3D Modeling Capabilities Available in AASHTOWare Bridge Design and Rating

Iowa Department of Transportation Workshop on 3D Design and Modeling for Highway Structures April 15, 2015

Topics

- 1. AASHTOWare
- 2. Software Overview
- 3. 3D Features and Capabilities
- 4. Summary

AASHTOWare Bridge Products

AASHTOWARE Bridge Rating™

(formerly Virtis) Bridge Load Rating

AASHTOWARE Bridge Design™

(formerly Opis) Bridge Design

3

AASHTOWARE Bridge Management[™]

(formerly Pontis)

Bridge Management

Br

AASHO

AASHTOWare Bridge

AASHO

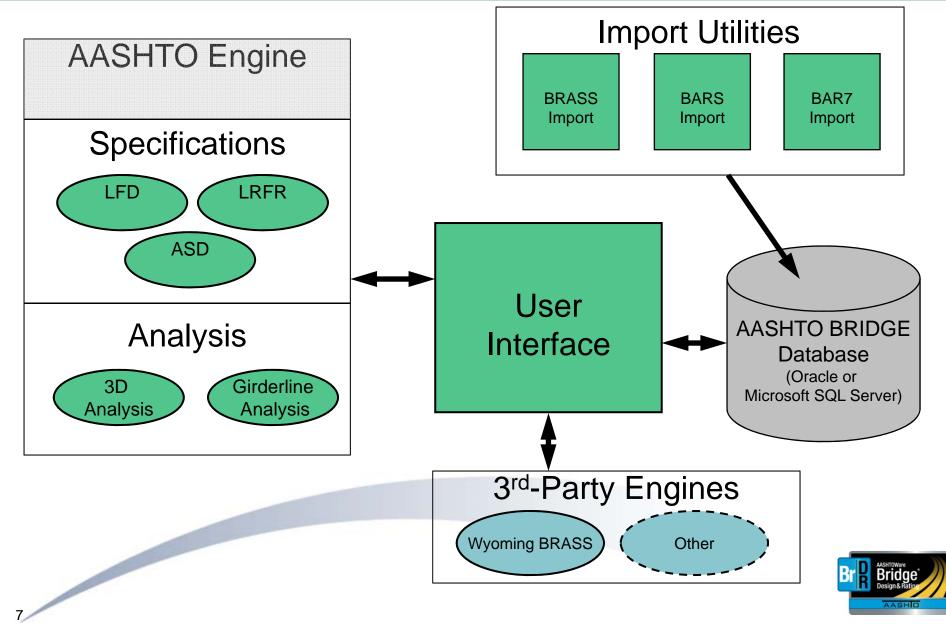
AASHTOWare

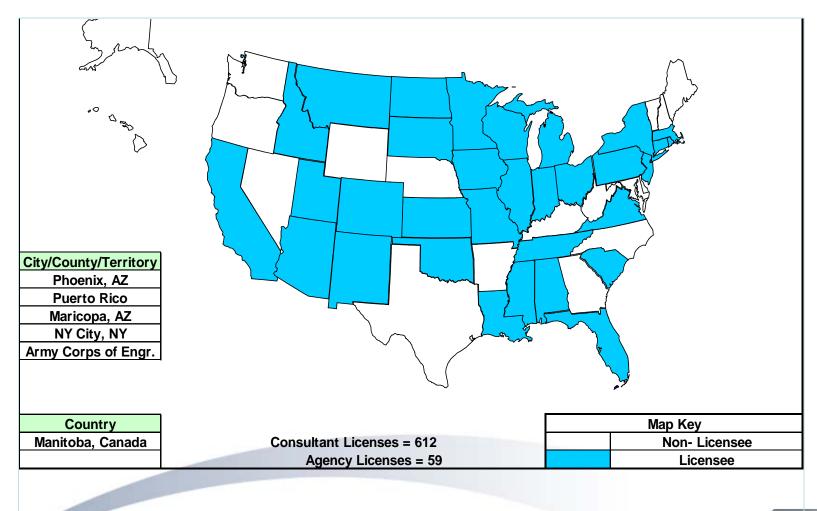
- Joint Development Effort
- Pooled Resources
- Software is owned by AASHTO
- Managed by a Task Force
- Tested by users (Technical Advisory Group)

Task Force Members

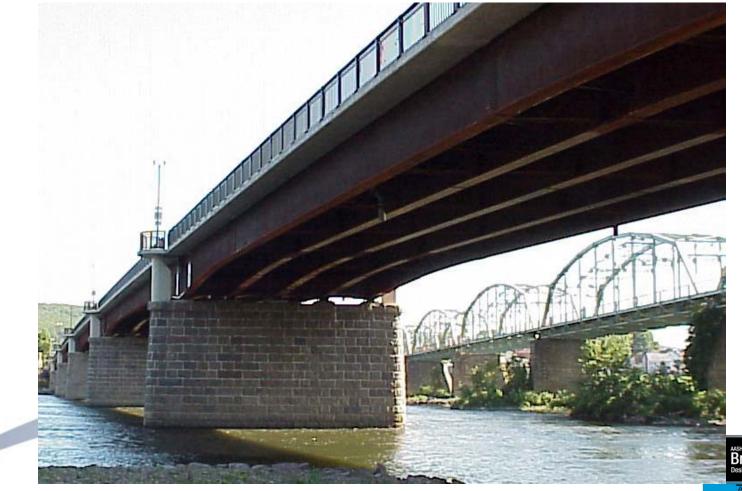
- AASHTOWare AASHID
- Todd Thompson, South Dakota DOT, Chairman
- Dean Teal, Kansas DOT
- Jeff Olsen, Montana DOT
- Amjad Waheed, Ohio DOT
- Joshua Dietsche, Wisconsin DOT
- Judy Skeen AASHTO Project Manager
- Tom Saad FHWA Liaison

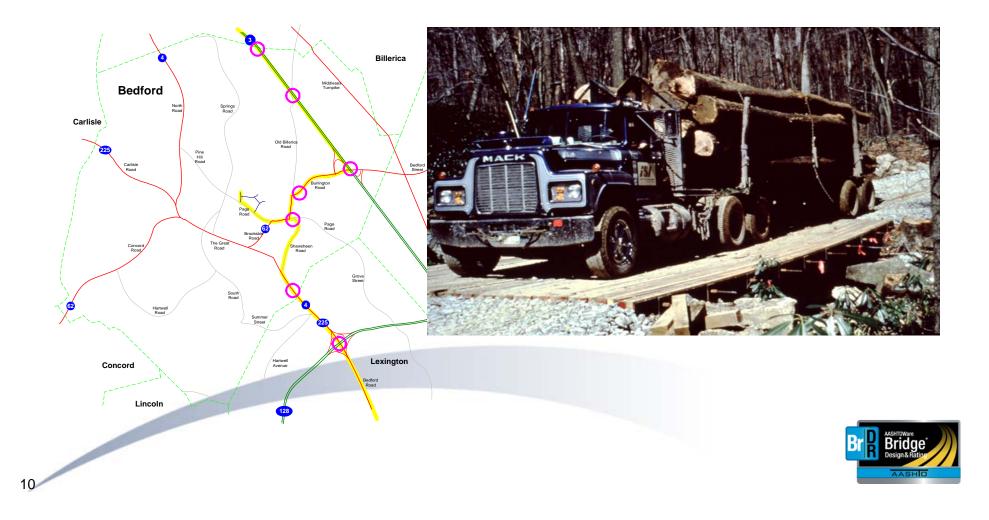
Software Overview


- Product Concept
- Licensees
- Major Capabilities


Product Concept

BrDR Licenses (FY 2015)




Analysis, Load Rating, and Specification Checking of common bridge types

Support of Permit Routing

Load rating based on inspection results

Comparison validation - enter a bridge once and...

- Compare results between engines
- Compare results between different specifications (ASD, LFD, LRFR, LRFD)
- Compare results between different versions of the LRFD/LRFR specifications
- Compare results between 3D and girder-line analysis

Steel Girder Superstructures

- Rolled shapes
- Welded plate girders
- Built-up I shapes
- Straight and curved

PS Concrete Superstructures

Precast shapes

- I beams
- Boxes
- Multi-stem Tee
- U beams

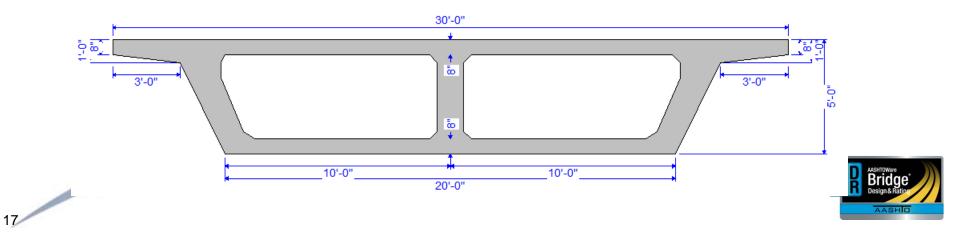
Reinforced Concrete Superstructures

- Tee beams
- Slab lines
- I beams

Reinforced and Post-Tensioned Concrete Multi-Cell Box Superstructures

- LRFD/LRFR
- User-defined box cross sections
- Line girder analysis, full box along with weblines
- Integral with pier

16


Capabilities – Multi-cell boxes

Reinforced Concrete

Post-tension Concrete

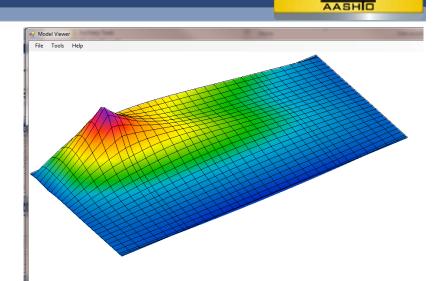
Trusses (LFD)

- Continuous spans
- Suspended spans
- Counters
- Deck Trusses
- Through Trusses

Floor Systems (ASD and LFD)

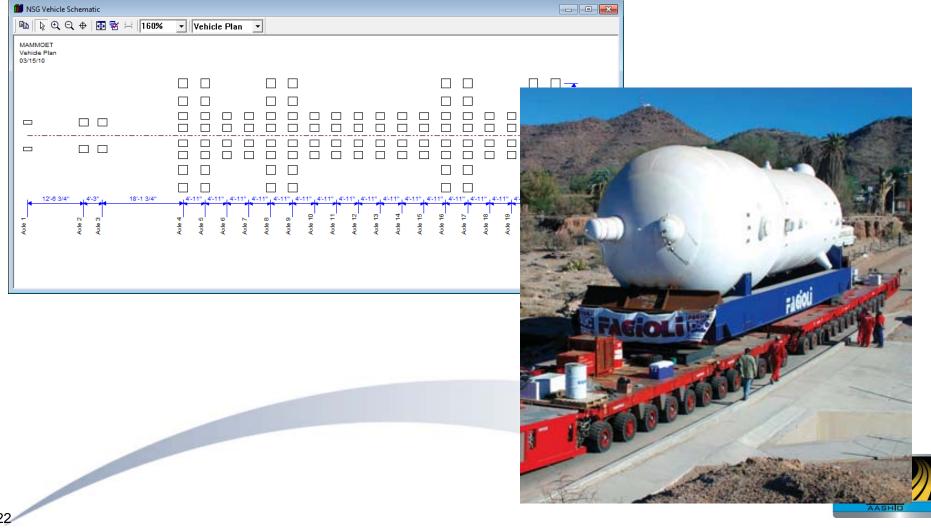
- Girder-Floorbeam-Stringer
- Girder-Floorbeam
- Truss-Floorbeam-Stringer
- Truss-Floorbeam
- Floorbeam-Stringer

Reinforced Concrete Box Culverts (LRFR/LFR)


- Sloping fill
- Multiple cells
- Optional bottom slab
- Optional haunches

3D Analysis

- Straight and curved steel multigirder systems
- Straight PS and RC multi-girder systems
- Dead and Live loads
- Live load moves vehicles on influence surfaces to compute maximum and minimum effects


AASHTOW

22

Capabilities

Analysis of nonstandard gage vehicles

Non-standard gage analysis

- Describe a non-standard gage vehicle
 >Unlimited number of axles
 >Unlimited number of wheels per axle
- Describe a loading path for the vehicle
- 3D analysis loading of an influence surface for live load actions
- Rating

AASHTO LRFD Spec Checking

	Virtis/Opis/OpisSub - PCITrainingBridge4 File Edit View Bridge Substructure Tools W	indow Help	Spec Check Detail for 5.7.3.2 Flexural Resistance (Prestressed Concrete)
Superstructure ComponentPerstress CalculationsStage 1Stage 2Stage 2Stage 3Member Atternative #2 (9.9.4)Span 1 - 0.00 ft.Span 1 - 2.00 ft.Span 1 - 12.00 ft. <th>D ☞ ■ ☞ ⓑ ☆ ☆ ↓ ⓑ ⓑ @ @ 0</th> <th></th> <th>5.7 Material Properties 5.7.3 Flexural Members 5.7.3.2 Flexural Resistance (AASHTO LRFD Bridge Design Specifications, Fifth Edition - 2010, with 2010 in PS I Wide - At Location = 60.0000 (ft) - Left Stage 3 Cross Section Properties</th>	D ☞ ■ ☞ ⓑ ☆ ☆ ↓ ⓑ ⓑ @ @ 0		5.7 Material Properties 5.7.3 Flexural Members 5.7.3.2 Flexural Resistance (AASHTO LRFD Bridge Design Specifications, Fifth Edition - 2010, with 2010 in PS I Wide - At Location = 60.0000 (ft) - Left Stage 3 Cross Section Properties
	□ Superstructure Component □ Prestress Calculations □ Stage 1 □ Stage 2 □ Stage 3 □ Span 1 - 0.00 ft. □ Span 1 - 0.70 ft. □ Span 1 - 0.00 ft. □ Span 1 - 2.00 ft. □ Span 1 - 24.00 ft. □ Span 1 - 36.00 ft. □ Span 1 - 36.00 ft. □ Span 1 - 72.00 ft. □ Span 1 - 72.00 ft. □ Span 1 - 84.00 ft. □ Span 1 - 96.00 ft. □ Span 1 - 108.00 ft.	Specification Reference ■ 5.11.4.2 Bonded Strand ■ 5.4.2.5 Poisson's Ratio ■ 5.4.2.6 Modulus of Rupture ✓ 5.5.3.1 Fatigue Limit State - C MA 5.5.3.2 Reinforcing Bars ■ 5.7.2.2 Rectangular Stress Dis ✓ 5.7.3.2 Flexural Resistance (Pl ✓ 5.8.3.5 Minimum Transverse ✓ 5.8.2.7 Maximum Spacing of ✓ 5.8.3.3 Nominal Shear Resista ■ 5.8.3.4 Procedures for Determ ✓ 5.8.3.5 Longitudinal Reinforce ✓ 5.8.4 Interface Shear Transfer ✓ 5.8.4 Minimum Area of Inter ✓ 6A.4.2.1 Design Load Rating ✓ 6A.4.2.1 General Load Rating ✓ Cracked_Moment_of_Inertia ■ Cracked_Moment_of_Inertia ■ Cracked_Moment_of_Inertia ■ PS_Basic_Properties Calculat	Girder f'c = 6.50 (ksi) Girder f'ci = 5.80 (ksi) Slab f'c = 4.00 (ksi) Effective Slab Width = 108.00 (in) Effective Slab Thickness = 7.50 (in) Haunch Width = 42.00 (in) Haunch Thickness = 0.50 (in) Beam Height = 72.00 (in) Total Aps = 7.34 (in^2) Total CGS = 6.92 (in) Eff Aps = 7.34 (in^2) Eff CGS = 6.92 (in) Eff Aps = 7.34 (in^2) Eff CGS = 6.92 (in) Mr= Limit State Load Mu Phi Phi * Mn Mr/M Combination kip-ft kip-ft STR-I 1, DesInv 9315.60 1.000 11240.68 1.1 STR-I 1, DesInv 4636.88 1.000 11240.68 1.1 STR-I 1, DesOp 8246.18 1.000 11240.68 1.1 STR-I 1, DesOp 4636.88 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 1.1 STR-I 1, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 2.1 STR-I 1, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 2.1 STR-I 1, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 1.1 STR-I 2, DesInv 5776.35 1.000 11240.68 2.1 STR-I 1 2, DesInv 5776.35 1.000 11240.68 3.1 STR-I 1 2, DesInv 5776.35 1.000 11240.68 3.1 STR-I 1 2, DesInv 5776.35 1.000 11240.68 3.1 STR-I 2, DesInv 5441.44 1.000 11240.68 2.1

AASHTOWar

AASHO

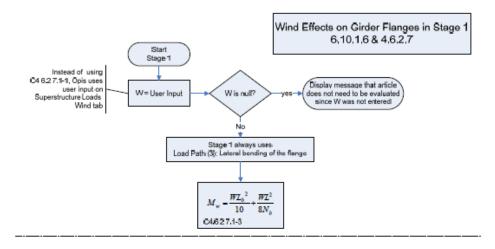
AASHTO LRFD Spec Checking

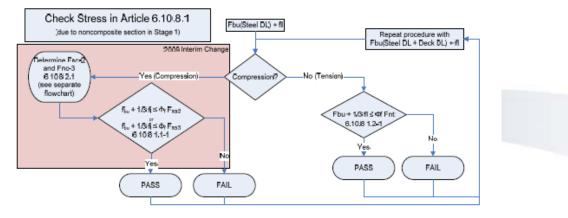
Bridge ID : 28 Bridge : Draft Bridge (jso 10-2013) Superstructure Def : three span steel Member : G1 Analysis Preference Setting : None NBI Structure ID : L33028000_07001 Bridge Alt :

Member Alt : exterior G1

AASHTO LRFD Specification, Edition 7, Interim 0

Specification Check Summary

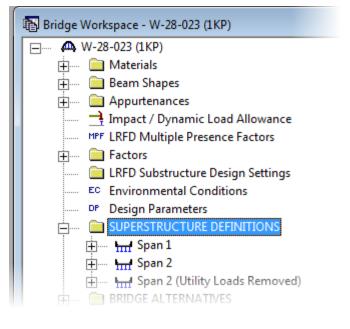

Article	Status
Flexure (6.10.7.1.1, 6.10.7.2.1)	Pass
Shear (6.10.9)	Pass
Fatigue (6.10.5.3)	NA
Serviceability (6.10.4.2.2)	Pass
Constructability (6.10.3.2.1, 6.10.3.2.2, 6.10.3.2.3)	Pass
Transverse Stiffeners (6.10.11.1.2, 6.10.11.1.3)	Pass
Longitudinal Stiffeners (6.10.11.3.1, 6.10.11.3.2, 6.10.11.3.3)	NA
Bearing Stiffeners (6.10.11.2.2, 6.10.11.2.3, 6.10.11.2.4)	Pass
Shear Connector (6.10.10.1, 6.10.10.4)	NA


Bridge Workspace - Design

LRFD Method of Solution Manual

LRFD 5th Edition

Includes detailed flow charts



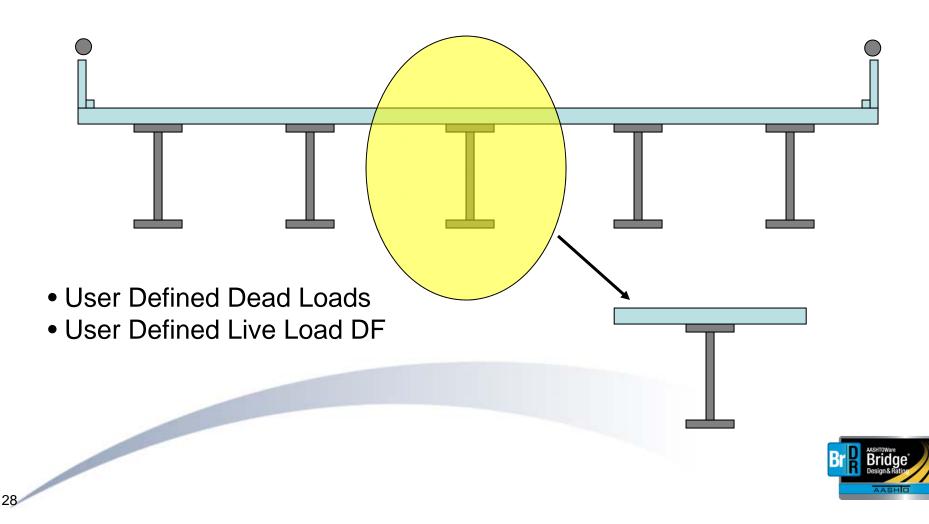
AASHTOWar

AASHO

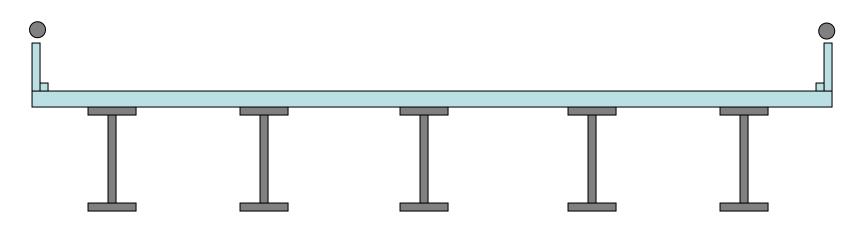
Bridge Definition

Detailed description of each structure within the bridge.

- System definition
- Line definition



Bridge Workspace – Struct Def



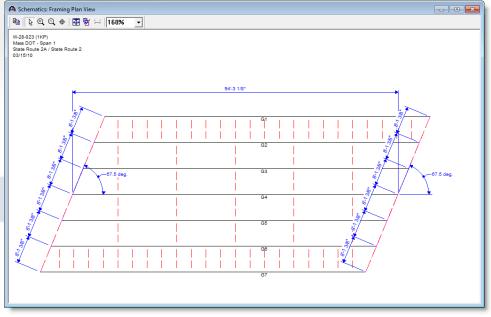
Line Definition

Bridge Workspace – Struct Def

System Definition

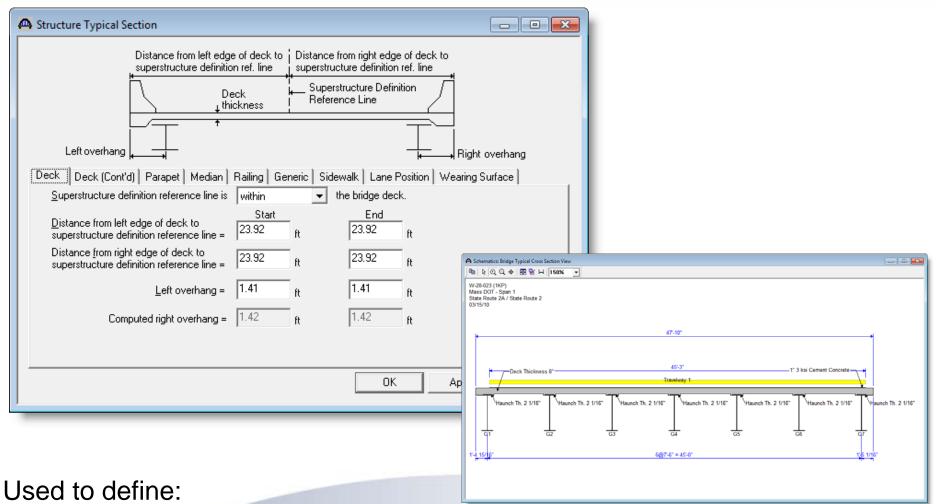
- System Computed Dead Loads
- System Computed Live Load Distribution Factors
- Suitable for 3D analysis

AASHTOW₂


AASHO

Bridge Workspace – Framing Pla

			Numbe	er of spans = 1	Number of girders =
Layout Diaphragms					
	Girder	Spacing C	Irientatio	n]	
	🕘 Pe	rpendicula	ir to girde	r	
Support Skew	O Alc	ong suppor	rt		
(Degrees) 1 22,5000					
2 22.5000					
		Girder S	anoing .		
	Girder	Girder 3			
	Bay	Start of	End of		
		Girder	Girder		
	1	7.50	7.50		
	2	7.50	7.50		A Schematics: Framing Plan View
	3	7.50	7.50		
	4	7.50	7.50		W-28-023 (1KP) Mass DOT - Span 1 State Route 2A / State Route 2
	5	7.50	7.50		03/15/10


Used to define:

- Girder layout skew and spacing
- Diaphragms

Bridge Workspace

- Deck, wearing surface, lane positions
- Parapets, medians, railings, sidewalks

Bridge Workspace

Choose analysis module and spec version...

Member Alternativ	ve: Plate Girder	nport Control Options		
Analysis Method Type		Selection Type	Spec Version	Factors
ASD	AASHTO ASD	System Default	MBE 2nd 2014i, Std 17th	⊻ N/A
LFD	AASHTO LFD	System Default	MBE 2nd 2014i, Std 17th	2002 AASHTO Std. Specifications
LRFD	AASHTO LRFD	System Default	LRFD 7th	✓ 2014 AASHTO LRFD Specifications
LRFR	AASHTO LRFR	Override	MBE 2nd 2014i, LRFD 7th	2011 (2014 Interim) AASHTO LRFR Spe
			MBE 1st 2010i, LRFD 5th MBE 1st 2010i, LRFD 5th 20 MBE 1st, LRFD 4th 2008i MBE 1st, LRFD 4th 2009i MBE 2nd 2011i, LRFD 5th MBE 2nd 2011i, LRFD 5th 2 MBE 2nd 2011i, LRFD 6th 2 MBE 2nd 2013i, LRFD 6th 2 MBE 2nd 2014i, LRFD 7th MBE 2nd, LRFD 5th MBE 2nd, LRFD 5th 2010i	01

Bridge Workspace – Design Review

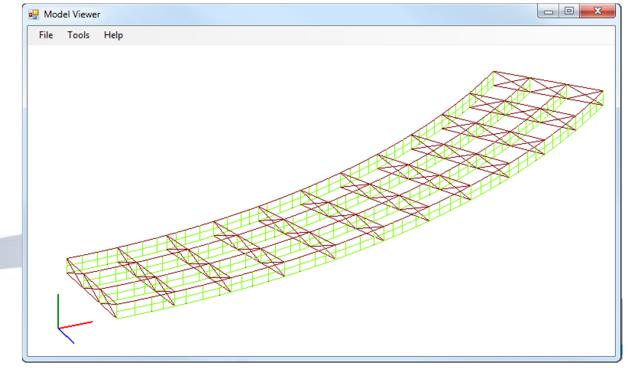
	Design Method: LRFD Apply Preference Setting: None
3D FEM Superstructure Definition / /ehicles Output Engine Description Traffic Direction:	
Traffic Direction:	
	Refresh Temporary Vehicles Advanced
Vehicle Selection:	, Vehicle Summary:
 Vehicles Standard Alternate Military Loading HL-93 (SI) HL-93 (US) HS 20 (SI) HS 20 (SI) HS 20-44 LRFD Fatigue Truck (SI) LRFD Fatigue Truck (US) Agency User Defined T 	Add to Design Design Vehicles Design Loads Permit Loads Fatigue Loads Remove from Analysis <<

AASHTOWare

AASHO

3D Features and Capabilities

- Multi-Girder Superstructures
 - Steel (Straight or Curved)
 - Prestressed Concrete (Straight)
 - Reinforced Concrete (Straight)



AASHTOW

AASH

3D Features and Capabilities

- Automated 3D Model Generation for Structural Analysis and Design
- 3D Model Viewer

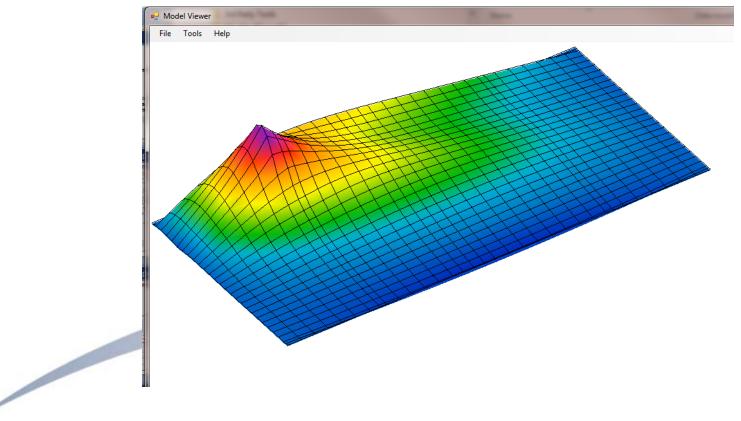
AASHTOWa

AASHC

3D Features and Capabilities

- Multi-Girder Superstructures
 - Analysis of diaphragms

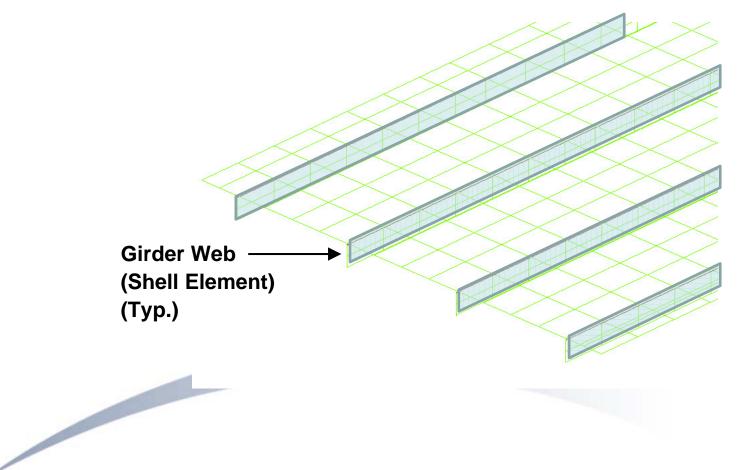
B		Diaphrag	m D	efinitio	n		
Name: K Frame Diaphragm types:		Diaphragn	n type	: Type 1	~		Number of e
C D Type: 1	Member	Shape		Section rientation	Section Location		Material
AB	AB L	6x6x0.4375	Vert	ical 🖂	Top Left	\sim	Grade 50
	CD L	6x6x0.4375	Vert	ical 🗹	Top Left	$\mathbf{\vee}$	Grade 50
	AD L	6x6x0.4375	Vert	ical 🗸	Top Left	\checkmark	Grade 50
C D Type: 2	CB L	6x6x0.4375	Vert	ical ⊻	Top Left	~	Grade 50
A B	Connection	Support Type		Y (in)	Mea	sur	
	A	Pinned	~		Top of We	eb	\sim
C D	В	Pinned	~		Top of We	b	\checkmark
Type: 3	С	Pinned	~		Bottom of	W	eb 🖌
	D	Pinned	~		Bottom of	W	eb 🗹
A B							


Spec-checking and rating of diaphragms coming soon

AASHTOW

AASH

- Live load moves vehicles on influence surfaces to compute maximum and minimum effects
- Longitudinal and transverse live load analysis or userdefined vehicle loading path

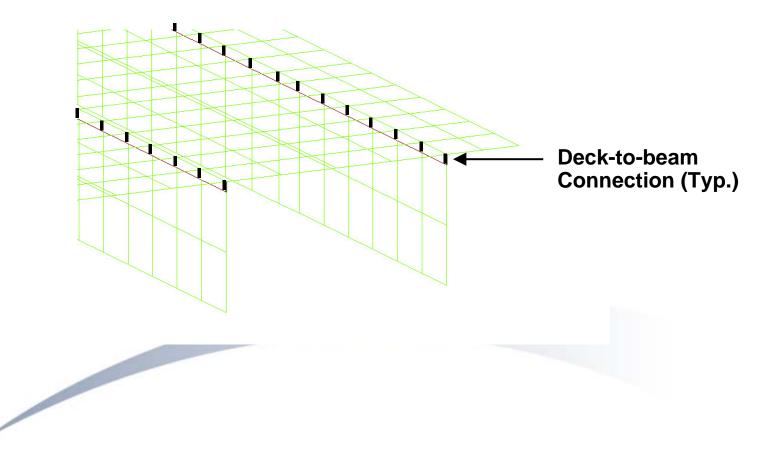


AASHTOW

AASHC

Shell elements:

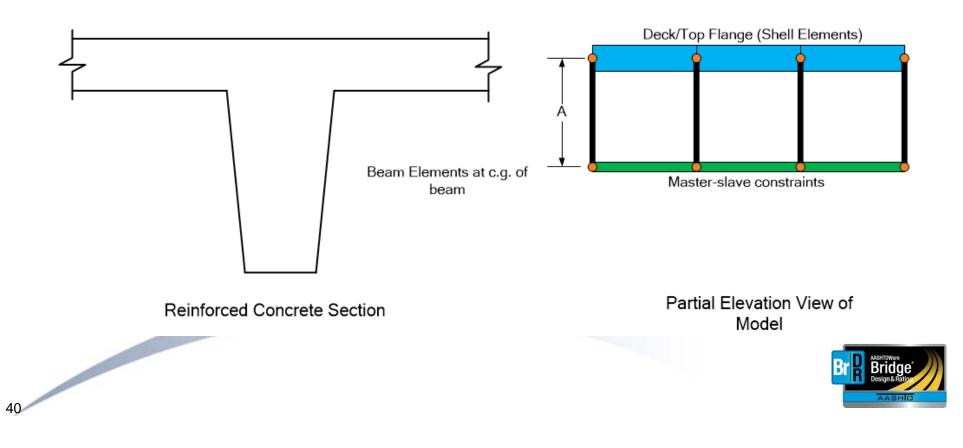
- Are used for the steel girder web and the deck
- Have four nodes with six DOFs at each node


AASHTOWa

AASHO

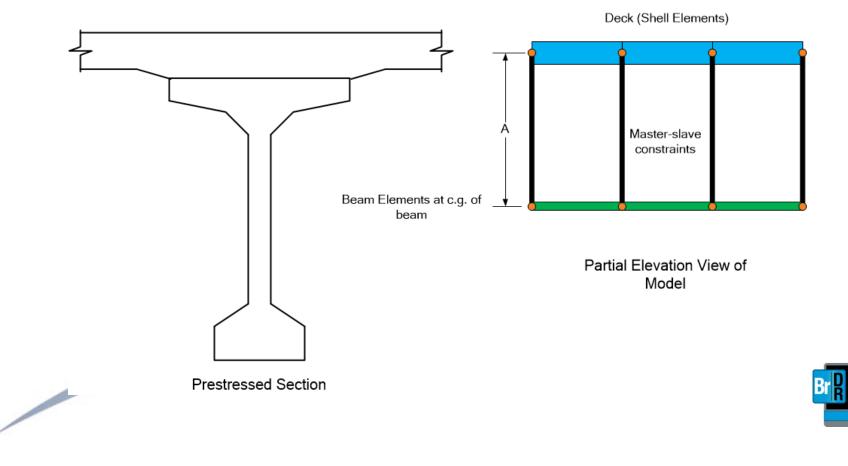
Deck-to-beam connection:

- Master-slave constraints
- Connects center of gravity of deck to girder top flange



Modeling of reinforced concrete sections:

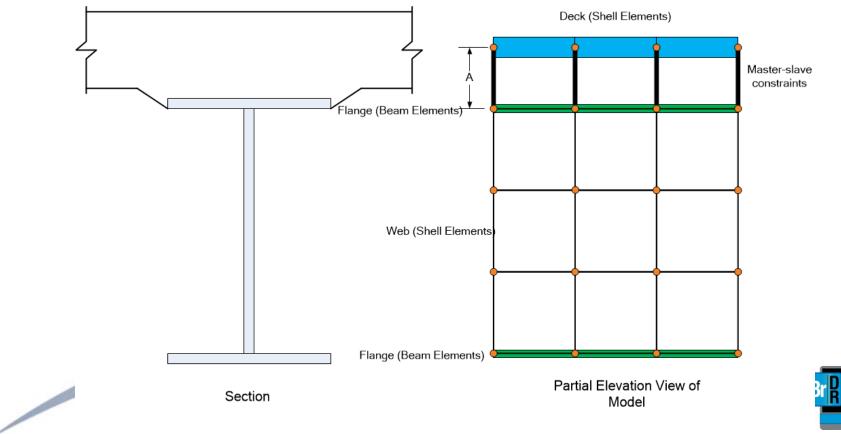
- Beam elements used for reinforced concrete beam
- Shell elements used for deck/top flange
- Master-Slave constraints used for connection



41

Modeling of prestressed concrete sections:

- Beam elements used for prestressed concrete beam
- Shell elements used for deck/top flange
- Master-Slave constraints used for connection



42

Modeling of steel beam with concrete deck:

- Beam elements used for steel girder flanges
- Shell elements used for deck and steel girder web
- Master-Slave constraints used for connection

Support conditions:

- Free bearings permit translation in all directions
- Guided bearings permit translation in only one direction, usually either longitudinal or transverse
- Fixed bearings do no permit translation in any direction

Analysis controls:

Structural Slab Thickness ✔ Consider structural slab thickness for rating ✔ Consider structural slab thickness for design	Number of shell elements In the deck between girders In the web between flanges
Wearing Surface Consider wearing surface for rating	Slower Fa More accurate Less accu
Consider wearing surface for design	
Consider striped lanes for rating	10 9 8 7 6 5 4 3 2
Default Analysis Type: Line Girder 🗸	Target aspect ratio for shell elements
Longitudinal Loading Vehicle increment: 1.000 ft	Slower Fa More accurate Less accu
Transverse Loading Vehicle increment in lane: 2.000 ft Lane increment: 4.000 ft	1.0 1.5 2.0 2.5 3.0 3.5 4
Analysis Control Options IFD: Model non-composite regions as non-composite	
LRFD: Model non-composite regions as non-composite LRFR: Model non-composite regions as non-composite	

Specify mesh generation parameters

Analysis controls:

Structural Slab Thickness	Number of shell elements
Consider structural slab thickness for rating	● In the deck between girders
✓ Consider structural slab thickness for design	◯ In the web between flanges
Wearing Surface	Slower Faster More accurate Less accurate
Consider wearing surface for rating	
Consider wearing surface for design	
Consider striped lanes for rating	10 9 8 7 6 5 4 3 2 1
Default Analysis Type: Line Girder	Target aspect ratio for shell elements
Longitudinal Loading Vehicle increment	Slower Faster More accurate Less accurate
Vehicle increment: 1.000 ft	
Transverse Loading	1.0 1.5 2.0 2.5 3.0 3.5 4.0
Vehicle increment in lane: 2.000 ft	
Lane increment: 4.000 ft	
π	Define Longitud
Analysis Control Options	Loading and Tran
✓ LFD: Model non-composite regions as non-composite	
LRFD: Model non-composite regions as non-composite	Loading
LRFR: Model non-composite regions as non-composite	

Analysis Controls:

• Select the diaphragms for which diaphragm forces are to be computed

D elect diaphragms for influence surface loading in		
Bay 1	Bay 2	Bay 3
✓ 1-1	✓ 2-1	✓ 3-1
✓ 1-2	✓ 2-2	✓ 3-2
✓ 1-3	✓ 2-3	✓ 3-3
✓ 1-4	2-4	✓ 3-4
✓ 1-5	2-5	✔ 3-5
✓ 1-6	2-6	✓ 3-6
✓ 1-7 ✓ 2-7	✓ 3-7	
	₹ 2-8	

AASHTOWa

AASHO

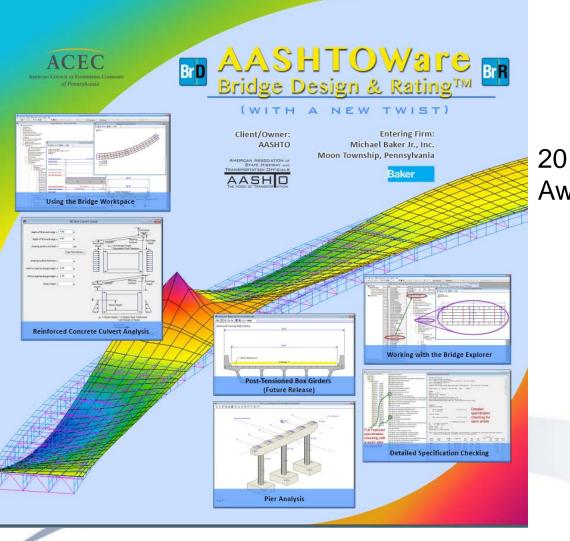
Model Viewer:

- Model can be viewed graphically
- Model Viewer permits view from many different vantages
- Ability to select what portions of the model are viewed
- Ability to view influence surfaces and load paths

AASHTOW

AASHC

 3D Finite element analysis based on an investigative study to identify best practices


AASHTOWa

AASHO

Awards

American Council of Engineering Companies

2014 National Recognition Award Winner

Summary

- 1. One user interface handles most bridge types and is used for both design review and rating
 - Improved productivity by learning one user interface
 - Consistency across many bridge types
- 2. Database for storing bridge descriptions
 - Security
 - Backups
- 3. Simplified administration of one product

Summary

- 4. General 3D description not specific to:
 - A particular edition of the AASHTO specification
 - An analysis method (Line or 3D)
 - An analysis engine
- 5. As specifications and methods change the data does not have to be re-input
- 6. Enter data once and evaluate with different AASHTO specifications (ASR, LFR, LRFR), or different editions of a specification, or different models

Summary

- 7. Research Evaluate specification changes before they are adopted for production use
- 8. System allows for 3rd party analysis engines
 - Wyoming BRASS
 - Bentley (LARS and former Leap products)
- 9. Opportunity for agency customization (Service Units)
 - Agencies can request features
 - Users vote on features
 - Technical Advisory Groups advise how features should be implemented

Thank you

