Testing and Evaluation of an FRP Temporary Bypass Bridge

Travis K. Hosteng Bridge Engineering Center, Iowa State University

August 18, 2005

FRP Temporary Bypass Bridge

IBRC Program

Contributing Partners:

Iowa Department of Transportation

Jim Nelson, Iowa DOT Ahmed Abu-Hawash, Iowa DOT

Bridge Engineering Center, ISU

Dr. Terry Wipf, BEC Dr. Brent Phares , BEC Travis Hosteng , BEC

Background – Related FRP Work

> FRP repair of damaged girders

Post-tensioned FRP rods

Background – Related FRP Work

FRP strengthened steel girders

Background – Related FRP Work

FRP strengthened glulam girders

Background

- Previous Temporary Bypass Bridge
 - Steel construction
 - Two-sections
 - Age
 Heavy, cumbersome
 Maintenance
 Corrosion

FRP Bridge Background

Proposed replacement of steel temporary bypass bridge with FRP bridge
Used for several years in NY, PA, OH
Overall, bridges perform very well
Common problems encountered:

Wearing surface deterioration
Delamination of FRP

FRP Decks

Deck on girderDeck slab

FRP Deck Slab Bridge Design

- Design selected to meet the needs of lowa DOT temporary bridges
- Designed and fabricated by Hardcore Composites, Inc.
- Iowa DOT contracted HNTB, Corp. to perform design check

FRP Deck Slab Bridge Design

- FRP Temporary Bypass Bridge
 - Two sections, connected with steel plate
 - Each section composed of:
 - 600 8in. x 16in. x 36in. Foam bottles
 - Stitch bonded TV3400 FRP (bottle wraps)
 - Stitch bonded QM6408 FRP (exterior plies)
 - Vacuum Assisted Resin Transfer Molding (VARTM)
 - Vinyl Ester Resin
 - 3/8 in. epoxy wearing surface
 - ~35% lighter than current steel bypass bridge
 - Corrosion Resistant

FRP Deck Slab Bridge

39ft-10in. Long
27ft-2in. Wide, 24ft roadway
3ft thick
16,400lb and 17,800lb panel weights; total bridge weight of approx. 34,200lb minus hardware

FRP Deck Slab Bridge - Fabrication

FRP Deck Slab Bridge - Fabrication

FRP Deck Slab Bridge - Installation

FRP Deck Slab Bridge - Installation

FRP Deck Slab Bridge - Evaluation

- Overall condition was good
- Variance in panel weight, QC?
- Wearing surface tapered from 3/8 in. thick at edges to > 1 in. at centerline
- Wearing surface was easily scuffed, not very durable (NY, PA, OH same results)
- Center plate and guardrail attachment holes were inconsistent and misaligned

Testing

Type 4 Legal Truck controlled >12.5k front axle, 3-14k rear axles

Ind. Load Cases used 7k point load for testing => half of rear axle (wheel load)

Testing

Testing – Strain Measurement

BDI Strain Transducers

AL A

Testing

Loading

Uplift measurement check

Test Results - Strain

Validation of superposition

Test Results - Strain

Truck Position 1

Truck Position 2

est Results - Strain

Load Case 1

Load Case 11

Neutral Axis, 1/4 Span, Guardrail Side

Strain Gage Location (in. from top of Panel)

BRIDGE EN INTERIOR

Test Results - Deflection

Conclusions

- Overall Bridge condition was good
- Vertical hole alignment complicated erection of bridge and guardrail
- Wearing surface durability questionable
- Magnitude of strains predictable/acceptable using superposition and basic engineering principles
- Distribution of strains uncharacteristic
- Max. Defl. w/in L/800 allowable

Thank You! Questions?