Manchester Municipal Airport

Pavement Classification Number Report

USING AIRCRAFT METHOD

PREPARED BY

Applied Pavement Technology, Inc. 115 West Main Street, Suite 400 Urbana, Illinois 61801 (217) 398-3977 www.appliedpavement.com

JANUARY 2020

MANCHESTER MUNICIPAL AIRPORT PAVEMENT CLASSIFICATION NUMBER REPORT USING AIRCRAFT METHOD

PREPARED FOR:

IOWA DEPARTMENT OF TRANSPORTATION AVIATION BUREAU

PREPARED BY:

APPLIED PAVEMENT TECHNOLOGY, INC.

January 2020

The preparation of this document was financed in part through an Airport Improvement Program grant from the Federal Aviation Administration (Project Number 3-19-0000-024-2018) as provided under Section 505 of the Airport and Airway Improvement Act of 1982, as amended. The contents do not necessarily reflect the DOT's official views or the policy of the FAA. Acceptance of this report by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted therein nor does it indicate the proposed development is environmentally acceptable in accordance with appropriate public laws.

TABLE OF CONTENTS

Introduction	1
Pavement Condition and Construction Summary	2
ACN–PCN Overview	4
ACNs	4
PCNs	6
General Overload Guidance	6
PCN Determination—Using Aircraft Method	8
Summary	. 10
References	. 11

LIST OF TABLES

Table 1. PCI results	2
Table 2. Pavement cross section information	3
Table 3. ACNs for common aircraft by pavement type and subgrade category (not	
specific to this airport).	5
Table 4. Traffic data	8
Table 5. PCN results and corresponding allowable aircraft weights	8

APPENDIXES

Appendix A PCN Section Identification Ma	oA-1
--	------

INTRODUCTION

As part of the airport pavement management system (APMS) update for the Iowa Department of Transportation, Aviation Bureau (Iowa DOT), Applied Pavement Technology, Inc. (APTech) determined Pavement Classification Numbers (PCNs) for runway pavements at Manchester Municipal Airport and the other airports included in the 2018 phase of the APMS update. The PCNs established as part of this project will help decision-makers from the Iowa DOT, the Federal Aviation Administration (FAA), and Manchester Municipal Airport determine what aircraft should (or should not) be able to safely use the airport without causing damage to the valuable runway infrastructure. Taxiway and apron pavements were not evaluated as part of this project and might have varying structural capacities.

In order to determine PCNs using a technical approach, pavement cross section, subgrade strength, and aircraft traffic data are required. The Iowa DOT, through collaboration with the FAA, provided design records when available. However, this information was not available for Runway 18/36, and pavement testing to obtain pavement or subgrade layer properties was not included as part of this project. As an alternative approach, the Using Aircraft Method is applied to determine runway PCNs where required inputs for a technical calculation are not available.

Through a review of publicly available data and input from Airport Managers, APTech compiled representative traffic data for consideration in determining the associated PCN. The largest Aircraft Classification Number (ACN) associated with an aircraft regularly using the facility is generally reported as the PCN, assuming there is not significant load-related damage, per the Using Aircraft Method outlined in FAA Advisory Circular 150/5335-5C, *Standardized Method of Reporting Airport Pavement Strength—PCN*. ACNs were determined using the FAA's COMFAA 3.0 software. Additional considerations are presented under the PCN Determination heading in this report.

The pavement sectioning is consistent with the nomenclature identified as part of the APMS update and used for Pavement Condition Index (PCI) inspections, where sections are defined by attributes such as cross section, construction history, traffic use, and overall performance. The map included in Appendix A identifies the pavement that was analyzed at Manchester Municipal Airport.

This report includes a general overview of the Aircraft Classification Number–Pavement Classification Number (ACN–PCN) system; relevant information regarding the PCI results, especially regarding load-related distress; inputs for determining PCNs; and the resulting PCNs.

PAVEMENT CONDITION AND CONSTRUCTION SUMMARY

As part of the Iowa DOT statewide APMS project, APTech visually assessed the pavement using the PCI procedure. This procedure is described in FAA Advisory Circular 150/5380-6C, *Guidelines and Procedures for Maintenance of Airport Pavements*, FAA Advisory Circular 150/5380-7B, *Airport Pavement Management Program (PMP)*, and ASTM D5340-12, *Standard Test Method for Airport Pavement Condition Index Surveys*, and is supported by the PAVER pavement management software. Detailed information regarding the PCI procedure and results can be found in the Pavement Management Report for this airport.

Pavement condition data are not directly used in the structural analysis; however, the results should be considered when determining the PCN to publish. For example, a pavement exhibiting a significant amount of load-related distress provides a strong indication that the past traffic has exceeded the limits the structure can support. The following distresses are considered load-related:

- Hot-mix asphalt (HMA)-surfaced pavement
 - Alligator (fatigue) cracking
 - Rutting
- Portland cement concrete (PCC) pavement
 - Corner break
 - Longitudinal, transverse, and diagonal (LTD) cracking
 - Shattered slab

For reference, the percent of the PCI deduct caused by load-related distress and the specific loadrelated distress(es) recorded during the most recent pavement inspection at Manchester Municipal Airport are summarized in Table 1.

Branch ¹	Section ¹	Surface Type ²	Last Construction Date	2018 PCI	Deduct due to Load-Related Distress, %	Load-Related Distress Observed ³
R18C2	01	AAC	11/1/2000	73	22	Alligator Cracking
R18C2	02	AAC	11/1/2000	65	10	Alligator Cracking

Table 1. PCI results.

¹See Figure A-1 located in Appendix A for the location of the branch and section.

 ^{2}AC = asphalt cement concrete; AAC = asphalt overlay on AC; PCC = portland cement concrete; APC = asphalt overlay on PCC.

³Distress types are defined by ASTM D5340-12.

Runway 18/36 consists of two sections, where Section 02 was an extension at the 18 approach end. Both sections were overlaid with HMA pavement in 2000. Load-related distresses were present in both sections. Detailed work history information for this pavement section is entered in the APMS PAVER database. A summary of available construction information is presented in Table 2.

Branch ¹	Section ¹	Construction Date	Layer Thickness, in	Material Type
R18C2	01	11/1/2000	Unknown	HMA ²
R18C2	01	11/1/1968	Unknown	HMA ²
R18C2	02	11/1/2000	Unknown	HMA^2
R18C2	02	11/1/1998	Unknown	HMA ²

Table 2. Pavement cross section information.

¹See Figure A-1 located in Appendix A for the location of the branch and section.

²In addition to the HMA layer, information regarding any underlying base layers is unknown. The airport engineer informed APTech that the cross sections might consist of 6" HMA on 8" aggregate base, but he was not certain. Furthermore, subgrade strength information is unknown.

ACN-PCN OVERVIEW

The ACN–PCN system of reporting pavement strength was developed by the International Civil Aviation Organization (ICAO). Because the United States is a member of this organization, the FAA is obligated to adhere to this system and provides guidance to comply with the ICAO standards.

The ACN–PCN procedure is structured so that a pavement with a given PCN can support an aircraft that has an ACN equal to or less than the PCN. Likewise, the pavement cannot, according to the procedure, handle frequent loadings from an aircraft with an ACN exceeding the PCN. Some infrequent overloads are allowed in accordance with the general overload guidance, which is presented within this report. Aircraft operators are required to obtain permission to use a facility when their aircraft's ACN exceeds the published PCN.

ACNs

According to FAA Advisory Circular 150/5335-5C, the ACN is defined as a number that expresses the relative effect of an aircraft at a given weight on a pavement structure for a specified standard subgrade strength. The ACN can be calculated for any operating weight. Higher ACNs indicate an aircraft has a more severe effect on the pavement, while lower values indicate a less severe effect. ACNs are reported by pavement type for each subgrade strength category. Stronger subgrade support conditions (e.g., granular subgrade soils with higher k-values or California Bearing Ratios [CBRs]) correspond to lower ACNs as compared to weaker subgrade support conditions. The ACN has a minimum value of 0 and no upper limit.

A list of ACNs for common aircraft is shown in Table 3 to assist decision-makers with determining whether the analyzed pavements can realistically support aircraft that might not be in the traffic mix. The listed ACNs were determined using the FAA's COMFAA software and are presented for each subgrade strength category for both flexible and rigid pavement types; the presented ACNs are for the specified aircraft weight and tire pressure. For a given aircraft, the ACNs will decrease as aircraft weight decreases. It is also worth noting that tire pressure influences the ACNs determined for specific aircraft. For example, given two aircraft with similar weights and gear configurations (for a specific pavement type and subgrade strength category), the aircraft with the lower tire pressure will have a lower ACN, indicating that its demand on a pavement is less than a similar aircraft with a higher tire pressure.

Aircraft	Weight, lbs	Tire Pressure, psi	Gear Type ¹	ACN: Flexible Pavement, Subgrade Category A	ACN: Flexible Pavement, Subgrade Category B	ACN: Flexible Pavement, Subgrade Category C	ACN: Flexible Pavement, Subgrade Category D	ACN: Rigid Pavement, Subgrade Category A	ACN: Rigid Pavement, Subgrade Category B	Pavement, Subgrade	ACN: Rigid Pavement, Subgrade Category D
Chk.Six-PA-32	3,400	50	S	1	1	1	1	1	1	1	1
Seneca-II	4,570	55	S	1	1	2	2	1	1	1	1
Aztec-D	5,200	46	S	1	1	2	2	1	2	2	1
Baron-E-55	5,424	56	S	1	1	2	2	2	2	2	2
Navajo-C	6,536	66	S	2	2	2	3	2	2	2	2
GrnCaravanCE208B	8,750	75	S	2	3	3	3	3	3	3	3
Air Tractor 502	9,000	98	S	3	3	4	4	3	3	3	3
Citation 525	10,500	98	S	4	4	4	4	4	4	4	4
Air Tractor 802	14,200	130	S	5	6	6	6	6	6	6	6
Citation-550B	15,000	130	S	6	6	6	6	6	6	6	6
Citation-V	16,500	130	S	6	7	7	7	6	7	7	7
Sabreliner-40	19,035	185	S	8	8	8	8	8	8	8	8
Sabreliner-60	20,372	214	S	9	9	9	9	9	9	9	9
Shorts 360	27,200	78	S	7	9	10	11	9	9	9	9
King Air B-100	11,500	52	D	1	2	2	3	2	2	2	3
Super King Air-B200	12,590	98	D	2	3	3	4	3	3	3	4
Super King Air-300	14,100	92	D	3	3	4	4	3	4	4	4
Super King Air-350	15,100	92	D	3	3	4	5	4	4	4	4
Learjet-55	21,500	201	D	6	6	7	7	7	7	8	8
Hawker-800	27,520	135	D	7	7	8	9	8	8	9	9
Falcon-2000	35,000	197	D	9	10	11	11	11	11	12	12
Falcon-50	38,800	208	D	10	11	12	13	13	13	13	14
Falcon-900	45,500	145	D	12	13	14	15	14	15	15	16
Challenger-CL-604	48,200	145	D	12	12	14	16	14	14	15	15
Gulfstream-G-II	66,000	160	D	18	20	21	22	21	22	23	23
Gulfstream-G-IV	75,000	185	D	22	24	25	25	26	26	27	28

Table 3. ACNs for common aircraft by pavement type and subgrade category (not specific to this airport).

January 2020

ACN-PCN Overview

σī

PCNs

The PCN is assigned to a pavement and expresses the relative load-carrying capacity of that pavement. Ideally, the PCN will be determined based on aircraft departures (frequency and weight) along with any pavement and subgrade layer properties. If these data become available, APTech recommends a technical evaluation be completed to determine the PCN.

FAA Advisory Circular 150/5335-5C states the following regarding the Using Aircraft Method of reporting PCNs:

The accuracy of this method is greatly improved when aircraft traffic information is available. Significant over-estimation of the pavement capacity can result if an excessively damaging aircraft, which uses the pavement on a very infrequent basis, is used to determine the PCN. Likewise, significant under-estimation of the pavement capacity can lead to uneconomic use of the pavement by preventing acceptable traffic from operating. Use of the Using Aircraft Method is discouraged on a long-term basis due to the concerns listed above.

As with the ACN, the PCN has a minimum value of 0 and has no upper limit. In addition to the numerical value, the PCN is reported with four codes, which represent the following categories:

- Pavement Type
 - R = Rigid
 - F = Flexible
- Subgrade Strength Category
 - A = High (k-value \ge 442 psi/in or CBR \ge 13)
 - B = Medium (221 psi/in < k-value < 442 psi/in or 8 < CBR < 13)
 - $C = Low (92 \text{ psi/in} < \text{k-value} \le 221 \text{ psi/in} \text{ or } 4 < CBR \le 8)$
 - D = Ultra Low (k-value ≤ 92 psi/in or CBR ≤ 4)
- Maximum Allowable Tire Pressure
 - W = Unlimited (no pressure limit)
 - X = High (pressure limited to 254 psi)
 - Y = Medium (pressure limited to 181 psi)
 - Z = Low (pressure limited to 73 psi)
- Pavement Evaluation Method
 - T = Technical Evaluation
 - U = Using Aircraft Evaluation

General Overload Guidance

For aircraft with an ACN that exceeds the PCN, ICAO overload guidance can be referenced. Alternatively, aircraft with ACNs greater than the PCNs for analyzed facilities may be able to safely use these pavements (following the ACN–PCN procedure) by operating at a reduced weight. If these aircraft do not operate at their analyzed weight, then the PCN should be determined using the operating weights.

In general, for flexible pavements, aircraft with ACNs in excess of 10 percent of the reported PCN should be restricted from operating on the given facility to avoid potential damage to the pavement. For rigid pavements, aircraft with ACNs in excess of 5 percent of the reported PCN should be restricted. Exceeding this recommendation may result in a reduced pavement life.

Appendix D of FAA Advisory Circular 150/5335-5C presents the following guidance for pavement overloads (ICAO 1983):

- For flexible pavements, occasional traffic cycles by aircraft with an ACN not exceeding 10 percent above the reported PCN should not adversely affect the pavement.
- For rigid or composite pavements, occasional traffic cycles by aircraft with an ACN not exceeding 5 percent above the reported PCN should not adversely affect the pavement.
- The annual number of overload traffic cycles should not exceed approximately 5 percent of the total annual aircraft traffic cycles. [As additional guidance, the FAA recommends limiting the overload cycles to 500 coverages; the corresponding number of annual departures depends on the aircraft and its typical pass-to-coverage ratio.]
- Overloads should not normally be permitted on pavements exhibiting signs of load-related distress, during periods of thaw following frost penetration, or when the strength of the pavement or its subgrade could be weakened by water.
- When overload operations are conducted, the airport owner should regularly inspect the pavement condition. The airport owner should periodically review the criteria for overload operations. Excessive repetition of overloads can cause a significant reduction in pavement life or accelerate when a pavement will require a major rehabilitation.

In general, pavement overloads are expected to decrease pavement life but do not often cause immediate or catastrophic failures unless they are excessive.

PCN DETERMINATION—USING AIRCRAFT METHOD

Aircraft traffic is the primary consideration when reporting a PCN following the Using Aircraft Method. The PCN is reported based on the pavement type (rigid or flexible) corresponding to a given subgrade category. For the Using Aircraft Method, the specific strength is not required, but a subgrade category should be specified so the corresponding ACN can be referenced. The subgrade support conditions are unknown for this airport, and a subgrade strength category C was assumed based on typical conditions throughout Iowa.

APTech compiled traffic data to provide a representation of the aircraft using the runway based on publicly available information, including referencing published capacity data. This information was provided to the Airport Manager for review, who noted that the traffic was representative of the aircraft using Runway 18/36 on a regular basis and provided additional input. Representative traffic information is presented in Table 4 along with the corresponding ACNs (as determined using COMFAA) for the pavement types and subgrade strength categories associated with Manchester Municipal Airport.

Aircraft	Weight, lbs	Gear Type ¹	Tire Pressure, psi	ACN: Flexible Pavement, Subgrade Category C
Skyhawk-172	2,558	S	50	1
Navajo-C	6,536	S	66	2
Air Tractor 502	9,000	S	98	4
Citation CJ2+	12,500	S	130	4

¹Defined by the configuration of the main gear: S = single wheel and D = dual wheel (as defined in FAA Order 5300.7, *Standard Naming Convention for Aircraft Landing Gear Configurations*).

Based on the representative aircraft using Runway 18/36, of which the most demanding aircraft is the Citation CJ2+ with an ACN of 4 for the given pavement type and presented subgrade category, the PCN and corresponding allowable aircraft weight are presented in Table 5. In addition, if the cross section noted in Table 2 is correct, the pavement is adequate for the current traffic based on a Technical Evaluation that was performed as a check. The PCN can be reported to the FAA's regional office using the results from this report.

Table 5.	PCN r	esults and	corresponding	allowable	aircraft v	weights.
----------	-------	------------	---------------	-----------	------------	----------

Branch	PCN	Single Wheel ¹ Allowable Aircraft Weight, lbs
Runway 18/36	4/F/C/X/U	$12,500^2$

¹Refers to the aircraft's main gear type.

²Based on the weight of the determining aircraft.

Load-related distresses were observed during the 2018 PCI inspection on both runway sections, which indicates that some aircraft may be overloading the pavement. Therefore, additional investigation is recommended to determine a more accurate assessment of the capacity of the runway. Furthermore, the overall pavement condition and progression of distress should continue to be monitored.

The ICAO overload guidance, included in the ACN–PCN Overview chapter of this report, can be referenced for aircraft with an ACN that exceeds the PCN for a specified pavement, although this information is more applicable for PCNs determined from a Technical Evaluation Method. Alternatively, aircraft with ACNs greater than the documented PCN may be able to use the facility, following the ACN–PCN procedure, by operating at a reduced weight. In general, pavement overloads are expected to decrease pavement life but do not often cause immediate or catastrophic failures unless they are excessive.

SUMMARY

This report presents an overview of the ACN–PCN procedure and documents the representative traffic considered when determining the PCN following the FAA's Using Aircraft Method, as described in FAA Advisory Circular 150/5335-5C. The PCN recommended for publication for Runway 18/36 is 4/F/C/X/U. Load-related distresses were observed during the 2018 PCI inspection on the runway, which indicates that some aircraft may be overloading the pavement.

ACNs of common aircraft are provided, and overload guidance is presented. In general, pavement overloads are expected to decrease pavement life but do not often cause immediate or catastrophic failures unless they are excessive.

REFERENCES

AirNav, LLC. 2018. "Airport Information." www.airnav.com.

ASTM International. 2013. "Standard Test Method for Airport Pavement Condition Index Surveys." ASTM Designation D5340-12. *Annual Book of ASTM Standards, Volume 12*. ASTM International, West Conshohocken, PA.

Federal Aviation Administration (FAA). 1995. *Airport Pavement Design and Evaluation*. Advisory Circular 150/5320-6D. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC.

FAA. 2005. *Standard Naming Convention for Aircraft Landing Gear Configurations*. Order 5300.7. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC.

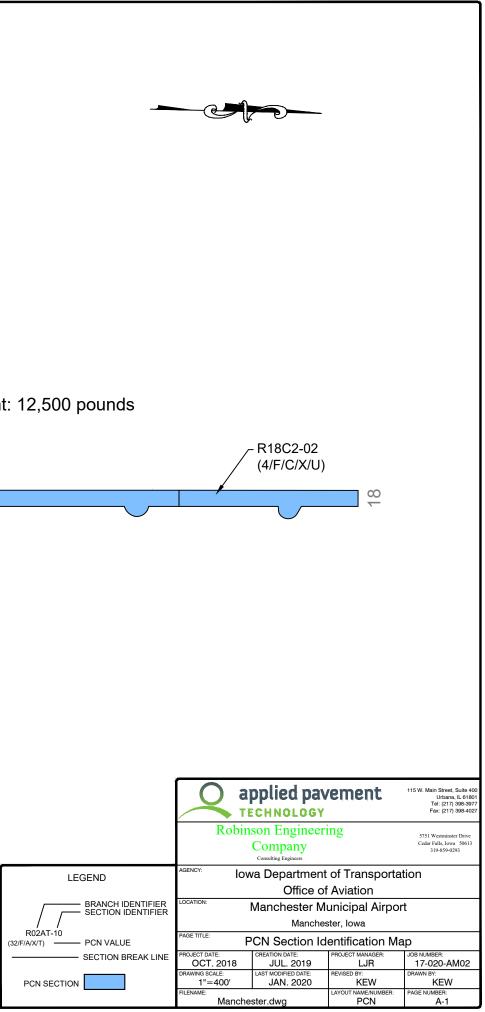
FAA. 2014. *Airport Pavement Management Program (PMP)*. Advisory Circular 150/5380-7B. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC.

FAA. 2014. *Guidelines and Procedures for Maintenance of Airport Pavements*. Advisory Circular 150/5380-6C. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC.

FAA. 2014. *Standardized Method of Reporting Airport Pavement Strength—PCN*. Advisory Circular 150/5335-5C. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC.

FAA. 2016. *Airport Pavement Design and Evaluation*. Advisory Circular 150/5320-6F. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC.


FAA. 2018. "Traffic Flow Management System Counts (TFMSC)." aspm.faa.gov.


International Civil Aviation Organization (ICAO). 1983. *Aerodrome Design Manual: Pavements*. ICAO 9157-AN/901 Part 3, Second Edition. International Civil Aviation Organization, Montreal, Quebec, Canada.

ICAO. 1999. International Standards and Recommended Practices: Aerodromes—Annex 14 to the Convention on International Civil Aviation. Third Edition. International Civil Aviation Organization, Montreal, Quebec, Canada.

APPENDIX A

PCN SECTION IDENTIFICATION MAP

PREPARED FOR

Iowa Department of Transportation Aviation Bureau 800 Lincoln Way Ames, Iowa 50010 515-239-1691 www.iowadot.gov/aviation

JANUARY 2020