Implementation of Physical Testing for Typical Bridge Load and Superload Rating

Bridge Engineering Center Iowa State University

Phares, Wipf, Klaiber, Abu-Hawash, Neubauer

July 17-20, 2005

BRIDGE ::: !!!!!

Bridge Rating

Evaluation based on:

Visual inspection
Code based

Iowa has 25,000 bridges

4,000 on primary highway system

Invest in innovative solutions to supplement existing rating procedure

Iowa Load Testing Needs

• More accurate ratings for:

- Older bridges with unknown or insufficient design data
- Assessing need for temporary load restriction on damaged bridges
- Possibly reducing the number of bridges that restrict a reasonable flow of overweight trucks

Iowa Load Testing Needs

- More accurate ratings for:
 - Verifying the need for and the effectiveness of new strengthening techniques
 - Removing load restrictions imposed on additional bridges due to the implementation of new weight laws
 - To determine the behavior of structures under heavy load (superload) that have calculated load ratings below anticipated capacity needs

The Problem

- Unknown bridge conditions
 - Live load distribution
 - End restraint
 - Edge stiffening
 - Composite action
 - Effectiveness of specific bridge details
 - Other details contributing to bridge capacity

Other Methods

Proof load testing
 Destructive testing (laboratory)

 Use to complement diagnostic testing for better understanding

The Diagnostic Testing Solution

- Physical testing to understand the specific characteristics of each bridge
- Field collected data to calibrate a bridge computer model
- Accurate, calibrated computer model to determine bridge response to rating vehicles and other loads

Diagnostic Testing of a Bridge-Brief Case Study

- Carries US 6 over a small stream
- 21.34 m single span
- Two main girders w/ floor beams & stringers
- Welded plates & strengthening angle on girders

Instrumentation

- 36 Intelliducers at 17 locations used
- Focused on:
 - Effectiveness of angles
 - End restraint
 - Load distribution
- Instrumented:
 - Both girders
 - Typical floor beam and stringers

Test Results

• Strengthening angles are effective

BRIDGE

Test Results

Significant end restraint identified

BRIDGE

L1 (E Abut. For N girder) for Path Y2

Test Results

Composite action determined

LFD Rating for HS-20 Vehicle

Conventional AASHTO LFD • Shear (stringer) - 2.44 • Flexure (girder) - 2.39

WinSAC LFD

- Shear (stringer)
 1.79
- Flexure (floor bm)
 3.67

Results of Diagnostic Testing

- General increase in flexural rating of all members
- Shear rating decreased and controlled for this bridge
- Effectiveness of unknown structural elements identified

Superload Evaluation

- Summer 2003 Passage of 6 superloads ranging from 600,000 lb. to 900,000 lb.
- Most bridges along route acceptable by traditional calculations
- Hand calculations for one bridge rating factor of approximately 0.5
 Physical test needed

Bridge Characteristics

• Six pre-stressed concrete girder lines

Critical span
 ~ 122 ft (37 m)
 40 ft (12 m)
 roadway
 carrying two
 lanes of traffic

Initial Testing

- Tested with combinations of one and two loaded tandem axle dump trucks
- Much learned about behavior
 - Composite action
 - End restraint
 - Live load distribution
 - » Improved load distribution characteristics used in hand calculations changed RF to 0.9

Analytical Modeling

Bridge modeled using WinGEN

7 elements groups created and optimized

Less than 10% error

Preliminary testing (one load truck)

Analysis with Superload

 Optimized model used to predict bridge behavior to anticipated load
 Determined to be acceptable

Monitoring During Passage

Accuracy of Prediction

Conclusions

- System is well suited to rating "typical" highway bridges
 - Materials
 - » Steel
 - » Concrete
 - » Timber
 - Type
 - » Simple span
 - » Continuous span
 - » Truss

Conclusions

- Expect more opportunities to obtain superload data
- Other "bridge fleet" research underway

