of left-turning vehicles. Further, the left-turning vehicles will only have to judge one lane of opposing, oncoming traffic, which will lead to fewer poor decisions and decreased traffic accidents.
- Without the ability to pass in the inside or outside through lane (because only 1 through lane exists), traffic will drive at a speed consistent with the normal flow of traffic. This will lower average speeds by at least 5 mph , which will decrease accidents.
- Through traffic will no longer be adversely impacted by turning vehicles using the same lane. All through traffic will be allowed to free flow in the outside lane. This results in decreased delays throughout the corridor, and fewer accidents due to impatient road decisions.

As described in the four bullet points above, traffic accidents will decrease due to the conversion from four lanes to three lanes on \(13^{\text {th }}\) Avenue North.

A federal highway administration report of four-lane to three-lane conversions in the State of Iowa, at 15 different sites across the state, shows drastic crash reduction statistics in the years after the conversions. The data from that study (attached) shows an average of 23.74 crashes/mile in the years before the conversion, and 12.19 crashes/mile in the years after, or a \(47 \%\) decrease in accidents. Further, the Crash Modification Factors Clearinghouse gives a value of 25.2 for a decrease in accidents when converted to a three-lane road.

\section*{Conclusions \& Recommendations}

The \(13^{\text {th }}\) Avenue North corridor, from North \(4^{\text {th }}\) Street to North \(2^{\text {nd }}\) Street appears to be a good candidate for a four-lane to three-lane conversion. The traffic volumes do not appear to be headed for the capacity threshold of \(17,000 \mathrm{vpd}\). I do not see any reason for concern with regard to the perceived capacity reduction from a four-lane road to a three-lane roadway with a TWLTL. Upon converting to a three-lane roadway, the following benefits would be seen immediately:
1. Traffic would flow smoothly in the outside through lanes, without substantial conflict or delay. This is due to the lack of through traffic in the left turn lane and the elimination of the existing narrow lanes.
2. Left turning traffic from \(13^{\text {th }}\) Avenue North would be safer in a dedicated lane. This is due to relieved pressure from elimination of through vehicles stuck in the queue, and also due to the elimination of the "shadowing" effect caused by the reduction of opposing through lanes from 2 to 1 .
3. Speeding is expected to be reduced by approximately \(4-5 \mathrm{mph}\) by this three-lane conversion. This should increase safety throughout the corridor.
4. The total crash frequency rate is expected to be reduced by up to \(25 \%\) after the three-lane conversion, due to the factors discussed above. Many of the types of accidents that have occurred along this segment of roadway will be avoided in the future if this three-lane conversion occurs.

\section*{Grant Application and Implementation Discussion}

Based on the existing conditions discussed in the contents of this feasibility study, the City Engineering Department has recommended conversion of \(13^{\text {th }}\) Avenue North to a Three-Lane Road with a Two-Way Center Left-Turn Lane. The City Council has authorized the City Engineering Department to proceed with a 2015 TSIP Grant Application for this project.

The project would be constructed in conjunction with an asphalt overlay of \(13^{\text {th }}\) Avenue North from \(2^{\text {nd }}\) Street to \(4^{\text {th }}\) Street, so minimal pavement marking removal would be necessary. The asphalt overlay will be fully financed by the City of Clinton, along with ADA curb ramp improvements at intersections of \(3^{\text {rd }}\) Street and \(4^{\text {th }}\) Street.

New pavement markings would be applied as shown on the attachment within this grant application. High durability pavement markings would be used for all lane markings and symbols, in order to avoid confusion when paint would typically fade. The City is including all costs for new pavement markings in the grant application as DOT funded, and is expected to cost approximately \(\$ 16,000\).

New poles, mast arms, and signalization heads would be needed at NW corner of North \(4^{\text {th }}\) Street and the SE corner of North \(3^{\text {rd }}\) Street, in order to extend the signal heads out over the center line of the street to control traffic in the center turn lane. The other signal poles and mast arms at North \(4^{\text {th }}\) Street and North \(3^{3 \text { rd }}\) Street are also included within the grant application as Iowa DOT funded, due to their existing obsolete and degraded nature. The existing traffic signal infrastructure is all far past its useful life, and should be replaced as part of this project for consistency. The cost of signalization infrastructure at North \(3^{\text {rd }}\) Street and North \(4^{\text {th }}\) Street is approximately \(\$ 147,000\) including removals.

We would also propose a switch to video detection at \(3^{\text {rd }}\) Street and \(4^{\text {th }}\) Street, which is more reliable than loop detection, as part of this project. All costs for this conversion would be included in the grant application as DOT funded, at an approximate cost of \(\$ 25,000\).

Contingencies of \(\$ 12,000\) have also been added to the project budget, to cover factors not presently included within the conceptual design.

The signals at North \(2^{\text {nd }}\) Street do not need to be replaced. Further, the existing signal controller units at \(4^{\text {th }}\) Street and \(3^{\text {rd }}\) Street were installed and interconnected in 2014, so they can be saved and used for this project. New signal timings would be designed as part of this project, with priority given to traffic safety. All three signalized intersections will remain interconnected. A discussion of Traffic Signal Phasing and a discussion of the Traffic Signal Timings are included in the appendix of this report.

In conclusion, the City of Clinton is applying for a grant totaling a maximum of \(\$ 200,000\) to fund the 3-lane conversion project on \(13^{\text {th }}\) Avenue North, including signalization improvements at North \(3^{\text {rd }}\) Street and North \(4^{\text {th }}\) Street. This project has a B/C Ration of over 4:1, making it a project well worth the investment. This grant would finance all new pavement markings from \(200^{\prime}\) west of \(4^{\text {th }}\) Street to \(2^{\text {nd }}\) Street on \(13^{\text {th }}\) Avenue North, six new signal poles and mast arms (at North \(3^{\text {rd }}\) St \& North \(4^{\text {th }}\) St intersections with \(13^{\text {th }}\) Avenue North), and video detection at \(3^{\text {rd }}\) Street \& \(4^{\text {th }}\) Street.

All improvements done as part of this project would be maintained in full by the City of Clinton, Iowa for their entire life cycle, with no exceptions.

Please contact Jason Craft, P.E., City Engineer, City of Clinton, Iowa, for any questions related to this report. He can be reached at 563-244-3423.

\section*{APPENDIX C}

\section*{Breakdown of all Costs}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & City of Clinto 3 Lane Road Co North 4th S & \[
\text { 3th } A
\] & & rth & & \\
\hline & & & & eer's Estim & & \\
\hline & & Unit & Qty. & Unit Price & & Total Price \\
\hline 1 & High Durable Pavement Markings & 1 & LS & \$ 16,000.00 & \$ & 16,000.00 \\
\hline 2 & Signal Pole \& Mast Arm Removals & 6 & EA & \$ 1,500.00 & \$ & 9,000.00 \\
\hline 3 & Signal Pole \& Mast Arm Installation & 6 & EA & \$ 23,000.00 & \$ & 138,000.00 \\
\hline 4 & Video Detection at 3rd Street \& 4th Street & 2 & EA & \$ 12,500.00 & \$ & 25,000.00 \\
\hline 5 & Contingencies & 1 & LS & \$ 12,000.00 & \$ & 12,000.00 \\
\hline & & & & & & \\
\hline & BASE BID TOTAL & & & & \$ & 200,000.00 \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{Time Schedule}

\section*{APPENDIX E}

> Map

\section*{APPENDIX F}

\section*{Color Pictures}

\section*{\(13^{\text {th }}\) Avenue North \& North \(4^{\text {th }}\) Street}

Note: Picture taken facing westerly, from proposed center of left turning lane.
Improvements to the signal need to be made as follows:
- Construction of all new poles and mast arms (existing are obsolete).
- Addition of Protected Left Turn Arrows for \(13^{\text {th }}\) Avenue North traffic.

\section*{\(13^{\text {th }}\) Avenue North \& North \(3^{\text {rd }}\) Street}

Note: Picture taken facing easterly, from proposed center of left turning lane. Improvements to the signal need to be made as follows:
- Construction of all new poles and mast arms (existing are obsolete).
- Addition of Protected Left Turn Arrows for \(13^{\text {th }}\) Avenue North traffic.

\section*{APPENDIX G}

\section*{Plan View}

\title{
\(13^{\text {th }}\) Avenue North \\ 3 Lane Conversion Cross Sections \\ EXISTING \& PROPOSED
}

\section*{APPENDIX H}

Aerial Photograph

\section*{APPENDIX J}

\section*{Traffic Volumes and Turning Movements}

\section*{Iowa Department of Transportation}

Turning Movement Traffic Count SummaryPRELIMINARY Annualized Daily Traffic For All Vehicles

\section*{Raw Data-All Vehicles:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{N Leg} & \multicolumn{2}{|l|}{E Leg} & \multicolumn{2}{|l|}{W Leg} \\
\hline & \(L\) & \(T\) & \(R\) & L & \(T\) & \(T\) & \(R\) \\
\hline 07:00 & 2 & 5 & 15 & 1 & 15 & 32 & \\
\hline 07:15 & 2 & 49 & 29 & 2 & 22 & 38 & \\
\hline 07:30 & 2 & 57 & 3. & 7 & 3 & 44 & \\
\hline 07:45 & 1 & 76 & 32 & 2 & 37 & 63 & \\
\hline 08:00 & 3 & 56 & 20 & 4 & 26 & 45 & \\
\hline 08:15 & 5 & 39 & 23 & 2 & 3. & 36 & \\
\hline 08:30 & 5 & 56 & 20 & , & 3 & 47 & \\
\hline 08:45 & 2 & 66 & 40 & 4 & 33 & 62 & \\
\hline 11:00 & 10 & 68 & 37 & 9 & 36 & 76 & \\
\hline 11:15 & 7 & 58 & 30 & 11 & 37 & 92 & \\
\hline 11:30 & 4 & 61 & 31 & 3 & 46 & 70 & \\
\hline 11:45 & 3 & 81 & 33 & 4 & 36 & 102 & \\
\hline 12:00 & 1 & 68 & 43 & - & 44 & 93 & \\
\hline 12:15 & 12 & 67 & 33 & 2 & 61 & 75 & \\
\hline 12:30 & 5 & 86 & 36 & 4 & 57 & 82 & \\
\hline 12:45 & 6 & 60 & 36 & 6 & 46 & 64 & \\
\hline 15:00 & 8 & 75 & 32 & 2 & 35 & 49 & \\
\hline 15:15 & 1 & 85 & 37 & 6 & 38 & 69 & \\
\hline
\end{tabular}

\section*{Iowa Department of Transportation \\ Turning Movement Traffic Count SummaryPRELIMINARY \\ Annualized Daily Traffic For All Vehicles}

\section*{Raw Data-All Vehicles:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{ELeg} & \multicolumn{3}{|c|}{S Leg} & \multicolumn{2}{|l|}{W Leg} \\
\hline & \(T\) & \(R\) & L & T & \(R\) & \(L\) & \(T\) \\
\hline 07:00 & 14 & 1 & 3 & 34 & 5 & 22 & 12 \\
\hline 07:15 & 18 & 1 & 6 & 54 & 7 & 19 & 23 \\
\hline 07:30 & 33 & 0 & 3 & 41 & 5 & 18 & 28 \\
\hline 07:45 & 37 & 1 & 1 & 66 & 13 & 28 & 36 \\
\hline 08:00 & 27 & 3 & 4 & 43 & 3 & 25 & 24 \\
\hline 08:15 & 28 & 1 & 4 & 59 & 5 & 18 & 22 \\
\hline 08:30 & 27 & 3 & 3 & 55 & 3 & 20 & 31 \\
\hline 08:45 & 3. & 2 & 6 & 59 & 7 & 24 & 40 \\
\hline 11:00 & 33 & 1 & 13 & 65 & 11 & 36 & 44 \\
\hline 11:15 & 36 & 4 & 13 & 81 & 12 & 49 & 55 \\
\hline 11:30 & 42 & 3 & 4 & 88 & 17 & 29 & 45 \\
\hline 11:45 & 36 & 4 & 7 & 93 & 1 & 29 & 79 \\
\hline 12:00 & 46 & 8 & 7 & 81 & 19 & 25 & 60 \\
\hline 12:15 & 44 & 1 & 16 & 85 & 15 & 31 & 59 \\
\hline 12:30 & 54 & 3 & 7 & 97 & 13 & 26 & 58 \\
\hline 12:45 & 30 & 4 & 16 & 105 & 6 & 33 & 42 \\
\hline 15:00 & 30 & 1 & 10 & 68 & 16 & 28 & 33 \\
\hline 15:15 & 31 & 3 & 13 & 100 & 11 & 27 & 40 \\
\hline
\end{tabular}

\section*{Raw Data-All Vehicles:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{N Leg} & \multicolumn{3}{|c|}{E Leg} & \multicolumn{3}{|c|}{SLeg} & \multicolumn{3}{|c|}{W Leg} \\
\hline & \(L\) & \(T\) & \(R\) & \(L\) & \(T\) & \(R\) & \(L\) & \(T\) & \(R\) & L & T. & \(R\) \\
\hline 07:00 & 9 & 50 & 10 & 0 & 1 & 0 & 2 & 24 & 0 & 10 & 2 & 1 \\
\hline 07:15 & 3 & 75 & 18 & 0 & 1 & 3 & 3 & 32 & 0 & 19 & 2 & 6 \\
\hline 07:30 & 2 & 81 & 25 & 0 & 5 & 3 & 7 & 39 & 0 & 17 & 5 & 9 \\
\hline 07:45 & 2 & 95 & 28 & 0 & 2 & 3 & 3 & 42 & 0 & 35 & 4 & 10 \\
\hline 08:00 & 2 & 68 & 16 & 0 & 1 & 4 & 8 & 39 & 1 & 19 & 0 & 7 \\
\hline 08:15 & 4 & 64 & 2. & 2 & 2 & 5 & 5 & 45 & 0 & 11 & 4 & 9 \\
\hline 08:30 & 7 & 69 & 20 & 3 & 4 & 4 & 7 & 45 & 0 & 20 & 2 & 14 \\
\hline 08:46 & 5 & 71 & 26 & 2 & 3 & 6 & 7 & 43 & , & 25 & 5 & 1 \\
\hline 11:00 & 7 & 90 & 14 & , & 2 & 5 & 9 & 88 & 1 & 28 & 5 & 19 \\
\hline 11:15 & 4 & 129 & 17 & 5 & 9 & , & 12 & 92 & 1 & 25 & 9 & 31 \\
\hline 11:30 & 7 & 130 & 19 & 4 & 6 & 9 & 18 & 89 & 2 & 2. & 16 & 18 \\
\hline 11:45 & 6 & 118 & 17 & 1 & 7 & 6. & 13 & 110 & 1 & 39 & 14 & 34 \\
\hline 12:00 & 9 & 150 & 19 & 1 & 10 & 5 & 17 & 118 & 0 & 42 & 15 & 3 \\
\hline 12:15 & 6 & 139 & 19 & 4 & 5 & 12 & 2 & 123 & 0 & 35 & 7 & 24 \\
\hline 12:30 & 10 & 139 & 15 & 1 & 1 & 7 & 26 & 136 & 1 & 28 & 5 & 22 \\
\hline 12:45 & 5 & 103 & 19 & 3 & 3 & 6 & 13 & 89 & 0 & 22 & - & 16 \\
\hline 15:00 & 9 & 83 & 12 & 1 & 2 & 4 & 8 & 82 & 1 & 27 & 5 & 9 \\
\hline 15:15 & 13 & 90 & 21 & 1 & 7 & 13 & 12 & 86 & 2 & 27 & 5 & 18 \\
\hline
\end{tabular}

\section*{APPENDIX K}

\section*{Traffic Signal Layout, Type, Proposed Phasing and Detector Locations}

\section*{\(13^{\text {th }}\) Ave North TSIP Application}

\section*{Traffic Signal Phasing}

The traffic signal phasing at the intersections of \(13^{\text {th }}\) Ave N with \(\mathrm{N} 4^{\text {th }} \mathrm{St}, \mathrm{N} 3^{\text {rd }} \mathrm{St}\), and \(\mathrm{N} 2^{\text {nd }} \mathrm{St}\) are based on current traffic demands. The corridor traffic signals will be part of a coordinated traffic signal system and independently fully actuated traffic signal based on traffic demand. The proposed traffic signal phasing along \(13^{\text {th }}\) Avenue North at the intersections of \(\mathrm{N} 4^{\text {th }} \mathrm{St}, \mathrm{N} 3^{\text {rd }} \mathrm{St}\), and \(N 2^{\text {nd }}\) St are shown below in \(13^{\text {th }}\) Ave \(N\) Phasing Diagram. Protected left turn phasing will be per green arrow indication and permissive left turn will be per flashing yellow arrow indication.

\section*{13TH AVENUE NORTH TRAFFIC SIGNAL PHASING}

\section*{Traffic Signal Timings}

Traffic signal timings will be based on existing traffic volumes for individual intersection timings and corridor coordinated timing plans. Coordination of signal controllers along \(13^{\text {th }}\) Avenue North at N \(4^{\text {th }} \mathrm{St}, \mathrm{N} 3^{\text {rd }} \mathrm{St}\), and \(\mathrm{N} 2^{\text {nd }}\) St will be based on time of day. Coordination timings will be implemented for AM, Noon, and PM plans with priority given to moving traffic along \(13^{\text {th }}\) Ave N . Traffic volume demand and direction will be used to determine at what time a particular timing plan will start and stop. During the low traffic volume portions of the day, the traffic signals will operate independently with intersection traffic actuating the traffic signal operations.

\section*{APPENDIX L}

\section*{Benefit/Cost}

\title{
Road Segment Benefit / Cost Safety Analysis
}

\section*{lowa DOT Office of Traffic \& Safety}

County:

\section*{Clinton}

Prepared by: \(\qquad\) Date Prepared: \(\qquad\) Aug 6, 2015
Location: The 13th Avenue North corridor, from North 4th Street to North 2nd Street

\section*{Improvement}

Proposed Improvement(s): Converting four lane to three lane with center turn lane
\$ 200,000 Estimated Improvement Cost, EC
\(\$ 10,000\) Other Annual Cost (after initial year), AC
\$ 111,184 Present Value Other Annual Costs, OC
\(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)

15 Est. Improvement Life, years, Y
25 Crash Reduction Factor (integer), CRF
4.0\% Discount Rate, INT
\begin{tabular}{|l|l|}
\hline\(\$ 311,184\) & Present Value All Costs, \\
\hline
\end{tabular}
\(\mathrm{COST}=\mathrm{EC}+\mathrm{OC}\)

\section*{Traffic Volume Data}

\section*{Date of traffic count}

1,300 Current Vehicle Miles / Day, VM
1,883 End of Life Veh. Miles / Day
474,500 Current Veh. Miles / Year, AM
8,508,699 Total Projected Veh. Miles Over Life of Project, TVMT
\(T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{\gamma}\right)\)

\section*{Crash Data}
\begin{tabular}{r}
2010 \\
\hline
\end{tabular}

First full year --> \(\qquad\) Last full year
5.0 years, Time Period, T Additional months
\(\qquad\) Fatal Crashes Fatalities @ values as of May 2014
\(\qquad\) Fatal Crashes
\(\qquad\) Fatalities @
\begin{tabular}{rc}
\(\$ 4,500,000\) & \(\$\) \\
\(\$ 325,000\) & \(\$\) \\
\(\$ 65,000\) & \(\$\) \\
\(\$ 35,000\) & \(\$\) \\
\(\$ 7,400\) & \(\$\)
\end{tabular}
-OR- enter all Property Costs of all crashes:
Total \$ Loss, LOSS \$ 1,947,200
10.60 Current Crashes \(/\) Year, \(A A=T A / T\)
\$ 36,740 Cost per Crash, AVCR = LOSS / TA
190.1 Total Expected Crashes, TCR = CR \(\times\) TVMT/10^8
2.67 Crashes Avoided First Year AAR \(=\) AA \(\times\) CRF / 100
\$ 98,139 Crash Costs Avoided in First Year, AAR x AVCR
47.9 Total Avoided Crashes, TCR x CRF/ 100

2,233.9 Crashes / HMVM, Crash Rate, CR
\(C R=T A \times 10^{\wedge} 8 /(A M \times T)\)
\(\$ 1,281,114\) Present Value of Avoided Crashes, BENEFIT
\[
B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{\gamma}\right)
\]

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 1,281,114: \$ 311,184 \quad=\frac{4.12}{}
\]

\section*{APPENDIX M}

\section*{Iowa 3 Lane Conversion Data \\ And \\ DOT Crash Report at \(13^{\text {th }}\) Ave. No. \& No. \(3^{\text {rd }}\) St.}

\section*{CMF / CRF Details}

\section*{CMF ID: 5553}

\section*{Converting four-lane roadways to three-lane roadways with center turn lane (road diet)}

\section*{Description: Conversion of road segments from a four-lane to a three-lane cross-} section with two-way left-turn lanes (also known as road diets).

\section*{Prior Condition: 4 lame roadway}

\section*{Category: Roadway}

\title{
Study: Iowa's Experience with Road Diet Measures - Use of Bayesian Approach to Assess Impacts on Crash Frequencies and Crash Rates, Pawlovich et al. 2006
}

Crash Modification Factor (CMF)
Value: 0.748
Adjusted Standard Error:
Unadjusted Standard Error: 0.012
Crash Reduction Factor (CRF)
Value: 22.2 (This whue intichess atornase in chashes)
Adjusted Standard Error:
Unadjusted Standard Error: 1.17Applicability
Crash Type: Al!
Crash Severity; All
Roadway Types: Not specified
Number of Lanes: 4
Road Division Type: UndividedSpeed Limit:Area Type: Urban
Traffic Volume: Minimum of 2030 to Maximum of 15350 Annual Average DailyIraffic (AADT)
Time of Day:AllIf countermeasure is intersection-based
Intersection Type:
Intersection Geometry:
Traffic Control:
Major Road Traffic
Volume:
Minor Road Traffic
Volume:
Development Details
Date Range of Data Used: 1982 to 2004
Municipality:
State: IA
Country: USA
Type of Methodology Used: Before/after using empirical Bayes or full Bayes
Sample Size Used:
Before Sample Size Used: 377
After Sample Sizo Used: 426
Included in Highway Safety Manual? No
Date Added to Clearinghouse:
Comments:

CMF calculation is for reduction in crash frequency per mile

\section*{Crash Reduction Study Results Three Lane Conversions in Iowa Communities}

Below is a table which shows data from 15 of the 3 lane road conversions in Iowa. As shown, traffic counts range from 2,950 to 17,400 ADT, and all report a reduction in crashes since the conversion.

> IOWA 4-LANE TO 3-LANE CONVERSION STUDY
> SUMMARY OF STUDY RESULTS
> BEFORE AND AFTER CONVERSION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{ANNUAL AVERAGE CRASHES} & \multicolumn{3}{|l|}{CRASH RATE (PER MMM)} \\
\hline CTY & AADT(ruge) & BEFORE & AFTER & \%CHANGE & BEFORE & AFTER & \%CHANGE \\
\hline StormLake & 5100-9100 & 64 & 34 & -47 & 13.40 & 8.18 & - 39 \\
\hline Clear Lake & 11900-12000 & 34 & & & 5.42 & & \\
\hline Mason City & 7100 & 9 & 4 & - 56 & 1.67 & 0.87 & 48 \\
\hline Osceola & 6100-9900 & 47 & 22 & - 53 & 7.70 & 3.50 & -5 \\
\hline Manchester & 11200 & 15 & 11 & -27 & 12.26 & 7.60 & -38 \\
\hline Iova Falls & 9400-11700 & 21 & 8 & -62 & 4.82 & & \\
\hline Rock Rapicts & \(3910-5100\) & 6 & 2 & -67 & 10.23 & 3.31 & -68 \\
\hline Glenuod & 2950-7100 & 30 & 15 & -. 50 & 12.60 & 6.28 & . 50 \\
\hline Des Moines & 12300-17400 & 67 & 39 & -42 & 11.13 & 6.57 & -41 \\
\hline Comuci Bluft & 9600 & 8 & 2 & \(-75\) & 10.36 & 2.70 & . 74 \\
\hline Bhe Grass & \(9400-10000\) & 12 & 3 & -75 & 6.23 & 2.86 & -54 \\
\hline Siomx Center & 7200-10500 & 65 & 23 & -65 & 11.13 & 4.45 & -60 \\
\hline Lixdianola & 7500-12800 & 29 & 24 & -17 & 4.85 & 3.18 & . 34 \\
\hline Lawton & 8400-9800 & 6 & 2 & -67 & 2.97 & 0.80 & -73 \\
\hline Siom City & 9300-11100 & 5 & 3 & 40 & 1.94 & 1.34 & -31 \\
\hline
\end{tabular}

Conter for Yransportalion Research and iducalon

April 2005

\section*{ABOUTTHIS \(T^{2}\) SUMMARY}

This docunent summarixes two projects sponsored by the towa DOR, one condueced by CTRE and one by lowa state Universily's Deparment of Stathifes.

\section*{SPONSORS}
lowa Departinent of Tansportation, Office of Tratfic and Sufety

MORE INFOHMATION
whwcle. 1astate.edtofresurcil/
4nneto3lane.htur

\section*{CTAE}
lown State University
2901 Sooth koop Drive, Sulto 3700
Ames, IA 50010-8634
61b-204-8103

The mbston of the Center far Ihamsports-
 State Universty is to tevelop and haphemant thaw untio methods, materfats, and tecthologles for improving trauspartation efficiency; Sately nut reliability white mprowng the

 sible for the aceurigy of the informaton preseoted heretn, The continstons expressed fa thes publlention are now necessarthy those of the sjontsors.

\section*{Froumbuma to Threcollane Comaversminnas}

\section*{wolstarsfor summay}
 Whilhous

\section*{Objective}

Assess whether converting an undfyided wiban roadway from fow lanes to three lanes fone through lane fin each direction and a two-way, continuous left-tum lane) resulas in a salex bernefic on towa ronds.

\section*{Problem Statement}

Anectotal evidence from warious soutes in lowa suggested that conversions of urdivided, foumpane roadways to bree lanes had a safecy benefit. Previous reseatch conducted by buang et thi, who evaluated 12 conver. stons sites and 25 comparison sites in Washingtom and California, showed less benefit. Their research slowed an average crash frequency that wats only 6 percen lower on the conversion sites versus the compatison sites. They also found that crash rates did not change from before to after, that crash severities were not affected, and that crash types etid not change stgnificanily

The fowa Depparment of Thansporation's Office of Thaffic and Salety (TAS) Gunded two mdependent eflecilveress evaluations to find out if there really is a significant safely benefit.

\section*{Research Description}

Two independen effectiveness evaluations wete condteted. The first, conducled by CIRE, used a classical before-and-alier studi) with "yokeclpair" control sites. "the second used a Bayestan before-atref-afier analysis and was conducted by Iown State Uniwersig's Department of Satistics in cooperation with TAS.

Both studies started with the same 15 converson sites aral 15 comparison (unconverted) stes. The conversion and comparison sites had traffic volumes rauging from 2,000 to 17,400 amush daty traffic (ADT) fiom \(1982-2004\) and were mosily lacated in smatler urbanized areas (ranging in popatation from 1,169 to 108,682, according to the 2000 Censts), Table 1 lists the study sites, itucloding neverage amman alally fralfic (AADT), poputation, tengll of the study segment, and brief descripion of the land use within the stucly corritor:

The classical siudy examined to years of anmal data (ctesthes, crush types, and volumes) with conparlsons (o amual crash trends both citywide aud to simitar, unconverted roadtways (1,e., "yoked jair" control sites). The Bayesian sturly used montlay crash data and estmated volunes obtained from TAS for the 30 sites over 23 years (1082-2004).

Tohle 1. Descriphon of commasion sifes
\begin{tabular}{|c|c|c|c|c|}
\hline City & AAD'T & Pophation & Length & L.arad uso \\
\hline Storm Lake & 7,333 & 10,076 & 1.41 & Primatily commercial and thelustrial \\
\hline Clear Lake & 12,000 & 8,161 & 1.51 & Mostly shrip commercial, witir some residential remmants \\
\hline Mason City & 7,100 & 29,172 & 1.78 & Promatily agreultura and industral \\
\hline Osceola & 6,100 & 4,659 & 2.04 & Residential, strip conmerchal, atud downtown \\
\hline Manchester & 11,200 & 5,257 & 0.35 & Downtown commercial \\
\hline lowa Finlls & 10,422 & 5,193 & 1,23 & Indusurial, with some residentind streat access at one end \\
\hline Rock Raprids & 4,532 & 2,573 & 0.35 & Downtown commerciel and office \\
\hline Glenwaod & 6,313 & 5,358 & 1.09 & Strip commercid, residential, and ramsifon between two \\
\hline Des Moines & 13,767 & 198,682 & 1.19 & Mixed residential and commercial \\
\hline Council Illaffs & 10,000 & 38,268 & 0.20 & Resideutal (Rew ckives) mud opern space \\
\hline Bhe Grass & 2,218 & 1,169 & 0.72 & Residential with commercisl nud industind \\
\hline Stoux Cemer & 9,231 & 0,002 & 1.52 & Single-residential through dowmown cormercial \\
\hline Inclianola & 13,069 & 12,998 & 1.57 & Strip commercial with some residential \\
\hline Lawton & 9,233 & 697 & 0.64 & Restalemial, access to sthe streets only \\
\hline Sour City & 10,650 & 85,013 & 0.77 & Resideritial, access to side streets or alleys only \\
\hline
\end{tabular}
(AADT and population dati from year 2000)

\section*{Key Findings}
- The two study methods grodnced slmidar resules. The elassical study found a 21 pereem reduction in total crash frequency and 29 percen reduetion in totad erash rate, when compared to the overntl city crashes. The Hayesian suady observed that, clespite the fact elat both convereed and comparison sites experfenced reductions, the convertedstes' experience wh greater, resolitug in a 25 percem reduction in arash densty and a 19 percent reduction in crash mate.
- When conpared 10 mashes ettywide, major infury crashes at the converted sites were, reduced by 11 percem, minor injury erashes by 30 percen, and possible injury craskes by 31 percent.

\section*{Implementation Benefits}
- Potential for a 25 percent reduction in crash frequency per mile and a 19 jercem reduction in crash rate.
- A 34 percent rechacton in the number of all infury crathes and lower setertity of the crasthes that to ocent,
- Less lnvoivencont of ause groups that ane eractitionally at risk-drkers 25 and mader and 65 and older.
- A significant reduction in the mumber of cataly tyes related to left tums and stopped traffie.

\section*{Conversion Guidelines}
- Determine the fenthlity of converting a fout-lane undivided toadway to a dirce-lane roadway on a case-byecase bastis.
- From an operational point of vien a converston is leasible when bivchrectional peak-howr volumes are less that 1,500 vehicles per lour (vph), which is equivalent to about 15,000 veliceles per alay. Fior volanes over 1,750 vph, the [eastility should be comsidered even more closely.
a Follow the feasibilty detembation factors ln the CTRE report "Gudeltnes For the Conversion of 4 -lane Undivided Roadways to 3 -hate 2 -way Lett-hum Lame Taclities" available on the webs latux//wownetre, istate.edtureports/ 4 to. 3 lame.per.
- If a threculate conversion la fensible, consteder to along with other alternatives witho a detailed engtneering stady

\section*{Why the Iowa Result's Differ}

Results of the Jowa studies differ from a previous study by lhang, et al, which indicated litte reduetion in crash rate or density after converston, Following are reasons that may explain this:
- The "taw" data from the Bayestan study suggest that the effect of conversion in towa roads was much more dramatic than th the rouds Ituang considered.
- Although Huang began with 12 conversion sites and 25 comparison sites, the numbers were reduced to eigha and 14, respectively, for the crash rate analysis due to unavalability of data.
- Hoang used just three years of data for thoth the before and after period whereas the Bayesian analysis used 23 years of data.
- The lova stes were all locatecl in smaller ctiles, and a number of these cites had no possible diversion route or comparisot "utureated" site.
- The ADT xange of the lowa sites was 2,200 to about 13,700. The ange in dhe ituang sudy was about 10,000 to 16,000.

Intersection of 13TH AVE N \& N 3RD ST
City of Clinton, Clinton County, lowa from 2009-2013
Composite Rank=106 Frequency Rank=401 Rate Rank=6829 Severity Rank=112

Intersection of 13TH AVE N \& N 3RD ST
City of Clinton, Clinton County, Iowa from 2009-2013
Composite Rank=106 Frequency Rank \(=401\). Rate Rank \(=6829\) Severity Rank \(=112\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\(1 \times \sim \sim \sim \sim \sim\)} \\
\hline \multirow[b]{2}{*}{Major Cause} & \multicolumn{5}{|r|}{Severity} & \multirow[b]{2}{*}{Total} \\
\hline & Fatal & Major Injury & Minor mplury & \begin{tabular}{l}
Possible/ \\
Unknown Injury
\end{tabular} & Property Damage & \\
\hline \multicolumn{7}{|l|}{Anlmal} \\
\hline Ran Traffic Signal & & 2 & 1 & 7 & 6 & (4xNum 16 \\
\hline \multicolumn{7}{|l|}{Ran Stop Sign} \\
\hline \multicolumn{7}{|l|}{Crossed Centertine} \\
\hline \multicolumn{7}{|l|}{FTYROW:At Uncontrolked Intersection} \\
\hline \multicolumn{7}{|l|}{FTYROW:Maklng Right Jum on Red Signa} \\
\hline \multicolumn{7}{|l|}{FTYROW, From Stop Stgn} \\
\hline \multicolumn{7}{|l|}{FFYROW:From Yueld \$1gn} \\
\hline \multicolumn{7}{|l|}{FTYROW:Making Left Turn} \\
\hline \multicolumn{7}{|l|}{FTYROW:From Driveway} \\
\hline \multicolumn{7}{|l|}{FTYROWIFrom Parked Position} \\
\hline \multicolumn{7}{|l|}{FTYROWTo Pectestrian} \\
\hline FTYROW:Other & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Travellng Wrong Way or On Wrong Side of Road} \\
\hline Driving Too Fast for Condjtons & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Exceeded Authorized Speed} \\
\hline Made fmproper Turn & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Improper Lame Change} \\
\hline \multicolumn{7}{|l|}{Followed Too Close} \\
\hline \multicolumn{7}{|l|}{Disregarded RR Signas} \\
\hline \multicolumn{7}{|l|}{Disregarded Warning 5ign} \\
\hline Erratic/Reckless/Careless/Negligent/Aggresslive & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Improper Backing} \\
\hline \multicolumn{7}{|l|}{Ilegally Parked/Unattended} \\
\hline \multicolumn{7}{|l|}{Swerving/Evasive Action} \\
\hline \multicolumn{7}{|l|}{Over Correcting/Over Steering} \\
\hline \multicolumn{7}{|l|}{Dowrihill Ruriaway} \\
\hline \multicolumn{7}{|l|}{Eqquipment Pailure} \\
\hline \multicolumn{7}{|l|}{Separation of Units} \\
\hline \multicolumn{7}{|l|}{Ran Off Road . . Right} \\
\hline \multicolumn{7}{|l|}{Ran Off Road - Straight} \\
\hline \multicolumn{7}{|l|}{Ran OfF Road m, eft} \\
\hline \multicolumn{7}{|l|}{Lost, Control} \\
\hline \multicolumn{7}{|l|}{Inattentive/Distracled by:Passenger} \\
\hline Inattentive/Distracted by:Phone/Device & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Inattentlve/Distracted bytiallen Object} \\
\hline \multicolumn{7}{|l|}{Inattentive/Distracted by:Fatigued/Asleep} \\
\hline \multicolumn{7}{|l|}{Other:Vision Obstructed} \\
\hline \multicolumn{7}{|l|}{Oversized Load/Vehicle} \\
\hline \multicolumn{7}{|l|}{Cargo/Equipment Loss or Shift} \\
\hline Ocher Impiroper Action & & & 1 & & 1 & 12 \\
\hline Unknown & & & 1 & 3 & 1 & 至縎 \\
\hline \multicolumn{7}{|l|}{No impropar Action} \\
\hline \multicolumn{7}{|l|}{Not Reported} \\
\hline Totall & & 2 & 3 & V.] 10 & , 13 & Kx \\
\hline
\end{tabular}
intersection of 13 TH AVE N \＆N 3RD ST
Clity of Clinton，Clinton County，Iowa from 2009－2013
Composite Rank＝106 Frequency Rank＝401 Rate Rank \(k=6829\) Severity Rank＝112．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline \multirow[t]{2}{*}{Manner of Collision} & \multicolumn{5}{|l|}{Year} & \multirow[t]{2}{*}{Total} \\
\hline & 2009 & 2010 & 2011 & 2012 & 2013 & \\
\hline \multicolumn{7}{|l|}{Nonn－Colision} \\
\hline \multicolumn{7}{|l|}{Head－on} \\
\hline Rear－end & & 2 & & & 2 & （7） 4 \\
\hline Angle，oncoming left turn & & & & & 1 & 1 \\
\hline Broadside & 3 & 3 & 6 & 3 & 6 & W以没］ \\
\hline Sideswipe，same direction & & 1 & & 1 & & \％ 2 \\
\hline \multicolumn{7}{|l|}{Sideswlpe，opposite direction} \\
\hline \multicolumn{7}{|l|}{Unknown} \\
\hline \multicolumn{7}{|l|}{Not Reported} \\
\hline Totatid & 3 & 厡 6 & 27 6 & 稒 4 & 14．9 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Weather Condition} & \multicolumn{5}{|c|}{Year} & \multirow[b]{2}{*}{Total} \\
\hline & 2009 & 2010 & 2011 & 2012 & 2013 & \\
\hline Clear & 2 & 5 & 4 & 2 & 4 & \\
\hline Partly Cloudy & 1 & & 1 & 1 & 3 & 縎 6 \\
\hline Cloudy & & & & 1 & 1 & 62 \\
\hline Fog／Smoke & & & & & & \\
\hline Mist & & & & & & \\
\hline Raln & & 1 & 1 & & & 18 \\
\hline Sieet／Hail／Freaztng Rain & & & & & & \\
\hline Snow & & & & & 1 & 1 \\
\hline Severe Winds & & & & & & \\
\hline Blowing Sand／Soil／Dirt／Snow & & & & & & \\
\hline Not Reported & & & & & & \\
\hline Other & & & & & & \\
\hline Urknown & & & & & & \\
\hline Totaif & 3 & 46 & \％ 6 & 4 & 矿9 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Surface Condition} & \multicolumn{5}{|c|}{Year} & \multirow[b]{2}{*}{Total} \\
\hline & 3009 & 2010 & 2011 & 2012 & 2013 & \\
\hline Dry & 3 & 4 & 4 & 3 & 7 & \\
\hline Wet & & 2 & 2 & 1 & & 1］ 5 \\
\hline lce & & & & & & \\
\hline Srow & & & & & 2 & 13 \\
\hline Slush & & & & & & \\
\hline Sand／Mud／Dirt／Ol／Gravel & & & & & & \\
\hline Water（Standing／Moving） & & & & & & \\
\hline Other & & & & & & \\
\hline Unknown & & & & & & \\
\hline Not Reported & & & & & & \\
\hline Tota： & 3 & 6 & 6 & 4 & 49 & \\
\hline
\end{tabular}

Intersection of 13 TH AVE N \＆N 3RD ST
City of Clinton，Cllnton Counly，towa from 2009－2013
Composite Rank＝106 Frequency Rank＝401．Rate Rank＝6829 Severity Rank＝112
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{H} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Druy／Alcohol}} & \multicolumn{5}{|l|}{Year} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Total}} \\
\hline & & 2009 & 2010 & 2021 & 2012 & 2013 & & & \\
\hline \multicolumn{2}{|l|}{brue} & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Alcohol（＜statutory）} & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Alcohol（Statutory）} & & 1 & & & & & 1 & \\
\hline \multicolumn{2}{|l|}{Drug／Alcahol（＜statutory）} & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Drug／Alcohol（Statutory）} & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Refused} & & & & & 1 & & 1 & \\
\hline \multicolumn{2}{|l|}{Under Influence of Alcono／／Drugs／Medications} & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Mone Indicated} & 3 & 5 & 6 & 4 & 8 & & \(2{ }^{26}\) & \\
\hline \multicolumn{2}{|l|}{T－Totat} & 薮 3 & 4 6 & ［1］ 6 & 14 & 49 & & \％23． & \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multirow[t]{2}{*}{－Vehicle Action} & \multicolumn{7}{|l|}{－initial Direction of Travet} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Total}} \\
\hline & North & East & South & West & Unknown & \multicolumn{2}{|l|}{Not Reported} & & \\
\hline Movement Essentially Stralght & 25 & 16 & & 7 & & \multicolumn{4}{|l|}{－} \\
\hline Turning Left & 1 & 2 & & & & & & 1 & 3 \\
\hline Turring Right & & & & & & & & & \\
\hline Making U－turn & & & & & & & & & \\
\hline Overtake／passing & & & & & & & & & \\
\hline Changlog Lanes & 2 & & & & & & & & 1 \\
\hline Entering Traffic lane（Merging） & & & & & & & & & \\
\hline Leavine Traffic Lane & & & & & & & & & \\
\hline Backing & & & & & & & & & \\
\hline Slowing／Stopping & \(\lambda\) & & & 2 & & & & 1 & 2 \\
\hline Stopped for Stop Sign／Signal & 1 & & & 3 & & & & 产 & 4 \\
\hline Legally Parked & 1 & & & & & & & & 1 \\
\hline illegally Parked／Unattended & & & & & & & & & \\
\hline Other & & & & & & & & & \\
\hline Not Reported & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Urknown} & & & & & & & & & \\
\hline & 縎． 30 & \％ 118 & & N 11 & & & & & 5 \\
\hline
\end{tabular}

Intersection of 13TH AVE N \& N 3RD ST
City of Clinton, Clinton County, lowa from 2009-2013
Composite Rank=106 Frequency Rank \(=401\) Rate Rank \(=6829\) Severity Rank=112
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline \multirow[b]{2}{*}{Driver Contributing Circumstances} & \multicolumn{5}{|c|}{Severity} & \multirow[b]{2}{*}{Totas} \\
\hline & Fatal & Major injury & Minor Injury & Possible/ Unknown infury & \begin{tabular}{l}
Property \\
Damage
\end{tabular} & \\
\hline Ran Traffic Signal & & 2 & 1 & 7 & 7 & Y 17 \\
\hline \multicolumn{7}{|l|}{Ran Stop Sign} \\
\hline \multicolumn{7}{|l|}{Exceeded Authorized Speed} \\
\hline Driving Too Fast For Conditions & & & & & 1 & 1 \\
\hline Mate Improper Turn & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Travelling Wrong Way or On Wrong Side of Road} \\
\hline \multicolumn{7}{|l|}{Crossed Centerline} \\
\hline \multicolumn{7}{|l|}{Lost Control} \\
\hline \multicolumn{7}{|l|}{Followed Too Close} \\
\hline \multicolumn{7}{|l|}{5werveci To Avold: Vehicle/Object/Non-motorist/ar Arimbil} \\
\hline \multicolumn{7}{|l|}{Over Correcting/Over Steering} \\
\hline Operating Vehlce in an & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{FTYROW: From Stop Sign} \\
\hline \multicolumn{7}{|l|}{FTYROW: From Yead Sign} \\
\hline \multicolumn{7}{|l|}{FTYROW: Maknig Left Tum} \\
\hline \multicolumn{7}{|l|}{FTYROW: Making Right Turn On Red Signal} \\
\hline \multicolumn{7}{|l|}{FIYROW: From Driveway} \\
\hline \multicolumn{7}{|l|}{FTYROW: From Parked Position} \\
\hline \multicolumn{7}{|l|}{FYYROW: To Pedestrian} \\
\hline \multicolumn{7}{|l|}{ETYROW: At Unicontrolled Intersection} \\
\hline FTYROW: Other & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Inattentlve/Distracted By: Passenger} \\
\hline Thattentive/OIstracted By: Use of Phone or Other Device & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Inattentlve/Distracted Ey: Fallen Object} \\
\hline \multicolumn{7}{|l|}{Inattentive/Distracted By:Fatigued/Asleep} \\
\hline \multicolumn{7}{|l|}{Other: Vision Obstructed} \\
\hline Other Improper Action & & & 1 & & 1 & 2 \\
\hline No Improper Action & & 2 & 2 & 8 & 13 & 2-25 \\
\hline \multicolumn{7}{|l|}{Not Reported} \\
\hline Unknown & & & 2 & 6 & 2 & 1210 \\
\hline Total & & 4 & \(1{ }^{1} 6\) & *121 & (3) 23 & \\
\hline
\end{tabular}

Intersection of 13 TH AVE N \& N 3RD ST
City of Clinton, Clinton County, lowa from 2009-2013

Intersection of 13 TH AVE N \& N 3RD ST
City of Cinton, Clinton County, Jowa from 2009-2013
Composite Rank \(=106\) Frequency Rank \(m 401\) Rate Rank \(=6829\) Severity Rank \(=112\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
 \\
 \\
(rixhminumukch
\end{tabular}} \\
\hline \multirow[b]{2}{*}{Vehicte Configuration} & \multicolumn{5}{|c|}{Year} & \multirow[b]{2}{*}{Total} \\
\hline & 2009 & 2010 & 2011 & 2012 & 2013 & \\
\hline Passenger Car & 3 & 8 & 7 & 2 & 8 & 20, 28 \\
\hline Four-tire Light Truck (Pick-up/Panel) & 1 & 2 & 5 & 2 & 4 & MJ 14 \\
\hline Van or Minirivan & & & 1 & 3 & 3 & 沯 7 \\
\hline Sport Utility Vehicle & 2 & 2 & 1 & & 3 & 4 8 \\
\hline \multicolumn{7}{|l|}{Single-unit Truck (2-axie/6-tire)} \\
\hline Single unit Truck (P - 3 axie) & & & & 1 & & 1 \\
\hline \multicolumn{7}{|l|}{Truck/Trailer} \\
\hline \multicolumn{7}{|l|}{Trick Tractor (Bobtail)} \\
\hline \multicolumn{7}{|l|}{Tractor/Semi-traller} \\
\hline \multicolumn{7}{|l|}{Tractor/Doubles} \\
\hline \multicolumn{7}{|l|}{Tractor/Triples} \\
\hline \multicolumn{7}{|l|}{Other Heavy Truck (cammot classify)} \\
\hline \multicolumn{7}{|l|}{Motor Home/Recreatlonal Vehicle} \\
\hline \multicolumn{7}{|l|}{Motorcycle} \\
\hline \multicolumn{7}{|l|}{Moped/All-Terran Vehicle} \\
\hline \multicolumn{7}{|l|}{School Bus (seats \(>15\))} \\
\hline Small School Bus (seats 9-15) & & & & & 1 & 1 \\
\hline \multicolumn{7}{|l|}{Other Bus (seats 15)} \\
\hline \multicolumn{7}{|l|}{Other Small Bus (seats 9-1.5)} \\
\hline \multicolumn{7}{|l|}{Farm Vehicle/Equipment} \\
\hline \multicolumn{7}{|l|}{Malntenance/Construction Vehicle} \\
\hline \multicolumn{7}{|l|}{Train} \\
\hline \multicolumn{7}{|l|}{Other} \\
\hline \multicolumn{7}{|l|}{Not Reported} \\
\hline Unknown & & & & & & \\
\hline Total & 6 & 12 & 314 & (& W19 & WWes? \\
\hline
\end{tabular}
N甘7d ЭNIYY甘W \(\perp N \exists W \exists \wedge \forall d\) 8 NOILVZI7甘NOIS

\section*{QIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION
DATE: 08/12/2015

Northwest Arterial and Pennsylvania Avenue Intersection Improvements
Location / Title of Project
Applicant \(\quad\) City of Dubuque

Contact Person Bob Schisel
Title Assitant City Engineer
Complete Mailing Address 50 W 13th St, Dubuque, IA 52001

Phone 563-589-4270
E-Mail bschiesl@cityofdubuque.org
(Area Code)

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) Iowa DOT District 6
Contact Person Sam Shea Title District Planner

Complete Mailing Address lowa DOT District 6
5455 Kirkwood Blvd S.W., Cedar Rapids, Iowa 52404

Phone
319-364-0235

E-Mail
sam.shea@dot.iowa.gov
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

\section*{Funding Amount}

\author{
Total Project Cost \\ Safety Funds Requested
}
\$ 415,005.13
\$ 364,005.13

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the The City of Dubuque

Signed:

Bob Schisel
Typed Name

Attest:

David Ness
Typed Name

\section*{RESOLUTION NO. 280-15}

\section*{RESOLUTION AUTHORIZING THE FILING OF A GRANT APPLICATION WITH THE IOWA DEPARTMENT OF TRANSPORTATION FOR TRAFFIC SAFETY IMPROVEMENTS FUNDING FOR THE CITY OF DUBUQUE NW ARTERIAL AND PENNSYLVANIA AVENUE RIGHT TURN LANE IMPROVEMENT}

Whereas, the increasing growth of traffic volumes, along with operational and safety concerns, at the intersection of NW Arterial and Pennsylvania Avenue in the City of Dubuque could be improved by adding a westbound right turn lane; and

Whereas, the City of Dubuque has determined that improvements to this intersection, as recommended by the Iowa Department of Transportation office of Traffic Safety, will improve traffic flow; and

Whereas, the City of Dubuque is seeking the necessary funding for project implementation, and upon completion, in cooperation with the lowa Department of Transportation, be responsible for adequately maintaining and operating the project for public use during the project's useful life.

NOW THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF DUBUQUE, IOWA, THAT:

Section 1. The City files this grant application for funds through the Traffic Safety Improvement Program to fund NW Arterial and Pennsylvania Avenue right turn lane improvement.

Passed, approved and adopted this \(17^{\text {th }}\) day of August, 2015.

Roy D. Buof, Mayor
Attest:

Kevin S. Fïrnstahl, CMC, City Clerk

\section*{B. NARRATIVE}

\section*{Existing Conditions}

The project proposed in this application will improve safety at the intersection of Northwest Arterial and Pennsylvania Avenue in Dubuque, Iowa. Iowa Highway 32 (Northwest Arterial) is a five-mile long state highway that primarily runs north and south across the western portion of the City of Dubuque. Northwest Arterial's northern terminus is at its intersection with US Highway 52 and its southern terminus is at its intersection with US Highway 20. Pennsylvania Ave is a Minor Arterial that runs east and west across the City of Dubuque. Pennsylvania Ave is a vital transportation corridor in Dubuque, as it one of three corridors that carry the majority east/west traffic in the city.

\section*{Geometry of the Intersection}
- The intersection of Northwest Arterial and Pennsylvania Ave is a four-way signalized intersection.
- The north leg of Northwest Arterial at the intersection has one left turn lane, one right turn lane only lanes and two through lanes.
- The south leg of Northwest Arterial at the intersection has one left turn lane, one right turn lane only lanes and two through lanes.
- The west leg of Pennsylvania Ave at the intersection has one left turn lane, one right turn lane only lanes and two through lanes.
- The east leg of Pennsylvania Ave at the intersection has one left turn lane, one through lane and one through/right turn lane.

The east leg approach of the Northwest Arterial and Pennsylvania Avenue intersection has one through lane, one left turn lane, and one through/right turn lane. The through/right turn movement to go north is a very heavy movement. This shared through/right turn lane is favored by many drivers going west (through) because it leads to a major housing development \(1 / 4\) mile to the west. Unfortunately it only takes one westbound vehicle queued at the light to block all free right turn movements. Once blocked this lane rapidly backs up 400+ feet and beyond. The queued vehicles block adjacent business entrances which lead to poor decisions and accidents. Most of these accidents are property damage

In April 2006 HDR Engineering, Inc.(HDR) completed and Existing Conditions Analysis in 2006 and a Future Conditions Analysis in 2007. The Iowa Department of Transportation commissioned both studies. The both studies indicated that operational and safety concerns will continue to increase with the dramatic growth of traffic volumes in this corridor. The statistical data of the 2035 and 2040 Dubuque Metropolitan Area Transportation Study Long Range Plans validates that Northwest Arterial at Pennsylvania Ave intersection has a significant "crash interest".

\section*{Project Concept}

The proposed improvements at Northwest Arterial and Pennsylvania Ave consist of adding right turn only lane on east leg of Pennsylvania Ave with traffic signal adjustments. Adding a dedicated right turn lane would allow free right turn movements during the red phase, and would allow overlapping turn movements to occur during southbound left turn movements. This improvement in efficiency would result in minimized queue lengths and blockages of adjacent business entrances. These lane improvements would also allow sustained coordination of Northwest Arterial, which would minimize rear end accidents.

\section*{B. NARRATIVE}

The City of Dubuque in partnership with Iowa DOT District 6 is seeking Traffic Safety Improvement Program Funds to make these improvements. With secured funding, it is anticipated that construction could begin in April 2017, with completion in November 2017.

The Future Conditions Analysis for the Northwest Arterial completed by HDR for the Iowa Department of Transportation recommends the following based on existing conditions to improve corridor operations and/or safety:

On Pennsylvania Avenue at Northwest Arterial intersection (Page 22, Detailed year 2020 proposed improvements along the Northwest Arterial of Arterial Traffic Operations Study)
- Construct westbound right-turn lane and lengthen westbound left-turn lane
- Storage length of the westbound left-turn lane is limited by need to provide access to adjacent commercial properties.
- Improvements will include construction of raised median, which terminates prematurely on the west leg to provide access to the north side businesses.

\section*{Traffic}

With the growth of the City of Dubuque to the west, the daily traffic volume entering the intersection has increased. A review of the Iowa DOT Annual Average Daily Traffic (AADT) maps for the City of Dubuque found that over 76,900 vehicles per day traveled through the intersection in 2013. A review of historical AADT data for the intersection is shown in the following table.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Annual Average Daily Traffic (AADT) Historical Counts } \\
\hline \multirow{2}{*}{ Count Year } & \multicolumn{2}{|c|}{ Pennsylvania Ave } & \multicolumn{2}{c|}{ NW Arterial } & \multirow{2}{*}{\begin{tabular}{l}
Entering \\
\\
\cline { 2 - 5 } \\
\end{tabular} East Leg } \\
Vehicles
\end{tabular}

The increase in traffic volumes over time shown in the above table equates to an approximate \(2.3 \%\) annual growth in traffic volumes from the year 2001 to 2013. This increase in traffic through the intersection contributes to the overall safety concerns

\section*{Future Traffic Volumes}

The future traffic volumes for this intersection are based on projection provided in HDR study. The projection shows that the intersection will have 116,300 vehicles per day. The projections show that there will be \(3 \%\) growth rate from 2013 to 2030.

\section*{B. NARRATIVE}
\begin{tabular}{|l|l|l|l|l|c|}
\hline \multicolumn{5}{|c|}{ Annual Average Daily Traffic (AADT) Historical Counts } \\
\hline \multirow{2}{*}{ Count Year } & \multicolumn{2}{|c|}{ Pennsylvania Ave } & \multicolumn{2}{c|}{ Z Arterial } & \multirow{2}{*}{\begin{tabular}{c}
Entering \\
\\
\end{tabular}} \\
& East Leg & West Leg & North Leg & South Leg & Vehicles \\
\hline 2020 & 20,400 & 13,800 & 30,400 & 35,800 & 100,400 \\
\hline 2030 & 19,900 & 15,100 & 36,500 & 44,800 & 116,300 \\
\hline Source: HDR study
\end{tabular}

Using the results of the HDR study, staff calculated an annual average traffic growth rate of \(2.3 \%\). Staff used this rate in the Benefit/Cost Safety Analysis

\section*{Crashes}

Crash data for the intersection was compiled using the Crash Mapping Analysis Tool (CMAT) software distributed by the Iowa DOT. There have been a total of 115 crashes at this intersection over the last 11 years, an average of 10.4 crashes per year from 2004 through 2014. While none of these crashes have involved fatalities, approximately \(26 \%\) (34 of the 115 crashes) have resulted in personal injuries and \(74 \%\) are Property Damage.

Of 155 crashes 21 of them happened as the vehicles are following close to each other and did not have sufficient time to react to a situation, 14 of them ran the traffic signal as the wait is too long at the intersection and 41 accidents happened due to lost control.

The intersection also has pedestrian safety concerns due to geometry (wide intersection) and allowance of right turns on red. Many children cross the intersection before and after school as this intersection is located between a high school, middle school and elementary school. However, there is no notable crash history. The Dubuque Multidisciplinary Safety Team and IADOT staff Terry Ostendorf and Chris Poole conducted a Safety Assessment on June 5th, 2014 and made the following recommendations:
- The group was able to witness the crossing guards assisting school children cross Northwest Arterial, and was able to speak to the guards about their concerns
- The westbound right turn movement onto Northwest Arterial can be problematic due to a lack of dedicated right turn lane (it is a right/through lane) on Pennsylvania Ave
- It was reiterated that pedestrian safety could be improved by restricting southbound right turns onto Pennsylvania Ave when pedestrians/children are present. Another option would be to display a red arrow whenever the pedestrian crossing button is pressed

The attachment A will have a copy of the Safety Assessment report for IADOT.
Clear Zone Requirements
The proposed improvement along Northwest Arterial includes a 20 -foot clear zone, as measured from the outside pavement edge, for determination of embankment width. While Iowa Statewide Urban Design and Specifications (SUDAS) guidelines recommend an 18 -foot distance for higher speed transitional facilities, 15 -feet plus a 3 -foot curb and gutter. Whereas, the American Association of State Highway and Transportation Officials (AASHTO) Roadside Design Guide suggest a range of values for the given traffic and design speed of 20 to 22 feet. The slightly larger value was considered appropriate for the current operational charter of Northwest Arterial.

\section*{B. NARRATIVE}

Manual on Uniform Traffic Control Devices Requirements
The 2009 Manual on Uniform Traffic Control Devices (MUTCD) with Revision Numbers 1 and 2 incorporated, dated May 2012 will be utilized for the construction and design of the proposed improvements. Traffic control (temporary and permanent), signing and pavement marking guidelines from the MUTCD will be used.

\section*{Preferred Alternative}

The recommended alternative from the HDR study (Page 22 of Northwest Arterial Traffic Operations Study) and Safety Assessment (Page 3 of City of Dubuque Safety Assessment was to provide a dedicated right turn line on the east leg of Pennsylvania Ave and make improvements to traffic signal to accommodate more pedestrian crossings.

Adding a dedicated right turn lane would allow free right turn movements during the red phase, and would allow overlapping turn movements to occur during southbound left turn movements. This improvement in efficiency would result in minimized queue lengths and blockages of these business entrances. These lane improvements would also allow sustained coordination of Northwest Arterial, which would minimize rear end accidents and allow pedestrians to cross the intersection safely.

Documentation from the Crash Modification Factors Clearinghouse shows that this improvement can reduce the total number of crashes at the intersection by \(30 \%\) (http://www.cmfclearinghouse.org/detail. cfm? facid=5650)

\section*{Benefit}

A Benefit-Cost analysis was completed to assess the overall effectiveness of the proposed improvements. The analysis assumed a combined crash reduction factor (CRF) of 30 based on available research from the Crash Modification Factors Clearinghouse and the documented annual growth in traffic volumes of \(2.3 \%\). Based on the estimated cost of the project of \(\$ 410,000\) and the historical crash data for the intersection, the calculated benefit of the project was \(\$ 818,782\) equating to a Benefit-Cost Ratio of 1.65 for the proposed improvements.

A sensitivity test was completed on the assumed variables included in the calculation including the CRF value. The sensitivity test showed that with \(2.3 \%\) annual growth in traffic, a crash reduction factor of 68.3 for right turn lane with signal coordination (http://www.cmfclearinghouse.org/detail.cfm?facid=3073) would result in a Benefit-Cost Ratio of 2.69.

However staff used the crash reduction factor of 30 for addition right turn lanes to the intersection for most of the needed crash reduction.

\section*{C. ITEMIZED BREAKDOWN OF COSTS}

DUBUEOUE
Masterpiece on the Mississippi

City of Dubuque, Iowa
Construction Cost Estimate

Date: 12-Aug-15

Project Name: GRANT PROJECT (RIGHT TURN LANE) PENN AVE \& NW ARTERIAL
CIP Funding Amount: \$ Project Completion Date:

0-Jan-00

\section*{D. TIME SCHEDULE}
\begin{tabular}{|l|l|}
\hline Description & Date \\
\hline Grant Application & August 2015 \\
\hline Notice of Funding & December 2015 \\
\hline Approval of Agreement & July 2016 \\
\hline Construction Plan Preparation & September - April 2016 \\
\hline Plans Approval & May 2016 \\
\hline Advertise for Bids & October 2016 \\
\hline Open Bid \& Award Contract & November 2016 \\
\hline Notice to Proceed & December 2016 \\
\hline Construction & April - November 2017 \\
\hline Project Closeout & December 2017 \\
\hline
\end{tabular}

\section*{E. MAP}

\section*{F. PICTURES}

Intersection of Northwest Arterial and Pennsylvania Ave looking east

Intersection of Northwest Arterial and Pennsylvania Ave looking northeast

\section*{F. PICTURES}

Intersection of Northwest Arterial and Pennsylvania Ave looking east

\section*{G. PLAN VIEW}

\section*{H. AERIAL PHOTOGRAPH}

\section*{J. TRAFFIC VOLUMES}

\section*{Iowa Department of Transportation}

Turning Movement Traffic Count Summary
Annualized Daily Traffic For All Vehicles
\begin{tabular}{|c|c|c|c|}
\hline Station Number:
\[
31343332099
\] & \multirow[t]{4}{*}{-} & \multirow[t]{6}{*}{\begin{tabular}{l}
 \\
135671111736 \\
ل \(\square\) L
\end{tabular}} & \multirow[t]{4}{*}{PENNSYLVANIA AVENUE} \\
\hline \begin{tabular}{l}
Count Date: \\
Thursday, June 20, 2013
\end{tabular} & & & \\
\hline \begin{tabular}{l}
County: \\
Dubuque
\end{tabular} & & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Location Description: \\
IA 32 \& Pennsylvania Ave
\end{tabular}} & & & \\
\hline & 7734-1483- & & L602 < 7333 \\
\hline & 3810 - & & -3462 \\
\hline Volume Factor: 1.812 & \(7900 \square\) 2607 & & \(\Gamma^{2269} \quad \longrightarrow 8145\) \\
\hline \begin{tabular}{l}
Pass Class Factor: 1.839 \\
SU Class Factor: 1.553 \\
Combo Class Factor: 1.555
\end{tabular} & & \[
\underset{2916}{7} \boldsymbol{l}_{711} \boldsymbol{r}
\] & \\
\hline & \(\pm\) & & \\
\hline
\end{tabular}

Raw Data-All Vehicles:
\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|r|r|}
\cline { 2 - 13 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ N Leg } & \multicolumn{3}{c|}{ E Leg } & \multicolumn{3}{c|}{ S Leg } & \multicolumn{3}{c|}{ W Leg } \\
\cline { 2 - 15 } \multicolumn{1}{c|}{\(L\)} & \multicolumn{1}{c|}{\(T\)} & \multicolumn{1}{c|}{\(L\)} & \multicolumn{1}{c|}{\(T\)} & \(R\) & \multicolumn{1}{c|}{\(L\)} & \multicolumn{1}{c|}{} & \(R\) & \multicolumn{1}{c|}{\(L\)} & \(T\) & \(R\) \\
\hline \(\mathbf{0 7 : 0 0}\) & 63 & 438 & 141 & 188 & 238 & 55 & 188 & 370 & 109 & 100 & 275 & 261 \\
\hline \(\mathbf{0 8 : 0 0}\) & 101 & 386 & 84 & 143 & 212 & 75 & 228 & 334 & 114 & 72 & 283 & 200 \\
\hline \(\mathbf{1 1 : 0 0}\) & 119 & 533 & 92 & 160 & 223 & 120 & 185 & 606 & 207 & 95 & 248 & 166 \\
\hline \(\mathbf{1 2 : 0 0}\) & 166 & 622 & 139 & 200 & 292 & 148 & 227 & 659 & 212 & 117 & 276 & 197 \\
\hline \(\mathbf{1 5 : 0 0}\) & 151 & 611 & 112 & 181 & 266 & 130 & 198 & 670 & 268 & 117 & 276 & 169 \\
\hline \(\mathbf{1 6 : 0 0}\) & 168 & 685 & 88 & 182 & 329 & 152 & 296 & 792 & 266 & 184 & 389 & 238 \\
\hline \(\mathbf{1 7 : 0 0}\) & 179 & 617 & 86 & 195 & 332 & 194 & 271 & 681 & 249 & 126 & 330 & 193 \\
\hline
\end{tabular}

\section*{L. BENEFIT-COST WORKSHEET}

Intersection or Spot Benefit / Cost Safety Analysis

\section*{Iowa DOT Office of Traffic \& Safety}

County:
Dubuque
Prepared by: \(\qquad\) Date Prepared: Aug 10, 2015 Intersection: NW Arterial/ Pennsylvania Ave

\section*{Improvement}

Proposed Improvement(s):
Right turn lane with traffic signal improvements
\begin{tabular}{|c|c|c|c|c|c|}
\hline \$ & 364,000 & \multicolumn{2}{|l|}{Estimated Improvement Cost, EC} & & Est. Improvement Life, years, Y \\
\hline \$ & 5,000 & \multicolumn{2}{|l|}{Other Annual Cost (after initial year), AC} & 30 & Crash Reduction Factor (integer), CRF \\
\hline \multirow[t]{2}{*}{\$} & 67,952 & \multicolumn{2}{|l|}{Present Value Other Annual Costs, OC} & 4.0\% & Discount Rate (time value of \$), INT \\
\hline & & \(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\) & \$ & 431,952 & Present Value Cost, COST = EC + OC \\
\hline
\end{tabular}

\section*{Traffic Volume Data}

Source:
Iowa DOT
2013 Date of traffic count
Daily Entering Vehicles by Approach (or AADT / 2)

2.3\% Projected Traffic Growth (0\%-10\%), G

38,450 Current Daily Entering Vehicles, DEV

14,034,250 Current Annual Entering Veh., AEV = DEV * 365
60,591 veh / day, Final Year DEV, FDEV
351.37 MEV, Total Million Entering Veh. Over life of Project, TMEV
\(T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}\)

\section*{Crash Data}
\(\frac{2004}{6}\) First full year --> \(\qquad\) Last full year
11.5 years, Time Period, \(\mathbf{T}\)
values as of May 2014
\(\qquad\) Fatal Crashes

Property Damage Only

115
Total Crashes, TA
Total \$ Loss, LOSS \begin{tabular}{|}
\hline \$ 2,051,000 \\
\hline
\end{tabular}
10.00 Current Crashes / Year, AA = TA / T
\$ 17,835 Cost per Crash, AVC = LOSS / TA
0.71 Crashes / MEV, Crash Rate, CR \(C R=T A \times 10^{\wedge} 6 /(D E V \times 365 \times T)\)
250.4 Total Expected Crashes, TECR = CR x TMEV
\$ 883,786 Present Value of Avoided
3.00 Crashes Avoided First Year AAR = AA x CRF / 100 Crashes, BENEFIT
\$ 53,504 Crash Costs Avoided in First Year, AAR x AVC
75.1 Total Avoided Crashes, TECR x CRF/ 100
\[
B E N .=\frac{A V C \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)
\]

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 883,786: \$ 431,952 \quad=1
\]

\section*{City of Dubuque Safety Assessment}

On the morning of June 5,2014 , a meeting was held at Dubuque City Hall to discuss traffic safety concerns within the city of Dubuque. The following individuals were in attendance:

Dan Fox, Transportation Planner, East Central Intergovernmental Association
Gus Psihoyos, City Engineer, City of Dubuque
Dave Ness, City Traffic Engineer, City of Dubuque
Troy Kress, GIS/Traffic Technician, City of Dubuque
Bob Schiesl, Assistant City Engineer, City of Dubuque
Terry Ostendorf, lowa DOT Office of Traffic \& Safety
Chris Poole, Iowa DOT Office of Traffic \& Safety

The group discussed several intersection locations identified by city representatives as having safety and/or operational concerns.

\section*{Northwest Arterial (NWA) at Pennsylvania Avenue:}
- Pedestrian safety concerns due to geometry (wide intersection) and allowance of right turns on red
- Lots of children present due to nearby schools
- Crossing guards stationed before/after school
- Numerous public requests for change
- Lacks notable crash history
- Considering safety strategies to reduce potential conflicts between traffic and pedestrians
- Shared Tim Crouch's (lowa DOT) suggestions on increasing all-red time and signing for "No Right Turn on Red when Pedestrians/Children are Present"

Asbury Road at Carter Road:

- \(\quad\) Spike in crashes in 2012-2013
- 10 of 16 crashes occurred under daylight conditions
- April and May make up half of the crashes
- Might benefit from protected left turn phasing
- Asbury Road anticipated to become a major East-West route in 5-10 years based on long-range planning study by HDR

\section*{US 20 at Bryant Street:}
- History of eastbound traffic on US 20 losing control under the overpass during icy conditions, resulting in vehicles running off the road to the right and sometimes impacting a light pole
- Some drivers stop to assist and their vehicles can also end up getting hit
- Iowa DOT maintenance is aware of this concern and works to keep area clear of ice/snow
- History of eastbound traffic on US 20 backing up at the bottom of the hill. If it backs up far enough, drivers coming around the curve may be unable to
 stop in time and results in rear-end crashes
- Consider installation of a Dynamic Message Sign or flashing sign that gets triggered to alert drivers when the area is slippery or when traffic is backed up beyond a certain point

\section*{US 20 at Bluff Street:}

- Difficult for drivers to find gaps to enter onto US 20
- Discussed possibility of acceleration lane for entering traffic
- Intakes are along westbound US 20 would need to be relocated

\section*{Grandview Avenue at Delhi Street:}
- Existing 5-leg intersection
- 10 of 17 crashes were broadsides
- Definite candidate for a roundabout
- Suggested the city submit a TSIP application for project funding

\(10^{\text {th }}\) Street at Locust Street:

- 33 of 37 crashes are broadsides
- Both \(10^{\text {th }}\) and Locust are one-way streets
- Side-mounted street lights and signs on \(10^{\text {th }}\) Street could be blocking the view of the side-mounted signals from certain angles
- Possibility that large green interstate-style lane assignment signs beyond the intersection may be distracting westbound drivers on \(10^{\text {th }}\) Street, making them not "see" the sidemounted signals

Following lunch, the group walked the downtown area and reviewed several intersections. It was noted during this time that several of the city's one-way streets would be converted to two-way streets later this year.

Finally, the group got in a van and drove to review several of the intersections in person:

\section*{Grandview Avenue at Delhi Street:}
- It was agreed that this intersection would be well-served by a roundabout, which would provide an operational and safety improvement over the current 5-way stop configuration
- If a roundabout were considered, it was suggested that a free right turn be constructed in the NE (hospital) corner

\section*{NWA at Pennsylvania Avenue:}
- The group was able to witness the crossing guards assisting school children cross NWA, and was able to speak to the guards about their concerns
- The westbound right turn movement onto NWA can be problematic due to a lack of dedicated right turn lane (it is a right/through lane) on Pennsylvania Ave
- It was reiterated that pedestrian safety could be improved by restricting southbound right turns onto Pennsylvania Ave when pedestrians/children are present. Another option would be to display a red arrow whenever the pedestrian crossing button is pressed

Followup: Iowa DOT will send the city any information it has on the safety performance of switching signals to flashing yellow operation after hours

\section*{QIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION

Location / Title of Project

DATE: 08/06/2015

US 52 Safety improvements from Dubuque/Jackson County line to the northern city limits of Bellevue in Jackson County.
Applicant \(\quad\) Regional Planning Affiliation 8 (RPA 8)

E-Mail cravada@ecia.org

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) lowa DOT
Contact Person Sam Shea
Title
District Planner
Complete Mailing Address lowa DOT District 6
5455 Kirkwood Blvd S.W., Cedar Rapids, Iowa 52404

Phone 319-364-0235
E-Mail sam.shea@dot.iowa.gov
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}

Site Specific \(\boxtimes\) Traffic Control Device \(\square\)

Safety Study \(\quad \square\)

\section*{Funding Amount}

Total Project Cost
Safety Funds Requested
\$ 1,800,000
\$ 500,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolution(s) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the Regional Panning Affiliation 8

Chandra Ravada
Typed Name

Attest:

\section*{Dan Fox}

Typed Name

\section*{A. APPLICATION CERTIFICATIONS OR RESOLUTIONS}

\section*{Schnoebelen, Jim [DOT]}

To 'Ravada_c@yahoo.com' cravada@ecia.org
CC Yanna, Kenneth [DOT] Shea, Sam [DOT]
Jun 30 at 4:15 PM
Chandra,

The Iowa DOT District Six staff supports the project to pave shoulders on US 52 between Bellevue and the Dubuque County line. If approved and constructed, the DOT will maintain these shoulders, as we would any other paved shoulders on the primary highway system, for the minimum 20 years required by the grant.

Jim Schnoebelen, P.E.
District Engineer
District 6
iowadot.gov Iowa Department of Transportation
Office: 319-364-0235 @iowadot
Jim.Schnoebelen@dot.iowa.gov

\section*{B. NARRATIVE}

\section*{Purpose}

The Regional Planning Affiliation 8 (RPA 8) in partnership with the Iowa Department of Transportation (IADOT) and Jackson County seeks to provide safe and efficient transportation within the RPA 8 region. With this project RPA 8 and IADOT will address one of the region's primary safety concerns by constructing six foot paved shoulders with edge line rumble strips on US 52. The project will follow US 52 from the Dubuque/Jackson County line to the northern city limits of St Donatus, and from the southern city limits of Saint Donatus to the northern city limits of Bellevue in Jackson County.

The project will improve safety on the roadway by reducing the number of run off the road crashes and by providing a safe on-road bicycle facility for the many cyclists who use US 52 as part of the Mississippi River Trail.

\section*{Existing Conditions}

US 52 is an undivided highway in Dubuque and Jackson counties within RPA 8 region with soft shoulders. The route is narrow and often winding road. While scenic, the road has been the scene of numerous accidents over the years. The RPA 8 and IADOT staff agreed that paved shoulders are a potential countermeasure for run-off-road crashes as several studies have indicated that paved shoulders are effective in reducing crashes.

The RPA 8 and IADOT District 6 staff agreed to improve safety of this corridor by adding 6 ft . shoulders rather than 4 foot shoulders as this is a prominent bicycle route (Mississippi River Trail) on either side of US 52.

\section*{Project Concept:}

\section*{Project Description}

The additional 9.14 miles of paved shoulders described in this application will complete a three-phase project that will complete paved shoulders on an 18 -mile stretch of US 52 between the City of Dubuque and the City of Bellevue.

\section*{Phase I}

In the spring/summer of 2015, the Iowa DOT resurfaced 8.3 miles of US 52 between US 151/61 and the Dubuque County line. Original project plans called for a four foot paved shoulder on either side of the roadway. The Dubuque Metropolitan Area Transportation Study (DMATS) has contributed \$400,000 in Transportation Alternative Program (TAP) to pave an additional two feet on both sides of the road, thus creating a six foot shoulders.

\section*{Phase II}

Iowa DOT resurfaced 0.49 miles of US 52 within the City of Saint Donatus. The RPA 8 has approved \(\$ 30,000\) in TAP funds to join efforts with Iowa DOT to install six foot shoulders on US 52 in the City of Saint Donatus.

\section*{Phase III}

Phase III will finish the remaining connection between the Dubuque County line and the City of Bellevue. The project involves constructing 9.14 miles of six foot wide, six inch thick paved shoulders on

\section*{B. NARRATIVE}
both sides of US 52. The project will follow US 52 from the north city limits of Bellevue (MP 26.10) to the south end of the Phase II project at St. Donatus (MP 33.30), and from the north end of the Phase II project at St. Donatus (MP 33.93) to the Dubuque County line (MP 35.87).

The Iowa DOT has estimated the cost of Phase III to be \(\$ 1.8\) million. Iowa DOT has agreed to design, engineer, and administer the project. Iowa DOT will also assume responsibility for the long-term maintenance of the shoulders after initial construction, with that responsibility limited to maintenance for highway purposes.

The construction cost of the project is estimated to \(\$ 1.8\) million. The RPA 8 staff is looking at different funding sources. Some are secured and others are yet to be secured. Table below provides different funding source and amounts.
\begin{tabular}{|l|r|}
\hline Funding Sources & Amount \\
\hline Parks to People funds & \(\$ 300,000\) \\
\hline RPA 8 TAP funds & \(\$ 250,000\) \\
\hline RPA 8 Small City STP funds \(^{*}\) & \(\$ 250,000\) \\
\hline State Rec Trail Grant & \(\$ 500,000\) \\
\hline IADOT Traffic Safety Improvement Program (TSIP) Funds & \\
\hline TOTAL & \(\$ 500,000\) \\
\hline
\end{tabular}
*Yet to be secured

\section*{Project Justification}

The safety challenges presented by US 52 have been very costly for the community. IADOT Accident reports show that there have been 63 crashes from Dubuque County line to the City of Bellevue between 2004 and 2014. The accidents resulted in one fatality, seven major injuries, five minor injuries, fourteen possible injuries, and \(\$ 490,000\) in property damage. Crashes along the corridor equate to 243.63 accidents per million vehicle miles traveled without considering property damage accidents. The state average for accidents per million vehicle miles traveled rural US highways in Iowa is 87 (http://www.iowadot. gov/crashanalysis/pdfs/crash_rate-density_comparables_segments_2005-2014_20150513_statewide.pdf)

The Benefit/Cost Safety Analysis (Section L) estimates the total loss resulting from the crashes at \(\$ 3,331,881\). With a projected annual traffic increase of \(1 \%\), the cost of future crashes on this corridor is expected to increase.

The US 52 corridor from Dubuque County line to Bellevue has an AADT of 3,000 (IADOT 2013 traffic counts). The Crash Reduction Factor (CRF) used for analysis is \(25 \%\)

\section*{C. ITEMIZED BREAKDOWN OF COSTS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Cost estimate for 6' wide X 6" thick paved shoulders (both sides) - US 52 Jackson County: Begin project at the end of the existing trail north of Bellevue (MP 26.10) and end at the Dubuque/Jackson County line (MP 35.87). Gap the 2015 project in the St. Donatus area from MP 33.30 to MP 33.93. Total project length \(=9.14\) miles. \(6 / 26 / 2015-\mathrm{AFG}\)} \\
\hline Item & Item Quantity & Unit & Unit price & Estimated Cost \\
\hline Excavation class 13 for widening & 10,724 & CY & \$15.00 & \$160,860.00 \\
\hline Paved shoulder, HMA mixture, 6 in. (includes rumble strips) & 64,345 & SY & \$21.25 & \$1,367,331.25 \\
\hline Granular shoulders, type B & 2,200 & TON & \$13.00 & \$28,600.00 \\
\hline Subtotal \(=\) & & & & \$1,556,791.25 \\
\hline Traffic Control (5\% of subtotal) & & & & \$77,839.56 \\
\hline Mobilization (5\% of subtotal) & & & & \$77,839.56 \\
\hline Miscellaneous \& Contingency (5\% of subtotal) & & & & \$77,839.56 \\
\hline Total \(=\) & & & & \$1,790,309.94 \\
\hline \multicolumn{5}{|r|}{Estimated cost for recommended alternative \(=\mathbf{\$ 1 , 8 0 0 , 0 0 0}\)} \\
\hline
\end{tabular}

\section*{D. TIME SCHEDULE}
\begin{tabular}{|l|l|}
\hline Description & Date \\
\hline Grant Application & August 2015 \\
\hline Approval of Agreement & December 2015 \\
\hline Construction Plan Preparation & July 2016 - December 2016 \\
\hline Construction & April 2017 - November 2017 \\
\hline Project Closeout & December 2017 \\
\hline
\end{tabular}

\section*{E. MAP}

\section*{F. PICTURES}

\section*{F. PICTURES}

\section*{G. PLAN VIEW}

\section*{H. AERIAL PHOTOGRAPH}

\section*{J. TRAFFIC VOLUMES}

This map is a clipped section from the Iowa DOT 2013 Jackson County Traffic Flow Map. Map is not to scale.

\section*{(2013) ANNUAL AVERAGE DAILY TRAFFIC 2009 ANNUAL AVERAGE DAILY TRAFFIC}

TRAFFIC FLOW MAP OF

JACKSON COUNTY IOWA

JANUARY 1, 2013

\section*{L. BENEFIT-COST WORKSHEET}

\section*{Road Segment Benefit / Cost Safety Analysis \\ Iowa DOT Office of Traffic \& Safety}
County: Jackson Prepared by:_工_ Chandra Ravada_Date Prepared: Jul 15, 2015

Location: US 52 between Dubuque county line and the City of Bellevue

\section*{Improvement}

Proposed Improvement(s): Construct 6 foot shoulders on either side of US 52 from dubuque county line to
the City of Bellevue city limits
\begin{tabular}{lll}
\(\$ 1,800,000\) & Estimated Improvement Cost, EC & 20 \\
\cline { 1 - 1 } & Est. Improvement Life, years, Y \\
\hline\(\$ 10,000\) & Other Annual Cost (after initial year), AC & 25 \\
\hline
\end{tabular}
\$ 135,903 Present Value Other Annual Costs, OC
4.0\% Discount Rate, INT
\$ 1,935,903 Present Value All Costs, COST = EC + OC

Traffic Volume Data
\[
O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)
\]
Source: lowa DOT traffic counts

Source: \(\quad\)\begin{tabular}{l}
lowa DOT traffic counts \\
\cline { 2 - 3 } \\
Two-way \\
Length (mi.) \\
veh/day Description
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline 9.14 & 3,020 & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline 9.14 & miles total \\
\hline
\end{tabular}
Source: \(\quad\)\begin{tabular}{l}
lowa DOT traffic counts \\
\cline { 2 - 3 } \\
Two-way \\
Length (mi.) \\
veh/day Description
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline 9.14 & 3,020 & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline 9.14 & miles total \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 9.14 & 3,020 & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Source: \(\quad\)\begin{tabular}{l}
lowa DOT traffic counts \\
\cline { 2 - 3 } \\
Two-way \\
Length (mi.) \\
veh/day Description
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline 9.14 & 3,020 & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline 9.14 & miles total \\
\hline
\end{tabular}
1.0\% Projected Traffic Growth (0\%-10\%), G
\(\qquad\) Date of traffic count
\[
\begin{aligned}
& 27,603 \text { Current Vehicle Miles / Day, VM } \\
& 33,681 \text { End of Life Veh. Miles / Day } \\
& 10,075,022 \text { Current Veh. Miles / Year, AM } \\
& 221,841,950 \text { Total Projected Veh. Miles Over } \\
& \text { Life of Project, TVMT } \\
& T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)
\end{aligned}
\]

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 2,704,449: \$ 1,935,903 \quad=\quad 1.40: 1
\]

\title{
CIOWADOT Application for TRAFFIC SAFETY FUNDS
}

GENERAL INFORMATION
DATE: August 13, 2015

Location / Title of Project US 151 / lowa 13 / US 30 / Ramp D
Applicant Iowa DOT - District 6
Contact Person Tom Storey Title District Staff Engineer
Complete Mailing Address 5455 Kirkwood Blvd. SW
Cedar Rapids IA 52404
Phone
(319) 730-1511

E-Mail thomas.storey@dot.iowa.gov

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

\section*{Application Type}
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

Funding Amount

Total Project Cost
\$ 450,000
Safety Funds Requested
\$ 450,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds

Representing the

Signed:
Signature Date Signed

Typed Name

Attest:
Signature Date Signed

\footnotetext{
Typed Name
}

\section*{B.1. Existing Conditions}

The proposed project is located on Ramp D at the US 30 / Iowa 13 / US 30 interchange in Linn County, Iowa. Ramp D takes traffic from southbound US 151 / Iowa 13 to eastbound US 30.

Ramp D at this location has two lanes. The two lanes merge into one just beyond the end of the proposed project. There is a paved left side shoulder and a paved right side shoulder. There is steel beam guardrail along the right side shoulder (as viewed in the direction of travel). The ramp geometry includes a horizontal curve to the left (as viewed in the direction of travel) that tightens from a radius of \(1,244 \mathrm{ft}\). to a radius of 671 ft .

The foreslope behind the guardrail is \(3: 1\) within the limits of the \(1,244 \mathrm{ft}\). curve and 2.5:1 within the limits of the 671 ft . curve. The fill height is approximately 36 ft . There is a woodland at the toe of slope and a possible wetland beyond the toe of slope. The Cedar River is nearby.

The posted speed limit is 65 mph . There is a posted advisory speed of 45 mph for all vehicles, and a posted advisory speed of 35 mph for trucks. The traffic volume on Ramp D was \(3,256 \mathrm{vpd}\) in 2013.

There are signs warning trucks that the curve tightens. There are chevrons behind the guardrail.

\section*{B.2. Proposed Concept}

The proposed concept is to:
A. Remove the existing steel beam guardrail and widen and flatten the existing foreslope along the outside of the curve to provide a \(6: 1 / 3: 1\) barn roof cross section with a 42 ft . wide clear zone, or
B. Remove the existing steel beam guardrail and the existing HMA paved shoulder along the outside of the curve, and replace with a 10 ft . wide by 10 in . thick PCC paved shoulder and a BA-102 PCC barrier.

If site conditions would prohibit alternate A, then alternate B would be selected in its place. Alternate A would extend the toe of foreslope approximately 40 ft . in the area of the 2.5:1 foreslope. Alternate B would reduce the effective shoulder width to 8 ft .

\section*{B.3. Justification}

Semi-trucks have penetrated the steel beam guardrail four times since 2013. There was one fatality. Each incident required placement of temporary barrier rail by Iowa DOT and repair the steel beam guardrail by contract.

\section*{B.4. Cost Estimate and Proposed Funding Sources}

The estimated cost of Alternate A is \(\$ 450,000\). The estimated cost of Alternate B is \(\$ 450,000\). It is proposed to fund \(100 \%\) of the cost of the project with TSIP funds.

\section*{B.5. Proposed Schedule}

The project is proposed for letting in fiscal year 2017. Construction would occur in calendar year 2017.

US 151 / Iowa 13 / US 30 Interchange Ramp D

C
C. Cost Estimates

Alternate A:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item Number & Cat & Description & Units & Quantity & Unit Price & Cost \\
\hline 10 & & REMOVE STEEL BEAM GUARDRAIL & LF & 1,400 & \$5 & \$7,000 \\
\hline 20 & & CLEARING AND GRUBBING & ACRE & 4 & \$5,000 & \$20,000 \\
\hline 30 & & EMBANKMENT-IN-PLACE & CY & 25,000 & \$10 & \$250,000 \\
\hline 40 & & TOP SOIL & CY & 5,000 & \$15 & \$75,000 \\
\hline 50 & & SEED, FERTILIZE, AND MULCH & ACRE & 4 & \$2,500 & \$10,000 \\
\hline 60 & & SILT FENCE & LF & 3,200 & \$5 & \$16,000 \\
\hline 70 & & TRAFFIC CONTROL & LS & 1 & \$10,000 & \$10,000 \\
\hline 80 & & MOBILIZATION & LS & 1 & \$20,000 & \$20,000 \\
\hline & & SUBTOTAL & & & & \$408,000 \\
\hline & & +10\% MISCELLANEOUS & & & & \$42,000 \\
\hline & & TOTAL (Alternate A) & & & & \$450,000 \\
\hline
\end{tabular}

US 151 / Iowa 13 / US 30 Interchange Ramp D
C
Alternate B:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item Number & Cat & Description & Units & Quantity & Unit Price & Cost \\
\hline 10 & & REMOVE STEEL BEAM GUARDRAIL & LF & 1,400 & \$5 & \$7,000 \\
\hline 20 & & REMOVAL OF PAVEMENT & SY & 1,600 & \$10 & \$16,000 \\
\hline 30 & & EXCAVATION, CLASS 13 & CY & 200 & \$20 & \$4,000 \\
\hline 40 & & MODIFIED SUBBASE & CY & 400 & \$50 & \$20,000 \\
\hline 50 & & PCC PAVED SHOULDER & SY & 1,600 & \$100 & \$160,000 \\
\hline 60 & & BA-102 BARRIER & LF & 1,400 & \$100 & \$140,000 \\
\hline 70 & & TOP SOIL & CY & 100 & \$20 & \$2,000 \\
\hline 80 & & SEED, FERTILIZE, AND MULCH & ACRE & 1 & \$5,000 & \$5,000 \\
\hline 90 & & SILT FENCE & LF & 1,600 & \$5 & \$8,000 \\
\hline 100 & & TRAFFIC CONTROL & LS & 1 & \$10,000 & \$10,000 \\
\hline 110 & & MOBILIZATION & LS & 1 & \$20,000 & \$20,000 \\
\hline & & & & & & \\
\hline & & SUBTOTAL & & & & \$392,000 \\
\hline & & +15\% MISCELLANEOUS & & & & \$58,000 \\
\hline & & TOTAL (Alternate B) & & & & \$450,000 \\
\hline
\end{tabular}

US 151 / Iowa 13 / US 30 Interchange Ramp D

D

\section*{D. Time Schedule}

The contract letting would be in early 2017. Construction would take place in calendar year 2017 with completion expected by November 15, 2017.

\section*{E. Location Map}

F. Color Pictures (Google Earth images predate chevron installation)

1. Southbound on US 151 approaching Ramp D

2. Southbound, entering Ramp D

3. Ramp \(D\) (new chevrons not shown)

4. Ramp D (crash site)

US 151 / Iowa 13 / US 30 Interchange Ramp D

\section*{G. Plan View}

H. Aerial Photograph (Google Earth)

\section*{H. Aerial Photograph (Linn County GIS)}

\section*{I. Accident History (reports provided as a separate document)}

\begin{tabular}{l}
Selection Filter: \\
None \\
\\
\\
\\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline Analyst: C. Lohrer & Notes: Major Crash Summary, SB US \(151 /\) IA 13 to EB US 30, Linn Co. \\
\hline \(2 / 13 / 2015\) & Crash Mapping Analysis Tool & Page: 1 of 1 \\
\hline
\end{tabular}

US 151 / Iowa 13 / US 30 Interchange Ramp D

\section*{J. Traffic Volumes}

Iowa Department of I ransportation
Turning Movement Traffic Count Summary
Annualized Daily Traffic For All Vehicles
\begin{tabular}{|l}
\begin{tabular}{l}
Station Number: \\
57137348099
\end{tabular} \\
\hline \begin{tabular}{l}
Count Date: \\
Monday, July 08, 2013
\end{tabular} \\
\hline County: \\
Linn \\
Us 30, US 151 \& IA 13 \\
Volume Factor: 2.024 Description: \\
Pass Class Factor: 2.087 \\
SU Class Factor: 1.735 \\
Combo Class Factor: 1.773
\end{tabular}

Raw Data-All Vehicles:
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ N Leg } & \multicolumn{2}{c|}{ E Leg } \\
\multicolumn{1}{c|}{ W Leg } \\
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \(L\) & \(R\) & \(T\) & \(R\) & \(L\) & \(T\) \\
\hline \(07: 00\) & 229 & 1,068 & 596 & 233 & 388 & 208 \\
\hline \(08: 00\) & 203 & 695 & 309 & 203 & 384 & 18 \\
\hline \(11: 00\) & 177 & 444 & 245 & 220 & 404 & 204 \\
\hline \(12: 00\) & 243 & 472 & 206 & 19 & 45 & 213 \\
\hline \(15: 00\) & 216 & 573 & 227 & 224 & 67 & 404 \\
\hline \(16: 00\) & 255 & 579 & 245 & 234 & 908 & 474 \\
\hline \(17: 00\) & 252 & 497 & 210 & 248 & 806 & 42 \\
\hline
\end{tabular}

\title{
Road Segment Benefit / Cost Safety Analysis \\ Iowa DOT Office of Traffic \& Safety
}

County: \(\qquad\) Prepared by: \(\qquad\) Tom Storey Date Prepared: \(\qquad\) Aug 13, 2015
Location: Ramp D at the US 151 / lowa 13 / US 30 interchange.

\section*{Improvement}

Proposed Improvement(s): Alternate B: Remove existing steel beam guardrail, remove existing HMA paved shoulder, construct PCC paved shoulder and PCC barrier.
\begin{tabular}{ccccc}
\(\$\) & 450,000 & Estimated Improvement Cost, EC & 20 & Est. Improvement Life, years, Y \\
\cline { 1 - 2 } & - & Other Annual Cost (after initial year), AC & 51 & Crash Reduction Factor (integer), CRF \\
\hline\(\$\) & - & Present Value Other Annual Costs, OC & \(4.0 \%\) Discount Rate, INT
\end{tabular}
\[
O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)
\]
\begin{tabular}{|l|l|}
\hline\(\$ 450,000\) & Present Value All Costs,
\end{tabular} COST = EC + OC
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Traffic Volume Data} \\
\hline \multirow[t]{2}{*}{Source:} & \multicolumn{2}{|l|}{Iowa DOT Systems Planning} \\
\hline & \multicolumn{2}{|l|}{Two-way} \\
\hline Length (m & eh/day & Description \\
\hline \multirow[t]{4}{*}{0.26} & 3,256 & Ramp D Only (One Way) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline 0.26 & iles tot & \\
\hline
\end{tabular}
1.0\% Projected Traffic Growth (0\%-10\%), G
\begin{tabular}{rc}
& \multicolumn{1}{c}{ Date of traffic } \\
& Current Vehicle Miles / Day, V \\
1,033 & End of Life Veh. Miles / Day \\
308,994 & Current Veh. Miles / Year, AM \\
\(6,803,749\) & Total Projected Veh. Miles Over \\
Life of Project, TVMT \\
\(T V M T=\frac{A M}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)\)
\end{tabular}

\section*{Benefit / Cost Ratio}
Benefit : Cost \(=\$ 3,151,558: \$ 450,000 \quad=\quad 1\)

August 14, 2015

Donna Matulac, P.E.
Office of Traffic and Safety
Iowa Department of Transportation
800 Lincoln Way
Ames, lowa 50010

Dear Donna,

Included is the Traffic Safety Improvement Application for a spot improvement in the City of Cedar Rapids, lowa. The intersection identified for the improvements is Kirkwood Boulevard and the south access to the College Community School District campus. The Benefit/ Cost spreadsheet is submitted in PDF and excel format. If you have any questions regarding the material submitted in the application please feel free to contact me by phone or e-mail.

Sincerely,
SHIVE-HATTERY, INC.

Justin Campbell, PE, ENV SP
Civil Engineer
(319) 364-0227
jcampbell@shive-hattery.com

\title{
Traffic Safety Improvement Program Application
}

\author{
Kirkwood Boulevard SW \& College Community School District South Access Drive \\ Cedar Rapids, lowa \\ August 14, 2015
}

Prepared by:

ARCHITECTURE+ENGINEERING
\(3162^{\text {nd }}\) Street, Suite 500
Cedar Rapids, lowa 52406
(800) 798-0227

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}

GENERAL INFORMATION
DATE: \(\qquad\)
Location / Titie of Project Kirkwood Blvd SW \& CCSD South Access Drive
Applicant City of Cedar Rapids
Contact Person Kevin Vrchoticky Title Project Manager
Complete Mailing Address \(50015^{\text {th }}\) Ave SW
Cedar Rapids, IA 52404
```

Phone (319) 286-5802
(Area Code)

```
E-Mail k.vrchoticky@cedar-rapids.org

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title

Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone

> E-Mail
\(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

Application Type

Site Specific \(\triangle\) Traffic Control Device

Safety Study \(\square\)

Funding Amount

Total Project Cost
Safety Funds Requested
\$ 636,780
\$ 500,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the City of Cedar Rapids

Signed:
 \(\frac{8 / 14 / 20 / 5}{\text { Date Signed }}\) \(\frac{\text { Matt Myers }}{\text { Typed Name }}\)

Attest:

Signature Date Signed

Sava Cook Typed Name

RESOLUTION NO. 1120-07-15

\section*{RESOLUTION AUTHORIZING APPLICATION FOR A TRAFFIC SAFETY IMPROVEMENT PROGRAM (TSIP) GRANT FOR CONSTRUCTION OF KIRKWOOD BOULEVARD ROADWAY IMPROVEMENTPROJECT (CIP NO. 301929)}

WHEREAS, the lowa Department of Transportation has established the Transportation Safety Improvement Program (TSIP) and provides funding for locations where vehicular safety is a concern and documented and

WHEREAS, the City of Cedar Rapids has identified Kirkwood Boulevard and South Access Road to College Community School District campus as a location where vehicular safety could be improved and funded with the TSIP, and

WHEREAS, the improvements installing a roundabout will help reduce crashes, improve traffic safety operation and remove a traffic safety officer, and

WHEREAS, the Community College School District Board passed a Resolution of approval to submit for TSIP funding, and

WHEREAS, the City of Cedar Rapids Public Works Department recommends approval of this resolution,

NOW THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF CEDAR RAPIDS, IOWA that the above noted project is hereby endorsed for submission to the TSIP Grants project, and

BE IT FURTHER RESOLVED BY THE CITY COUNCIL OF CEDAR RAPIDS, IOWA, that the City Manager and Public Works Director or designee is authorized and directed to execute with signature any and all materials required for submission of the subject grant applications including any and all assurances, certifications or other document components as may be related to terms, conditions, etc. of funding agreement(s) stipulating compliance with applicable laws, regulations, etc. which may now or hereafter affect the subject provision of financial assistance.

Passed this 28th day of July, 2015.
Voting: Council member Vernon moved the adoption of the resolution; seconded by Council member Poe. Adopted, Ayes, Council members Gulick, Olson, Poe, Russell, Shey, Shields, Vernon, Weinacht and Mayor Corbett.

Attest:

\section*{Background}

The City of Cedar Rapids is planning to make intersection improvements at Kirkwood Boulevard SW and the College Community School District south access. The improvements are planned due to the future expansion of College Community School District. The District is planning on building a new intermediate school to accommodate 1,000 new students in 2016 with an expected opening day of 2017. Kirkwood Boulevard is a primary route for students and staff going to and from the Kirkwood Community College and College Community School District campuses. The issues the City and school district are facing, which will increase with future traffic growth are:
- Speeding along Kirkwood Boulevard
- Feedback message signs have been placed on the corridor to deter motorists from speeding. Observations from school district staff has indicated that even with the addition of signs, motorists continue to speed along Kirkwood Boulevard.
- Access from College Community Campus onto Kirkwood Boulevard
- A police officer has been hired by the school district, during peak hours, to direct traffic from College Community south access onto Kirkwood Boulevard.
- Safe pedestrian crossings
- There are currently no safe locations identified for pedestrians/students to cross Kirkwood Boulevard south of \(76^{\text {th }} \mathrm{St}\).

Kirkwood Boulevard is primarily a three-lane urban roadway with left-turn lanes from \(76^{\text {th }}\) Street to College Community's south access. From the south access south to Woodstone Lane, Kirkwood Boulevard is a rural two-lane roadway. Kirkwood Boulevard currently has sidewalks on both sides of the road and has a posted speed during non-school hours of 40 MPH . During school hours the posted speed is reduced to 25 MPH and feedback message signs have been installed to deter motorists from speeding by the school campus. As a result of the difficulty of getting access onto Kirkwood Boulevard, the school district has hired a police officer to control traffic during the peak hours to ensure that buses, students, parents and staff can safely turn onto Kirkwood Boulevard. In 2013 the lowa DOT collected Annual Average Daily Traffic (AADT) within the project corridor of 4,090 vehicles. This corridor is expected to see
growth and the Corridor Metropolitan Planning Organization (CMPO) is estimating by 2040 for Kirkwood Boulevard to increase to 9,000 vehicles a day. See Exhibit H for existing conditions.

\section*{Crash History}

Crash history for this intersection was collected from the lowa DOT Crash Mapping Analysis Tool (CMAT) software and the City of Cedar Rapids Police Department. Crashes were evaluated from 2009 to 2014 to identify trends and safety issues with the current intersection geometry. Even though an officer has been regulating traffic at this intersection, in the past six years six crashes have been reported at this location resulting in two minor injuries. School District staff has also witnessed a number of near misses at this intersection. Three of six crashes were a result of motorists trying to pick inadequate gaps onto Kirkwood Boulevard resulting in broadside collisions and two were related to speeding resulting in a rearend collision and a non-collision injury . Refer to Section I for crash history summaries.

\section*{Proposed Improvements}

With the police officer regulating traffic, crashes have been minimized; however this form of traffic control is not a practical long-term solution. The additional staff the police department needs as well as the added cost to the District are more reasons improvements are necessary. Traffic signals were evaluated for this intersection and none of the eight warrants were met as required by MUTCD. To address two of the primary issues, speeding along the corridor and access onto Kirkwood Boulevard from the College Community Campus, the City is proposing to construct a single-lane roundabout. This intersection design will address the gap acceptance issue and will also serve as a traffic calming measure and deter motorists from speeding. Splitter islands will be raised to allow for pedestrian refuges which will also reduce the overall crosswalk lengths. The improvements will also include sidewalks to maintain continuous pedestrian access in the area. Also included in the improvements is intersection lighting to illuminate the approaches and pedestrian crossings. Refer to Section \(\mathbf{G}\) for proposed improvements.

The proposed improvements will provide users with an intersection that will reduce speeds, provide accommodations for pedestrians and bicyclists and will aid in providing acceptable gaps. The proposed improvements are expected to result in a safer intersection and reduce the number of injury crashes per year.

\section*{SHIVEHATTERY \\ ARCHITECTURE +ENGINEERING}

\section*{Proposed Public Improvements - Single-Lane Roundabout Kirkwood Boulevard SW and College Community School District South Access Drive Cedar Rapids, lowa Engineer's Rough Order Magnitude of Cost Estimate of Quantities - August 14, 2015}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Item No & Description & Unit & \multicolumn{2}{|r|}{Unit Price} & Quantity & \multicolumn{2}{|r|}{Cost} \\
\hline 1 & Removal of Pavement & SY & \$ & 8 & 4,460 & \$ & 35,680 \\
\hline 2 & Removal of Tree & EA & \$ & 200 & 6 & \$ & 1,200 \\
\hline 3 & Unclassified Excavation \& Embankment & CY & \$ & 8 & 4,000 & \$ & 32,000 \\
\hline 4 & PCC, 10" & SY & \$ & 55 & 3,100 & \$ & 170,500 \\
\hline 5 & PCC, 7 " & SY & \$ & 45 & 1,700 & \$ & 76,500 \\
\hline 6 & Granular Subbase, 6" & SY & \$ & 7 & 4,800 & \$ & 33,600 \\
\hline 7 & PCC Truck Apron, 10" & SY & \$ & 90 & 370 & \$ & 33,300 \\
\hline 8 & Storm Sewer & LF & \$ & 85 & 900 & \$ & 76,500 \\
\hline 9 & Subdrain, 6" & LF & \$ & 15 & 2,500 & \$ & 37,500 \\
\hline 10 & Storm Sewer Intake, RA-3 & EA & \$ & 2,500 & 4 & \$ & 10,000 \\
\hline 11 & Storm Sewer Intake, RA-5 & EA & \$ & 3,500 & 4 & \$ & 14,000 \\
\hline 12 & Imported Top Soil & CY & \$ & 30 & 570 & \$ & 17,100 \\
\hline 13 & Hydroseeding with Liquid Mulch Binder & ACRE & \$ & 4,000 & 2 & \$ & 8,000 \\
\hline 14 & Right of Way Trees & EA & \$ & 250 & 30 & \$ & 7,500 \\
\hline 15 & Pavement Markings and Signage & LS & \$ & 7,000 & 1 & \$ & 7,000 \\
\hline 16 & Silt Fence & LF & \$ & 2 & 700 & \$ & 1,400 \\
\hline 17 & Traffic Control & LS & \$ & 25,000 & 1 & \$ & 25,000 \\
\hline 18 & Mobilization & LS & \$ & 50,000 & 1 & \$ & 50,000 \\
\hline
\end{tabular}

Improvements to the Kirkwood Boulevard SW and College Community School District South Access Drive which are to be funded through Traffic Safety Improvement Fund. The schedule proposed for the safety improvements is as follows:
- August 2015 - Submit for 2015 TSIP Funds
- January 2016 - August 2016 - Proceed with design of improvements
- December 2015 - TSIP Funds are awarded
- July 2016 -TSIP funds are available for the intersection improvements
- November 2016 -Let intersection project
- May 2017 - Construction begins
- August 2017 - Construction complete for single-lane roundabout.

\section*{SHIVE-IATTERY}

Looking North from Kirkwood Boulevard SW (SB Approach)

Looking South from Kirkwood Boulevard SW (NB Approach)

\section*{SHIVEHATTERY}

ARCHITECTURE + ENGINEERING

Looking East from Kirkwood Boulevard SW (WB Approach)

Looking West from Kirkwood Boulevard SW (EB Approach)

\section*{SHIVEIATTERY}

ARCHITECTURE + ENGINEERING

Looking North on Kirkwood Boulevard SW*

Looking South on Kirkwood Boulevard SW*

\section*{Crash Detail Report}
\begin{tabular}{cl}
\hline 2009537021 & 11/18/2009 07:43 \\
County:57 & City:Cedar Rapids
\end{tabular}\(\quad 7800\) BLK KIRKWOOD BLVD SW

Major Cause: Lost control
Roadway Type:Non-intersection: No special feature

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash: Rear-end
Surface Conditions: Wet
Light Conditions: Daylight
Weather Conditions: Rain
Drug/Alc Involved: none indicated
Property Damage: \$7000
Number of Vehicles: 3
\begin{tabular}{|l|}
\hline Unit 3 \\
North \\
Essentially straight \\
4 -tire light truck \\
15 \\
M \\
Normal \\
Lost control \\
not reported \\
none
\end{tabular}
\begin{tabular}{cl}
2010598592 & \(11 / 04 / 2010\) 07:57 \(8300 \quad\) BLK KIRKWOOD BLVD SW
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{cl}
\hline 2011621579 & \(03 / 11 / 2011\) 07:55 \\
County:57 & City:Cedar Rapids
\end{tabular}\(\quad\)\begin{tabular}{l}
KIRKWOOD BLVD SW
\end{tabular}

Major Cause: FTY from driveway
Roadway Type:Non-intersection: Business drive

Severity:Poss/Unk
Fatalities: 0
Major Injuries: 0
Minor Injuries: 0
Possible Injuries: 1
Unknown Injuries: 0

Manner of Crash: Broadside
Surface Conditions: Dry
Light Conditions: Daylight
Weather Conditions: Fog/smoke
Drug/Alc Involved: none indicated
Property Damage: \$12000
Number of Vehicles: 2
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & West & South & 0 \\
\hline Veh Action: & Essentially straight & Essentially straight & 0 \\
\hline Configuration: & Passenger car & Sport utility vehicle & 0 \\
\hline Driver Age: & 16 & 46 & 0 \\
\hline Driver Gender: & F & F & \\
\hline Driver Cond: & Normal & Normal & 0 \\
\hline Drivr Contr 1: & FTY from driveway & none & 0 \\
\hline Drivr Contr 2: & not reported & not reported & 0 \\
\hline Fixed Object: & none & none & 0 \\
\hline
\end{tabular}
\begin{tabular}{|cl|}
\hline 2011653676 & \(10 / 26 / 2011\) 15:15 \\
County:57 & City:Cedar Rapids
\end{tabular}\(\quad 8000\) BLK KIRKWOOD BLVD SW

Major Cause: Exceeded authorized speed
Roadway Type:Non-intersection: No special feature

Severity:Minor
Fatalities: 0
Major Injuries: 0
Minor Injuries: 1
Possible Injuries: 0
Unknown Injuries: 0

Manner of Crash: Non-collision

\section*{Surface Conditions: Dry}

Light Conditions: Daylight
Weather Conditions: Cloudy
Drug/Alc Involved: none indicated
Property Damage: \$14000
Number of Vehicles: 1
\begin{tabular}{|c|c|c|c|}
\hline & Unit 1 & Unit 2 & Unit 3 \\
\hline Init Trav Dir: & South & 0 & 0 \\
\hline Veh Action: & Essentially straight & 0 & 0 \\
\hline Configuration: & Passenger car & 0 & 0 \\
\hline Driver Age: & 27 & 0 & 0 \\
\hline Driver Gender: & M & & \\
\hline Driver Cond: & Normal & 0 & 0 \\
\hline Drivr Contr 1: & Exceeded speed limit & 0 & 0 \\
\hline Drivr Contr 2: & Lost control & 0 & 0 \\
\hline Fixed Object: & none & 0 & 0 \\
\hline
\end{tabular}

\section*{Crash Detail Report}
\begin{tabular}{ll}
\hline 2011654772 & 11/01/2011 20:00 \\
County:57 & City:Cedar Rapids
\end{tabular}\(\quad 7700\) BLK KIRKWOOD BLVD SW

Major Cause: Animal
Roadway Type:Non-intersection: No special feature
Severity:Minor Manner of Crash: Non-collision
Fatalities: \(0 \quad\) Surface Conditions: Dry
Major Injuries: \(0 \quad\) Light Conditions: Dark - roadway not lighted
Minor Injuries: \(1 \quad\) Weather Conditions: Partly cloudy
Possible Injuries: \(0 \quad\) Drug/Alc Involved:none indicated

\begin{tabular}{|cl|}
\hline 2014797336 & \(05 / 03 / 2014\) 08:49 \\
County:57 & City:Cedar Rapids
\end{tabular}\(\quad 8000\) KIRKWOOD BLVD SW

\begin{tabular}{|c|c|c|}
\hline Road Name & 2013 lowa DOT ADT & 2015 Shive-Hattery ADT \\
\hline Kirkwood Boulevard & 4090 & 6150 \\
\hline CCSD South Access Drive & - & 1700 \\
\hline
\end{tabular}
-Data unavailable

Intersection or Spot Benefit / Cost Safety Analysis Iowa DOT Office of Traffic \& Safety

County:
Linn
Prepared by: \(\qquad\) Shive-Hattery Date Prepared: Aug 4, 2015

Intersection: Kirkwood Boulevard and CCSD South Access Drive - Cedar Rapids, Iowa
Improvement
Proposed Improvement(s): Conversion to single-lane roundabout
Existing 2-Way stop with left-turn lanes on Kirkwood Boulevard approaches
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\$ 636,780} & \multicolumn{2}{|l|}{Estimated Improvement Cost, EC} & \multicolumn{2}{|r|}{20 Est. Improvement Life, years, Y} \\
\hline & & \multicolumn{2}{|l|}{Other Annual Cost (after initial year), AC} & 75 & Crash Reduction Factor (integer), CRF \\
\hline \multirow[t]{2}{*}{\$} & - & \multicolumn{2}{|l|}{Present Value Other Annual Costs, OC} & 4.0\% & Discount Rate (time value of \$), INT \\
\hline & & \(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\) & \$ & 636,780 & Present Value Cost, COST = EC + OC \\
\hline
\end{tabular}

\section*{Traffic Volume Data}

Source:
Shive-Hattery
2015 Date of traffic count

Daily Entering Vehicles by Approach (or AADT / 2)

1.8\% Projected Traffic Growth (0\%-10\%), G

7,850 Current Daily Entering Vehicles, DEV

2,865,250 Current Annual Entering Veh., AEV = DEV * 365
11,216 veh / day, Final Year DEV, FDEV
68.25 MEV, Total Million Entering Veh. Over life of Project, TMEV
\(T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{Y}\right) / 10^{6}\)

\section*{Crash Data}

Benefit / Cost Ratio
\[
\text { Benefit : Cost }=\$ 494,230 \quad: \quad \$ 636,780 \quad=\frac{0.78}{}: 1
\]

\title{
CIOWADOT \\ \\ Application for TRAFFIC SAFETY FUNDS
} \\ \\ Application for TRAFFIC SAFETY FUNDS
}

GENERAL INFORMATION
DATE: August 13, 2015
Location / Title of Project US 61 Turn Lanes at Coonhunter's Road
Applicant lowa DOT, District 6
Contact Person
Douglas Rick
Title Area Engineer
Complete Mailing Address PO Box 2626
Davenport, IA 52809
Phone \(\frac{563-391-4643}{\text { (Area Code) }}\)
E-Mail douglas.rick@dot.iowa.gov

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title
Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone
E-Mail \(\qquad\)
(Area Code)

\section*{PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:}

Application Type
Site Specific \(\boxtimes\)
\[
\begin{array}{rr}
\text { Traffic Control Device } & \square \\
\text { Safety Study } & \square
\end{array}
\]

Funding Amount

Total Project Cost
Safety Funds Requested
\$ \$170,000
\$ \$170,000

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local government(s). I understand the attached resolution(s) binds the participating local government(s) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.

I understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the lowa DOT, District 6

Signed:

Douglas L Rick
Typed Name

Attest:
Signature Date Signed

Typed Name

\section*{US 61 Turn Lanes at Coonhunter's Road}

\section*{Existing Conditions:}

The US 61/Coonhunter's Road "T" intersection is located one half mile east of the City of Blue Grass. US 61 is a rural 4-lane divided highway with gravel shoulders and a 65 mph speed limit. Coonhunter's Road is a paved Scott County road with gravel shoulders and a 45 mph speed limit. Coonhunter's Rd serves actively growing major rural subdivisions totaling over 300 parcels south of US 61.

There have been numerous crashes at this intersection resulting in many public contacts to the district 6 office and the district 6 Davenport field office. Some of these crashes involve traffic slowing down to make a turn onto Coonhunter's Road. The complaints received are asking for the lowa DOT to add adequate turn lanes so turning traffic can slow down without the fear of being rear-ended.

Currently southbound US 61 has a minimum length (\(150^{\prime}\)) left turn lane at Coonhunter's Road. There is no northbound US 61 right turn lane.

The 2014 average annual daily traffic of Coonhunter's Rd is 1810. This volume has increased an average of \(7 \%\) per year for the last eight years most likely due to the growing size of the subdivisions.

\section*{Proposed Concept:}

The district is proposing to provide full deceleration turn lanes for SB US 61 to SB Coonhunter's Rd by increasing the existing left turn lane 420' plus a 15:1 taper. And for NB US 61 to SB Coonhunter's Rd adding a right turn lane of \(540^{\prime}\) plus a 15:1 taper. The turn lane width will be \(12^{\prime}\) and will have \(6^{\prime}\) granular shoulders. The work is to be done within the existing right-of-way.

\section*{Safety Justification:}

There are 14 crash reports from June 2010 to June 2015. Of the 8 non-animal caused crashes, 7 involved vehicles swerving, losing control, following too close resulting, and/or rear-end collisions. Providing full deceleration turn lanes will make it possible to reduce this frequency of crashes.

One crash that created much attention to this intersection involved a semi-truck rear-ending a passenger car slowing down to make a right turn. Case number 2014-21377 dated 10/21/2014. The crash report showed minor injuries only; however is not what was recorded in the narrative
of the investigating officer report. The child that was trapped in the passenger vehicle was air lifted to the University of lowa hospitals for a skull fracture. In the benefit/cost safety analysis spreadsheet, I changed this from a minor injury to a major injury.

In reviewing the Crash Modification Factors Clearinghouse, it was concluded that a crash reduction factor (CRF) of 20 was about the average for adding left and right turn lanes. This results in a 2.12:1 benefit/cost ratio for adding these turn lanes.

\section*{Time Schedule}

This project is proposed for state fiscal year (FY) 2017 if possible, or otherwise FY 2018.

This project should be considered as a tie to the proposed paved shoulder project in this area. If state \(3 R\) funds are used for the shoulder project, the soonest we could get the work accomplished would be FY 2018 unless there is an opportunity to advance the project to FY 2017. Currently the district FY 2017 \(3 R\) program has no room to add this shoulder project.

The turn lane project could be done independently of the shoulder project in FY 2017 if necessary.

Grant approval: July 2016

Project development: Summer and fall of 2016

Project Letting: As early as winter 2016 (FY 2017); as late as July 2017 (FY 2018)

Project construction: Summer or fall 2017

Documet E

Doc. F

NB us 61

DOC.E

DOC.F

\(S B\) US 6!

Doc H

Analyst: DLR
Notes: Coonhunters Rd at US 61

DOC I

\(\begin{array}{ccccc}\text { D15309．2．} & & & \\ \text { COUNTY } & \text { TOWNSHIP } & \text { NODE } & \text { LOCATION } & \text { YEAR } \\ 82 & 12 & 0139 & 0991 & 2006\end{array}\)

(y)

\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)
\(*\)

品是品

PRINTER ID: TPRT003W PAGE 0001
CITY: BLUE GRASS
COUNIY: SCOTT
IURNING MOVEMENT SYSTEM
TRAFFIC COUNT SUMMARY
SINGLE UNIT TRUCKS

NA
no signals

\title{
Intersection or Spot Benefit / Cost Safety Analysis \\ lowa DOT Office of Traffic \& Safety
}

County: Scott
Prepared by: \(\qquad\)
Douglas Rick
Date Prepared
Jul 31, 2015
Intersection: US 61 at Coonhunter's Road

\section*{Improvement}

Proposed Improvement(s): Add a right turn deceleration lane on NB US 61;
And extend an existing left turn storage lane into a full deceleration lane on SB US 61.
\$ 170,000 Estimated Improvement Cost, EC
20 Est. Improvement Life, years, Y Other Annual Cost (after initial year), AC

20 Crash Reduction Factor (integer), CRF
\$ - Present Value Other Annual Costs, OC \(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)
4.0\% Discount Rate (time value of \$), INT
\(\$ \quad 170,000\) Present Value Cost, COST = EC + OC

\section*{Traffic Volume Data}

Source: Iowa DOT 2014
Daily Entering Vehicles by Approach (or AADT / 2)

5,914,825 Current Annual Entering Veh., AEV = DEV * 365
24,080 veh / day, Final Year DEV, FDEV
143.71 MEV, Total Million Entering Veh. Over life of Project, TMEV
2.0\% Projected Traffic Growth (0\%-10\%), G

16,205 Current Daily Entering Vehicles, DEV
\(T M E V=\frac{A E V}{-G}\left(1-\left(\frac{1+G}{1}\right)^{\gamma}\right) / 10^{6}\)
Crash Data
\begin{tabular}{c}
2011 \\
\hline 12 \\
\hline 0 \\
3 \\
\hline
\end{tabular}

First full year --> \(\qquad\) Last full year
5.0 years, Time Period, T Additional months values as of May 2014 Fatal Crashes
 0 Fatalities @ 1 Major Injuries @ \$4,500,000 \$ \$325,000 \$ 325,000 2 Minor Injuries @ \(0 \quad\) Possible Injuries @ \$65,000 \$ 130,000 (assumed cost per crash) \$35,000 \$ -
11
Injury Crashes Property Damage Only
-OR- enter all Property Costs of all crashes:
Total \$ Loss, LOSS \$ 558,600
2.80 Current Crashes \(/\) Year, \(A A=T A / T\)
0.47 Crashes / MEV, Crash Rate, CR
\$ 39,900 Cost per Crash, AVC = LOSS / TA
68.0 Total Expected Crashes, TECR \(=\) CR \(\times\) TMEV
0.56 Crashes Avoided First Year AAR = AA x CRF / 100
\$ 359,552
\(C R=T A \times 10^{\wedge} 6 /(D E V \times 365 \times T)\)
Present Value of Avoided Crashes, BENEFIT
\$ 22,344 Crash Costs Avoided in First Year, AAR x AVC
13.6 Total Avoided Crashes, TECR x CRF/ 100
\[
B E N .=\frac{A V C \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)
\]

\section*{Benefit / Cost Ratio}
\[
\text { Benefit : Cost }=\$ 359,552: \$ 170,000 \quad=2.12 \text { : }
\]

\section*{CIOWADOT}

\section*{Application for TRAFFIC SAFETY FUNDS}
\begin{tabular}{|c|c|}
\hline GENERAL INFORMATION & DATE: August 13, 2015 \\
\hline Location / Title of Project & US 61 paved shoulders, Blue Grass to Davenport \\
\hline Applicant lowa DOT, & istrict 6 \\
\hline Contact Person Douglas & Rick Title Area Engineer \\
\hline Complete Mailing Address & PO Box 2646 \\
\hline & Davenport, IA 52809 \\
\hline Phone 563-391-4643 & E-Mail douglas.rick@dot.iowa.gov \\
\hline (Area Code) & \\
\hline
\end{tabular}

If more than one highway authority is involved in this project, please indicate and fill in the information below (use additional sheets if necessary).

Co-Applicant(s) \(\qquad\)
Contact Person \(\qquad\) Title \(\qquad\)
Complete Mailing Address \(\qquad\)
\(\qquad\)

Phone \(\qquad\) E-Mail \(\qquad\)

PLEASE COMPLETE THE FOLLOWING PROJECT INFORMATION:

Application Type
\begin{tabular}{rr}
Site Specific & \(\boxed{ }\) \\
Traffic Control Device & \(\square\) \\
Safety Study & \(\square\)
\end{tabular}

Funding Amount
Total Project Cost
Safety Funds Requested
\$ \$1,500,000
\(\$ \$ 500,000\)

\section*{APPLICATION CERTIFICATION FOR LOCAL GOVERNMENT}

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local governments). I understand the attached resolutions) binds the participating local governments) to assume responsibility if any additional funds are committed, and to ensure maintenance of any new or improved city streets or secondary roads.
\(I\) understand that, although this information is sufficient to secure a commitment of funds, a firm contract between the applicant and the Department of Transportation is required prior to the authorization of funds.

Representing the Iowa DOT, District 6

Signed:

Attest:

Signature Date Signed

Typed Name

\section*{US 61 Paved Shoulders, Blue Grass to Davenport}

\section*{Existing Conditions:}

US 61 is a four lane divided highway between Blue Grass and Davenport. The project area is approximately four miles in length and was reconstructed as a four lane highway in 1995. The existing shoulders are predominantly granular with the exception of the \(1-280\) interchange area which is curbed. The right lane was paved \(14^{\prime}\) wide with portland cement concrete pavement so there exists a \(2^{\prime}\) portion of the outside shoulder that is paved. This is a 65 mph roadway for the westerly 2.2 miles. It reduces to 55 mph for the next 0.5 miles. And ultimately to 50 mph for the last 1.3 miles that is within the \(1-280\) interchange area. The average annual daily traffic for this project area is \(15,300,13 \%\) of which are trucks.

This section of US 61 was included in a FHWA/CTRE/DOT safety audit a number of years ago. One of the recommendations of this audit was to pave the shoulders.

This is the last section of US 61 between Muscatine and Dubuque that has granular shoulders.

\section*{Proposed Concept:}

Partially pave the inside and outside shoulders \(4^{\prime}\) in width in both directions. \(6^{\prime \prime}\) of hot mix asphalt paved shoulders is proposed. This would include some full width shoulders at county road intersections. Also include inside and outside rumble strips in the 65 mph and 55 mph speed limit areas.

\section*{Safety Justifications:}

In the \(31 / 2\) year period from January 1, 2012 through June 30, 2015, there were 73 reported crashes within the project area. This excludes the l-280 interchange area. 59 out of 73 of these crashes were non-animal related. Of these 59 at least 19 involved vehicles losing control, swerving, and/or running off the road. Some of these crashes could have been avoided if there were paved shoulders to aid in the recovery of vehicle control.
US 61 paved shoulders from Blue Grass ECL to Utah Ave in Davenport
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & & & \(6^{\prime \prime}\) deep & 6" HMA & 145\#/CF \\
\hline & length, ft & paved sh width, ft & gran sh width, ft. & cl 13, cy & paved shoulder, SY & granular shoulder, tons \\
\hline BG ECL to \(w\) of Y-48 & 15600 & 16 & 16 & 4622 & 27733 & 9048 \\
\hline \multirow[t]{2}{*}{w of \(Y-48\) to \(w\) of 280 EB ramp} & 4100 & 8 & 12 & 607 & 3644 & 1784 \\
\hline & 600 & 10 & 1 & 111 & 667 & 22 \\
\hline \multirow[t]{3}{*}{estimate of unit cost for 2017} & 20300 & & & 5341 & 32044 & 10853 \\
\hline & & & & \$20 & \$25 & \$20 \\
\hline & & & & & & \\
\hline total cost & & & & \$106,815 & \$801,111 & \$217,065 \\
\hline
\end{tabular}
plus 30\% (pavement marking, traffic control, mobilization, rumble strips)
SAY:

\section*{Time Schedule}

This project is proposed for state fiscal year (FY) 2017 if possible, or otherwise FY 2018.
This project should be considered as a tie to the proposed US 61/Coonhunter's Road turn lane project. If state \(3 R\) funds are used for this shoulder project, the soonest we could get the work accomplished would be FY 2018 unless there is an opportunity to advance the project to FY 2017. Currently the district FY 2017 3R program has no room to add this shoulder project.

The turn lane project could be done independently of the shoulder project in FY 2017 if necessary.

Grant approval: July 2016
Project development: Summer and fall of 2016
Project Letting: As early as winter 2016 (FY 2017); as late as July 2017 (FY 2018)
Project construction: Summer or fall 2017

Looking east near beginning of project

Looking east near 95 th ave

DOC F

Lucking cast
near 100 th Ave

Looking east
near 110 th ave \((K-48)\)

Dec

Looking east just west of EB I280 ramps

Looking east
just east of I 280 wB ramps
Towards Utah Ave
(end of Project)

\section*{Doc H}

Abbreviated Crash Report
CMAT Version 3.4.0
\begin{tabular}{|c|c|c|c|c|c|}
\hline Date & DOT Case \# & Agency Case \# & City & Crash Sev. & Literal Description \\
\hline 01/11/2012 & 2012674677 & 2012001823 & Davenport & PDO & UTAH AVE AND 118 AVE AND SB/WB US \(0061 / 140\) ST \\
\hline 02/13/2012 & 2012672500 & 12-3035 & & PDO & 118 TH ST UTAH AVE and NB/EB US \(0061 / 140 \mathrm{ST}\) and 118 AVE \\
\hline 03/18/2012 & 2012678059 & 2012-5225 & Blue Grass & PDO & SB/WB US 0061 / US 61 \\
\hline 04/11/2012 & 2012681208 & 12-7119 & & PDO & SB/WB US 0061 / 140 ST and Y048 / 110 AVE \\
\hline 04/27/2012 & 2012683400 & 12-8237 & & PDO & NB/EB US 0061 / 140 ST \\
\hline 06/06/2012 & 2012689342 & 12-10826 & & PDO & ERONTAGE RD and SB/WB US \(0061 / 140\) ST \\
\hline 07/05/2012 & 2012693275 & 12-13122 & & PDO & FRONTAGE RD and SB/WB US 0061 / 140 ST \\
\hline 07/09/2012 & 2012693719 & 12-13387 & & Minor & COONHUNTER S RD \\
\hline 07/09/2012 & 2012693720 & 12-13394 & & PDO & 100 AVE and NB/EB US 0061 / 140 ST \\
\hline 07/10/2012 & 2012693721 & 12-13476 & & PDO & NB/EB US 0061 / US 61 \\
\hline 07/26/2012 & 2012695990 & 12-14579 & & Poss/Unk & Y048 / 110 AVE \\
\hline 08/06/2012 & 2012697558 & 12-15447 & & PDO & NB/EB US 0061 / US 61 \\
\hline 09/06/2012 & 2012701661 & 12-17665 & & PDO & SB/WB US 0061 / US 61 \\
\hline 10/03/2012 & 2012708982 & 2012054196 & & Major & 1/2 E OF 110TH AVE ON HWY 61 SB \\
\hline 10/25/2012 & 2012709424 & 12-20972 & & PDO & SB/WB US 0061 / 140 ST and Y048 / 110 AVE \\
\hline 10/28/2012 & 2012709545 & 12-21136 & & PDO & SB/WB US 0061 / 140 ST and Y048 / 110 AVE \\
\hline 11/04/2012 & 2012710704 & 12-21597 & & PDO & NB/EB US 0061 / US 61 \\
\hline 11/25/2012 & 2012714095 & 12-23051 & & PDO & NB/EB US 0061 / 140 ST \\
\hline 11/27/2012 & 2012714311 & 12-23132 & & PDO & 118 TH ST UTAH AVE and NB/EB US 0061 / 140 ST and 118 AVE \\
\hline 12/13/2012 & 2012716923 & 2012-100125 & Davenport & PDO & UTAH AVE and US 0061 / W RIVER DR \\
\hline 12/17/2012 & 2012717236 & 12-24484 & & PDO & NB/EB US 0061 / 140 ST \\
\hline 01/24/2013 & 2013723022 & 2013-5740 & Davenport & PDO & UTAH AVE and US 0061 / W RIVER DR \\
\hline 01/27/2013 & 2013724055 & 2013-1517 & & PDO & NB/EB US 0061 / 140 ST \\
\hline 01/30/2013 & 2013724056 & 2013-1717 & & Poss/Unk & SB/WB US 0061 / 140 ST \\
\hline 02/22/2013 & 2013740795 & & Buffalo & PDO & SB/WB US 0061 / 140 ST measuring 1500 Feet West from US 0061 / 140 ST \\
\hline 03/21/2013 & 2013731419 & 2103-4807 & Davenport & Minor & SB/WB US 0061 / 140 ST and Y048 / 110 AVE \\
\hline 03/23/2013 & 2013731742 & 13-4983 & & PDO & NB/EB US 0061 / 140 ST \\
\hline 03/29/2013 & 2013732905 & 2013-5358 & & PDO & FRONTAGE RD and NB/EB US 0061 / 140 ST \\
\hline 03/30/2013 & 2013732901 & 13-5474 & & Poss/Unk & SB/WB US 0061 / 140 ST \\
\hline 04/03/2013 & 2013733624 & 13-5744 & & PDO & NB/EB US 0061 / US 61 \\
\hline 04/07/2013 & 2013734178 & 13-6145 & & Major & NB/EB US 0061 / 140 ST \\
\hline 04/14/2013 & 2013735363 & 2013-6600 & & Minor & SB/WB US 0061 / 140 ST \\
\hline
\end{tabular}

\section*{Abbreviated Crash Report}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{} \\
\hline Date & DOT Case \# & Agency Case \# & City & Crash Sev. & Literal Description & \\
\hline 02/14/2015 & 2015845844 & 2015-3113 & & PDO & US 61/140 ST & \\
\hline 02/23/2015 & 2015847339 & 2015-3716 & & Poss/Unk & Y048/110 AVE AND US 61/140 ST & \\
\hline 03/30/2015 & 2015852474 & 2015-6387 & Blue Grass & Major & US 61/140 ST & \\
\hline 04/27/2015 & 2015857217 & 2015022759 & & PDo & HWY 61 AT 110TH AVE WB & \\
\hline 05/24/2015 & 2015860353 & 2015-10570 & Davenport & PDO & Y048/110 AVE AND US 61/140 ST & \\
\hline 06/02/2015 & 2015861904 & 2015-11298 & Blue Grass & PDO & US 61 & \\
\hline 06/14/2015 & 2015863740 & 2015-12309 & & PDO & Y048/110 AVE AND US 61/140 ST & \\
\hline 06/16/2015 & 2015864162 & 15-12410 & & PDO & Y048/110 AVE AND US 61/140 ST & \\
\hline 06/19/2015 & 2015866495 & 15-12627 & & PDO & US 61/140 ST AND US 61 AND COONHUNTER S RD & \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Selection Filter: \\
(\((\) YEAR \(=2012\) or \(\mathrm{YEAR}=2013\) or \(\mathrm{YEAR}=2014\) or \(\mathrm{YEAR}=2015)\))
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Analyst: DLR} & \multicolumn{4}{|l|}{Notes: BG to Utah (gap I-280 interchange)} & \\
\hline
\end{tabular}

\section*{Abbreviated Crash Report}

CMAT Version 3.4.0
Report Version

Date DOT Case \# Agency Case \#
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{07/09/2012 07:10} \\
\hline & 2012693719 & 12-13387 & \\
\hline \multirow[t]{2}{*}{07/26/2012} & 11:16 & & \\
\hline & 2012695990 & 12-14579 & \\
\hline \multirow[t]{2}{*}{10/03/2012} & 22:35 & & \\
\hline & 2012708982 & 2012054196 & \\
\hline \multirow[t]{2}{*}{01/30/2013} & 15:48 & & \\
\hline & 2013724056 & 2013-1717 & \\
\hline \multirow[t]{2}{*}{03/21/2013} & 00:13 & & \\
\hline & 2013731419 & 2103-4807 & Davenport \\
\hline \multirow[t]{2}{*}{03/30/2013} & 14:54 & & \\
\hline & 2013732901 & 13-5474 & \\
\hline \multirow[t]{2}{*}{04/07/2013} & 22:53 & & \\
\hline & 2013734178 & 13-6145 & \\
\hline \multirow[t]{2}{*}{04/14/2013} & 04:43 & & \\
\hline & 2013735363 & 2013-6600 & \\
\hline \multirow[t]{2}{*}{05/18/2013} & 12:45 & & \\
\hline & 2013741202 & 2013028108 & \\
\hline \multirow[t]{2}{*}{06/16/2013} & 11:36 & & \\
\hline & 2013744340 & 13-00010951 & \\
\hline \multirow[t]{2}{*}{06/19/2013} & 08:29 & & \\
\hline & 2013744996 & 2013-11144 & \\
\hline \multirow[t]{2}{*}{08/21/2013} & 20:41 & & \\
\hline & 2013754413 & 13-16047 & \\
\hline \multirow[t]{2}{*}{11/23/2013} & 23:30 & & \\
\hline & 2013769654 & 2013-22575 & \\
\hline \multirow[t]{2}{*}{01/07/2014} & 20:41 & & \\
\hline & 2014780205 & 2014001684 & \\
\hline \multirow[t]{2}{*}{01/28/2014} & 12:22 & & \\
\hline & 2014785413 & 2014-1840 & \\
\hline \multirow[t]{2}{*}{02/17/2014} & 11:24 & & \\
\hline & 2014789636 & 2014-3217 & \\
\hline \multirow[t]{2}{*}{09/12/2014} & 10:40 & & \\
\hline & 2014817908 & 2014053053 & \\
\hline \multirow[t]{2}{*}{09/25/2014} & 11:25 & & \\
\hline & 2014819966 & 14-19670 & \\
\hline \multirow[t]{2}{*}{10/07/2014} & 15:47 & & \\
\hline & 2014820576 & 14-20377 & \\
\hline \multirow[t]{2}{*}{10/21/2014} & 08:08 & & \\
\hline & 2014822822 & 2014-21377 & \\
\hline \multirow[t]{2}{*}{10/22/2014} & 17:12 & & \\
\hline & 2014823545 & 2014-21454 & \\
\hline \multirow[t]{2}{*}{02/05/2015} & 04:51 & & \\
\hline & 2015843852 & 2015-2370 & Davenport \\
\hline \multirow[t]{2}{*}{02/23/2015} & 07:29 & & \\
\hline & 2015847339 & 2015-3716 & \\
\hline 03/30/2015 & 21:37 & & \\
\hline
\end{tabular}

Literal Description
Crash Sev.

2015852474 Major \(2015-6387\) Ulue Grass 61/140 ST
Selection Filter:
\(((\operatorname{CSEVERITY}\) <> 5)) AND (\((Y E A R=2012\) or YEAR \(=2013\) or YEAR \(=2014\) or YEAR \(=2015))\)

\section*{Notes:}

\section*{Analyst:}

DLR
BG to Utah (gap I-280 interchange)

Back｜Introduction｜Explanation of headings｜PDF for all 2014 routes｜Cartography and Traffic Data home
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 步 } \\
& \text { 品 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
2014 \\
Primary Route Section Description
\end{tabular}} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Annual Average Daily Traffic} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Cars， Vans and Pickups} & \multirow[t]{2}{*}{} & \multicolumn{8}{|l|}{ehicle Classification Distribution of Annual Average Daily Traffic \(\qquad\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
A \\
V \\
\\
\\
\text { Ver }
\end{gathered}
\]} \\
\hline & & & & & & & & 为 & & \[
\] & 4 or more Axle & \[
\begin{aligned}
& 4 \text { or } \\
& \text { less }
\end{aligned}
\]
Axles & Tru \(\frac{3}{2}\) & ucks 6 or more Axles & ultiple railer & \\
\hline 61 & \multicolumn{16}{|l|}{82 SCOTT COUNTY} \\
\hline 61 & OAK LANE INTERCHANGE & M & 0.398 & 10800 & 60 & 9041 & 1699 & 66 & 302 & 68 & 7 & 113 & 1054 & 39 & 51 & \\
\hline 61 & EAST－NORTH EAST－SOUTH RAMP & M & 0.209 & 430 & 3 & 385 & 42 & 3 & 14 & 3 & 0 & 2 & 18 & 1 & 1 & \\
\hline 61 & NORTH－EAST SOUTH－EAST RAMP & M & 0.225 & 470 & 3 & 411 & 56 & 4 & 19 & 4 & 0 & 3 & 24 & 1 & 1 & \\
\hline 61 & WEST－NORTH WEST－SOUTH RAMP & M & 0.292 & 450 & 3 & 413 & 34 & 3 & 15 & 3 & 0 & 1 & 10 & 0 & 0 & \\
\hline 61 & NORTH－WEST SOUTH－WEST RAMP & M & 0.293 & 520 & 3 & 474 & 43 & 2 & 8 & 2 & 0 & 3 & 26 & 1 & 1 & \\
\hline 61 & MAYNE STREET INTERCHANGE & M & 1.513 & 10800 & 60 & 9054 & 1686 & 63 & 289 & 65 & 7 & 113 & 1059 & 39 & 51 & 1. \\
\hline 61 & EAST－NORTH EAST－SOUTH RAMP & M & 0.265 & 1900 & 12 & 1810 & 78 & 11 & 48 & 11 & 1 & 1 & 6 & 0 & 0 & \\
\hline 61 & NORTH－EAST SOUTH－EAST RAMP & M & 0.246 & 2080 & 13 & 1978 & 89 & 13 & 59 & 13 & 1 & 0 & 3 & 0 & 0 & \\
\hline 61 & WEST－NORTH WEST－SOUTH RAMP & M & 0.272 & 80 & 0 & 58 & 21 & 2 & 10 & 2 & 0 & 1 & 6 & 0 & 0 & \\
\hline 61 & NORTH－WEST SOUTH－WEST RAMP & M & 0.229 & 90 & 1 & 75 & 14 & 1 & 5 & 1 & 0 & 1 & 6 & 0 & 0 & \\
\hline 61 & EAST LIMITS OF BLUE GRASS & M & 0.338 & 15300 & 88 & 13215 & 1997 & 101 & 463 & 104 & 11 & 118 & 1107 & 40 & 53 & \\
\hline 61 & INTERSECTION CO RD Y48 & R & 3.143 & 15300 & 88 & 13215 & 1997 & 101 & 463 & 104 & 11 & 118 & 1107 & 40 & 53 & 4 \\
\hline 61 & INTERSECTION 118TH AVE & R & \[
0.506 y
\] & \[
17700
\] & 102 & 15388 & 2210 & 132 & 608 & 136 & 14 & 118 & 1107 & 40 & 53 & \\
\hline 61 & \begin{tabular}{l}
WEST LIMITS OF \\
DAVENPORT
\end{tabular} & R & 0.066 & 18000 & 104 & 15636 & 2260 & 140 & 642 & 144 & 15 & 118 & 1107 & 40 & 53 & \\
\hline
\end{tabular}

Dock

NA
no signals proposed

\section*{Road Segment Benefit / Cost Safety Analysis} lowa DOT Office of Traffic \& Safety

County: Scott

Prepared by: \(\qquad\) Date Prepared: \(\qquad\) Aug 3, 2014

Location: US 61 from the ECL of Blue Grass to Utah Ave in Davenport

\section*{Improvement}

Proposed Improvement(s): Partially pave existing granular shoulders.
Pave 4' wide all shoulders on this 4-lane divided highway.
\$1,500,000 Estimated Improvement Cost, EC
\$ - Other Annual Cost (after initial year), AC
\$ - Present Value Other Annual Costs, OC
\(O C=\frac{A C}{I N T}\left(1-\frac{1}{(1+I N T)^{Y}}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Traffic Volume Data} \\
\hline Source: & \multicolumn{2}{|l|}{lowa DOT traffic data} & & 2014 & Date of traffic count \\
\hline \multicolumn{4}{|c|}{Two-way} & & \\
\hline Length (mi.) & veh/day & Description & 64,144 & Current V & Miles / Day, VM \\
\hline 3.14 & 15,300 & ECL BG to Y48 & 95,315 & End of Life & h. Miles / Day \\
\hline 0.51 & 17,700 & & 23,412,633 & Current Ve & Miles / Year, AM \\
\hline 0.304 & 18,000 & & 568,865,402 & Total Proje & Veh. Miles Over \\
\hline 0.201 & 8,100 & & & Life of P & ect, TVMT \\
\hline \(\begin{array}{r}4.15 \\ 2.0 \% \\ \hline\end{array}\) & miles tot
Projected & d Traffic Growth & & TVMT & \(\left(1-\left(\frac{1+G}{1}\right)^{Y}\right)\) \\
\hline
\end{tabular}

20.86 Current Crashes / Year, AA \(=T A / T\)
\$ 53,496 Cost per Crash, AVCR = LOSS / TA
506.8 Total Expected Crashes, TCR \(=\) CR \(\times\) TVMT/10^8
7.72 Crashes Avoided First Year AAR = AA \(\times\) CRF / 100
\(\$ 412,835\) Crash Costs Avoided in First Year, AAR x AVCR
187.5 Total Avoided Crashes, TCR \(\times\) CRF/ 100
89.1 Crashes / HMVM, Crash Rate, CR \(\mathrm{CR}=\mathrm{TA} \times 10^{\wedge} 8 /(\mathrm{AM} \times \mathrm{T})\)
\(\$ 6,643,203\) Present Value of Avoided Crashes, BENEFIT
\(B E N .=\frac{A V C R \times A A R}{(I N T-G)}\left(1-\left(\frac{1+G}{1+I N T}\right)^{Y}\right)\)

\section*{Benefit / Cost Ratio}

Benefit : Cost \(=\$ 6,643,203: \$ 1,500,000\)
\(=\)
4.43```

[^0]: Foth Infrastructure and Environment, LLIC
 8191 Birchwood Coutt, Suite L
 Johnston, Iowa 50131
 Phone: (5t5) 254-1393
 Fax: (515) 254-1642

[^1]: $1 / 26 / 2015$

[^2]: * This does not include any right-of-way acquisition

[^3]: Signal Warrant Study- MLK \& Prospect
 Page 5

[^4]: 券券 2007001342 2007003076
 2097003076 2007009203 2007004203
 粷咅
 है
 总倉䓵曷至鿖总商
 总
 8 4
 $\frac{1}{3}$
 8
 8
 黄
 흏
 है
 है E
 E
 E
 E
 5

 ह
 ह
 8
 8
 8
 g
 劳
 8 6
 8
 8
 8 2000000657苟
 骨
 苟雾穴 $\frac{8}{8}$
 $\frac{8}{8}$

 8 \begin{tabular}{c}
 8

 8

 0

 0

 8

 0

 \hline

 关

 荅

 \hline
 \end{tabular}交

 8
 0
 훔
 0
 0
 $\frac{3}{3}$
 8
 8
 8
 8 3
 8
 8
 8
 8营 －
 营
 8
 8
 8
 8会会
 8
 8
 8
 8

 8 | 4 |
 | :---: |
 | 号 |
 | 号 |名咅

 8
 8 응
 会
 弇

