

Concrete Mixtures

Infinite number of combinations of:

- Aggregate type & quantity
- Type & amount of cement
- SCM use
- Admixtures

Variable	Range of Tests	Effect on $ au$	Effect on <i>B</i>	Effect on α_{μ}
Fly Ash (%Replacement)	15-55%		K	J.
Fly Ash (CaO%)	0.7-28.9% CaO	J →	K	Varies
GGBF slag	30-70%	Large	Small	Varies
Silica Fume	5-10%	None	None	Small
	1			
UF ConcreteWorks Basics	IDOT Mass	Concrete Workshop		23

Variable	Range of Tests	Effect on $ au$	Effect on <i>β</i>	Effect on α_u
LRWR	0.22-0.29%	Varies	Small	Varies
WRRET	0.18-0.53%	Large	Large	Large
MRWR	0.34-0.74%	Large	Small	Varies
HRWR	0.78-1.25%	None	Small	Large
PCHRWR	0.27-0.68%	None	Small	Large
ACCL	0.74-2.23%	Small	None	Varies
AEA	0.04-0.09%	None	None	None
ConcreteWorks Basics	TIOT Manual	Concrete Workshop		24

Variable	Range of Tests	Effect on $ au$	Effect on β	Effect on α_u
Increasing w/c	0.32-0.68	None	None	Large
Placement Temp	15-38 °C (50-100 °F)	None	None	None
Increase Cement Fineness	350-540 m ² /kg	Small	Small	Varies
		1		
_				
F ConcreteWorks Basics	IDOT Mass	Concrete Workshop		25

Aggregates			
	$\alpha_{\scriptscriptstyle cach} = \frac{\alpha_{\scriptscriptstyle ca} \cdot V_{\scriptscriptstyle ca} + \alpha_{\scriptscriptstyle fa} \cdot V_{\scriptscriptstyle fa}}{V_{\scriptscriptstyle ca} + V_{\scriptscriptstyle fa}} +$	$+ \alpha_{p} \cdot V_{p} \over V_{p}$	
		Coefficient of Thermal	
	Coefficient of Thermal	Expansion from Emanuel and	
	Expansion values used in	Hulsey, 1977	
Material	ConcreteWorks (με/°C)	(με/° C)	
Hardened Cement			
Paste	10.8	10.8	
Limestone Aggregate	3.5	3.5 - 6	
Siliceous River Gravel			
and Sand	11	11 - 12.5	
Granite Aggregate	7.5	6.5 - 8.5	
Dolomitic Limestone			
Aggregate	7	7 - 10	
UE Concrete Works Basics	mon Man Concepts Wo	tahop 8	
Concrete Horica Basics	LOCA MAIS CONCISIS WO	<u>Autrop</u> 3.	

		Thermal	Specific	
Subbase	Density	Conductivity	Heat	
Material	(kg/m3)	(W/m/K)	(J/kg/K)	Reference
Clay	1460	1.3	880	
Granite	2630	2.79	775	
Limestone	2320	2.15	810	
Marble	2680	2.8	830	
Quartzite	2640	5.38	1105	
Sandstone	2150	2.9	745	
Sand	1515	0.27	800	Incropera and
Top Soil	2050	0.52	1840	Dewitt, 2002
Concrete*	-	-	-	

Problems to Work Out After Lunch

- Design a control plan for concrete footing that is 20 ft by 30 ft by 8 ft thick in Des Moines in March. Use limestone subbase. What difference do you get between 1D and 2D analysis?
- What about with a 10 ft wide footing what difference do you get between a 1D and 2D analysis?

Problems to Work Out After Lunch

You want to place a concrete footing that is 30 ft by 20 ft by 6 ft thick. It is August in Des Moines, and you expect a storm after 2 days to lower the high temperature to 60° F and the low temperature on day 2 to 45° F. Design a system that will still meet IDOT standards.