Appendix A

		TOTAL ESTIMATED	BRIDGE	QUANTITIE	S - BOTH	BRIDGES	
TEM NO.	ITEM CODE	ITEM DESCRIPTION	UNIT	WESTBOUND BRIDGE	EASTBOUND BRIDGE	TOTAL	AS BUILT QUANTITY
1	2301-9091100	LONGITUDINAL GROOVING IN CONC	SY	885	885	1770	
2	2402-2720000	EXCAVATION, CL 20	CY	451	507	958	
3	2403-0100010	STRUCT CONC (BRIDGE)	CY	532.7	533.8	1066.5	
4	2404-7775000	REINFORC STEEL	LB	28,242	28,242	56,484	
5	2404-7775005	REINFORG STEEL, EPOXY COATED	LB	90,225	90,225	180,450	
6	2407-0580450	BEAM, PPC, LXD50	EACH	12	12	24	
7	2407-0550000	BEAM, PPC, SLXDII5	EACH	6	6	12	
8	2414 6424110	CONC BARRIER RAIL	LF	490	490	980	
ġ	2501-5125057	PILE, DRIVE STEEL BEAR, HP 10X57	LF	4650	4650	9105	
10	2501-5550057	PILE, FURN STEEL BEAR, HP 10x57	LF	4650	4650	9405	
Ш	2501-6335010	PREBORED HOLE	LF	270	270	540	
12	2533-4980005	MOBILIZATION	LS			1	
13	2601-2638620	MACADAM STONE SLOPE PROTECTION	SY	632	632	1264	
EM NO.		ESTIMATE REFERENCE INFO					
3	SUBDRAT INCLUDE: (OR REB	S FURNISHING AND PLACING SUBDRAIN (INCLU) N OUTLETS AT ABUTMENTS AND AT TOE OF BF S FURNISHING AND PLACING ENGINEERING FABF ARS JAND ALL REQUIRED EXCAVATING, SHAPING LBS.EACH.	NOCE BERMS.	INCLUDES ALL PREFORM	ED EXPANSION JOINT FILE	ER REQUIRED.	

6 8, 7 INCLUDES PIER AND ABUTMENT BEARING MATERIAL AND COIL RODS, GRADATION OF COARSE AGGREGATES FOR PRESTRESSED CONCRETE BRIDGE UNITS SHALL MEET THE REQUIREMENTS OF SECTION 4105 CLASS III DURABILITY, GRADATION OF THE COCARSE AGGREGATE SHALL MEET THE REQUIREMENTS OF SECTION 2407.02A, PPC BEAM SLADIS HAS ADDITIONAL STRANDS, INCREASED CONCRETE RELEASE STRENGTH AND INCREASED 28 DAY CONCRETE STRENGTH.

- INCLUDES 500 LIN. FT. OF 2" A RIGID STEEL CONDUIT IN NORTH BARRIER RAIL OF WESTBOUND BRIDGE AND SOUTH BARRIER RAIL INCLOUES SOU LINETLOF 2 * HIGH STELL CONDUCT IN NORTH DARHLER MALE OF WESTBOUND BRIDGE AND SOUTH DARHLER KALL DE FASTREINEN BRIDGE, INCLUERS MATERIAL AND LARGE ASSOCIATED WITH PROVIDING AND INSTALLING REIGU STEEL CONDUIT, JUNCTION BOKES AND FITTINGS, IF PLACEMENT OF CONCRETE IS DONE BY THE SLIPPORMING METHOD CLASS BR CONCRETE IS REQUIRED, WHEN CLASS D CONCRETE IS USED FOR BARRIER RAILS, THE CAST-IN-PLACE (FIXED FORM)METHOD OF PLACEMENT WILL BE REQUIRED, WHEN BID FOR THIS ITEM SHALL INCLUDE THE COST OF CAST-IN-PLACE FORMS IF REQUIRED FOR PLACEMENT OF THE CONCRETE.
- INCLUDES FURNISHING AND PLACING ENGINEERING FABRIC, MACADAM STONE, 4"×6" TREATED TIMBERS, ¹/₂ DIAMETER STEEL PINS 13 (OR REBARS), POROUS BACKFILL OR GRANULAR SUBBASE BACKFILL AT FRONT FACE OF ABUTMENT FOOTING, AND ALL REQUIRED EXCAVATING, SHAPING AND COMPACTING.

		NON-STANDARD BEAMS ARE REQUIRED FOR THIS BRIDGE.
DESIGN STRESSES FOR THE FOLLOWING MATERIALS ARE IN ACCORDANCE WITH THE AGSHTD STANDARD SPECIFICATIONS FOR HIGHWAY BRIDDES, SERIES OF 1996. REINFORCING STELL IN ACCORDANCE WITH SECTION 8, GRADE 60. CONCRETE IN ACCORDANCE WITH SECTION SECONSTRUCTION, SERIES 2001, PLUS APPLICABLE GENERAL SUPPLEMENTAL SPECIFICATIONS, DEVELOPMENTAL SPECIFICATIONS, SUPPLEMENTAL SPECIFICATIONS AND SPECIAL PROVISIONS.	TRAFFIC CONTROL PLAN ON RELOCATED U.S. 34 NOTE : THIS STRUCTURE IS BEING CONSTRUCTED ON A RELOCATION AND THE ROAD WILL NOT BE OPEN TO TRAFFIC COMPLETION OF CONSTRUCTION. REFER TO TRAFFIC CONTROL PLAN SHOWN ELSEWHERE IN THESE PLANS. TRAFFIC UNTIL AFTER COMPLETION ON LOWA V43 NOTE : THE GOADWAY WILL BE CLOSED TO THRU TRAFFIC BY THE GRADING CONTRACTOR BEFORE BRIDGE CONSTRUCTION IS STARTED. NDTE: ROADWAY QUANTITIES SHOWN ELSEWHERE IN THESE PLANS. NOTE : POLLITION PREVENTION PLAN SHOWN ELSEWHERE IN THESE PLANS.	TRANSVERSE GROOVING OR TINING IN THE PLASTIC CONCRETE OF THE BRIDGE DECK OR BRIDGE FLOOR OVERLAY WILL NOT BE ALLOWED. LONGITUDINAL GROOVES SHALL BE CUT INTO THE HARDENED CONCRETE SUFFACES CARING IS DONE AND BEFORE TRAFFIC IS ALLOWED ON THE SUBFACE. EACH GROOVE SHALL BE LINCH IN WIDTH, JINCH +J, INCH OR -J, INCH IN DEPTH, AND THE GROOVES SHALL BE UNIFORMLY SPACED AT 3 INCH HJ, INCH +J, INCH OR -J, INCH IN DEPTH, AND THE GROOVES SHALL BE UNIFORMLY SPACED AT 3 INCH HJ, INCH HJ, INCH SUBFACE, CARL GROOVE SHALL BE LINCH IN WIDTH, JINCH +J, INCH OR -J, INCH IN DEPTH, AND THE GROOVES SHALL BE UNIFORMLY SPACED AT 3 INCH HJ, INCH HJ, INCH SUBJECT OF GROOVE TO CENTER OF GROOVE. LONGITUDINAL GROOVING WILL NOT BE REDUIRED IN THE AREA APPROXIMATELY 2 FEET ADJACENT TO THE CURBS. THE LONGITUDINAL GROOVING WILL BE PEID FOR A THE CONTRACT PRICE PER SQUARE YARD SOF LONGITUDINAL GROOVING WILL BE PAID FOR TUGNICIDINAL GROOVING IN CONCRETE 'SHALL BE FULL COMPENSATION FOR FURNISHING ALL EQUIPMENT AND LABOR REQUIRED TO GOROVE THE DECK IN ACCORDANCE WITH THESE PLANS AND CURRENT SPECIFICATIONS. THIS BRIDGE HAS BEEN CONVERTED FROM METRIC TO ENGLISH FOR DESIGN AND CONSTRUCTION. THE GRADING PLANS AND SURVEY REMAINED IN METRIC. DUAL 218'-O X 4O' PRETENSIONE PRESSED CONCRETE BEAM BRIDGE 50'-9 END SPANS INF'S MULLING SALL STATION 141464333 (& RELOCATED US.34) STATION 141649333 (& RELOCATED US.34) STATION 1416493494176 (& 10MAID) - HIGHWAY DIVISION DESIGN SPECEN D,
SIGNED BY N.KOTLERS CHECKED BY E.SOUHRADA	WAPELLO COUNTY	PROJECT NUMBER NHSX-034-7 (62)3H-90 SHEET NUMBER 2

GENERAL NOTES :

IT IS THE INTENT OF THESE PLANS TO CONSTRUCT DUAL 218'-O × 40' PRETENSIONED PRESTRESSED CONCRETE BEAM BRIDGES AT STATION (HIG-93.63 (ENGLISH) RELOCATED ON U.S. 34 AND STATION 24827-81.76 (ENCLISH) ON 100% 16.

THIS BRIDGE IS DESIGNED FOR HS20-44 LOADING PLUS 20 LBS, PER SQUARE FOOT OF

ROADWAY FOR FUTURE WEARING SURFACE. THE ROAD WILL BE CLOSED TO TRAFFIC DURING CONSTRUCTION. SEE TRAFFIC CONTROL PLAN NOTE ON THIS SHEET.

UTILITY COMPANIES WHOSE FACILITIES ARE SHOWN ON THE PLANS OR KNOWN TO BE WITHIN THE CONSTRUCTION LIMITS SHALL BE NOTIFIED BY THE BRIDGE CONTRACTOR OF THE STARTING DATE.

IT SHALL BE THE BRIDGE CONTRACTOR'S RESPONSIBILITY TO PROVIDE SITES FOR EXCESS EXCAVATED MATERIAL, NO PAYMENT FOR OVERHAUL WILL BE ALLOWED FOR MATERIAL

HAULED TO THESE SITES.

EXCAVATION QUANTITIES FOR THE PIER AND ABUTMENTS ARE BASED ON THE ASSUMPTION THAT ROADWAY EXCAVATION WILL HAVE BEEN COMPLETED PRIOR TO STARTING CONSTRUCTION OF THE

NORMAT EXCAVATION WILL HAVE BEEN COMPLETED PRIOR TO STARTING CONSTRUCTION OF THE THE BRIDGE CONTRACTOR SHALL PREBORE HOLES FOR ABUTMENT PILES, HOLES SHALL BE BORED TO THE ELEVATIONS SHOWN ON THE "LONGITUDINAL SECTION ALONG € APPROACH ROADWAY" ON DESIGN SHEET 2. PILES SHALL BE DRIVEN THROUGH THE HOLES TO AT LEAST THE SPECIFIED DESIGN BEARING.

THE BRIDGE CONTRACTOR IS TO INSTALL SUBDRAINS BEHIND THE ABUTMENTS, SEE DESIGN SHEET 29 FOR DETAILS.

DESIGN SHELL 29 FOR DETAILS. THE BRIDGE CONTRACTOR SHALL NOTE THE STANDARD ABUTMENT DETAILS HAVE BEEN MODIFIED TO OFFSET THE ABUTMENT FOOTING FROM THE WINGWALL TO AID IN TYING THE REINFORCING STELL BETWEEN THE FOOTING TO WINGWALL AND THE FOOTING TO BACKWALL.

THE BRIDGE CONTRACTOR IS ENCOUNDED TO TARGET AND THE FOULTING TO BRIDANLES. THE BRIDGE CONTRACTOR IS ENCOUNDED TO TAKE FULL ADVANTAGE OF SPECIFICATION 1105.15 -- VALUE ENGINEERING INCENTIVE PROPOSAL, A PAMPHLET AND CONCEPTUAL PROPOSAL FORW WILL BE AVAILABLE AT THE PRECONSTRUCTION CONFERENCE.

THE INFORMATION IN THE "BERM SLOPE LOCATION TABLE" PROVIDES THE LOCATION AND

ELEVATION OF FOUR POINTS WHICH CAN BE USED TO LEVEL OFF AND SHAPE THE BERMS TO THEIR FINAL DIMENSIONS. THE 'A' POINTS ARE LOCATED WHERE THE FINISHED GRADE OF THE BERM SLOPE (OR TOP OF SLOPE PROTECTION) MEETS THE EDGE OF DITCH, 'AI' AND 'A3' ARE LOCATED AT THE EDGE OF THE SLOPE PROTECTION, "A2 IS ALONG THE CONTENTIAL AND AS A ARE LOCATED AT THE EDGE OF THE SLOPE ATTENT ON THERE THE EXTENSION OF THE BERN SLOPE ALONG CHENTERINE OF APPROACH ROADWAY. TO IS LOCATED AT THE POINT WHERE THE EXTENSION OF THE BERN AT THE CENTERLINE OF APPROACH ROADWAY.

CONCRETE BARRIER RAILS PLACED USING THE SLIPFORM METHOD WILL REQUIRE THE USE OF A CLASS BR CONCRETE IN ACCORDANCE WITH ARTICLE 2513.03B OF THE STANDARD SPECIFICATIONS. CLASS D CONCRETE IS NOT PERMITTED FOR CONCRETE BARRIER RAILS PLACED USING THE SLIPFORM METHOD.

IF NECESSARY TO PREVENT DAMAGE TO THE END OF THE BRIDGE DECK OR BACKWALL FROM CONSTRUCTION EQUIPMENT, AN APPROPRIATE METHOD OF PROTECTION APPROVED BY THE ENGINEER SHALL BE PROVIDED BY THE BRIDGE CONTRACTOR AT NO EXTRA COST TO THE STATE.

GUARDRAIL IS TO BE PLACED BY OTHERS.

THE APPROACH FILLS AS SHOWN ARE NOT A PART OF THIS CONTRACT, BUT ARE THE AFTROACH FILLS AS SHOWN ARE NOT A PART OF THIS CONTRACT, BOT AND TO BE IN PLACE BEFORE ABUTMENT FILES ARE DRIVEN. THE BIRDGE CONTRACTOR IS TO LEVEL OFF AND SHAPE THE BERMS TO THE ELEVATIONS AND DIMENSIONS SHOWN, DRESSING OF SLOPES OUTSIDE THE BRIDGE AREA NOT DISTURBED BY THE BRIDGE CONTRACTOR SHALL BE PAID FOR AS EXTRA WORK.

w:\projects\90034060A94\BRF1nal\h900305.s08 \\NTPLTSVR1\Br1dge1Tif

rrysavy

NO. 12 90 30 10 12)	F	REINFORCING BAR LIST		XY C	OAT	ED
90 30 10	LENGTH	WEIGHT	BAR		SHAPE	ND.	LENGTH	WFIGHT
90 30 10	3'-11	49	6a1	SLAB TRANSV. TOP & BOTT.		489	42'-10	31,460
30 10	7'-2	673	602	SLAB TRANSV. TOP ENDS		403	VARIES	1,341
10	5'-10	183	603	SLAB TRANSV. BOTT. ENDS		40	VARIES	1,28
	10'-0	104						- j= 0
	5'-2	65	5b1	SLAB LONGITUDINAL, TOP & BOTT.		582	38'-6	23,37
48	10'-7	530						
			9b2	SLAB LONGITUDINAL @ PIER		92	28'-10	9,020
40	121 0	532					1	
4	2'-9	U.						
40	3'-5	143						
4	12'-1	50	5d6	ABUT, DIAPH, LONGIT, B.F.		16	24'-3	40
			5d7	PAVING NOTCH LONGIT.		8	24'-0	200
24	25'-3	1.740	8f1	ABUT. FOOTING LONGIT. B.F.		16	25'-8	1,096
20	10'-3	1,348	8.01	ABUT. VERT. B.F.		70	8'-6	1,589
8	8'-11	190	8g1 8g3	ABUT. DIAPH, VERT. B.F.		62	16'-6	2,731
8	8'-0	171	600	ABOL, DIACH, VENI, B.C.		02	0-01	2,131
0			51	TOP OF SLAB TRANSV. (AT RAIL)	-	524	6'-3	3,416
62	7'-5	1,228		TO OF DEREY INFROMENTAL INFILE	· ·	324	0-3	3,916
10	G'-7	396	5ki	PAVINC NOTCH TRANSV.	1	61	1'-9	317
			5k2	PAVING NOTCH TRANSV.	+	64	3'-5	228
56	6'-8	389					1	
8	4'-0	33	5pl	ABUTMENT HOOPS	_	128	10'-6	1,402
			6p3	ABUT.BOTT.AT PILES		28	6'-8	280
24	101-8	267	5p4	ABUT.HOOPS AT ENDS		8	11'-0	92
56	VARIES	263			-			
12	4'-11	39						
12	4 -11	12		L				
					_			
				BARRIER	RAIL - SEE DE	SIGN SH	T. NO. 27	11,986
				REINFORCING STEEL	(EPOXY COATEL)) - 1014	AL (LBS.)	90,225
			ES	TIMATED QUANTITIES	- SUPEF	RSTR	исть	IRE
18	38'-6	116	1	(ONE SUPERSTRUCTURE AND	TWO ABUTMEN	TS)		
36	1'-10	46						
C 117			L_	ITEM		UNIT		NTITY
. SHT.	NO. 22	1,140	STRU	CTURAL CONCRETE (BRIDGE)		CU.YDS	. 40)5.6
TOT	AL (LBS.)	9.404	REIN	FORCING STEEL EPOXY COATED		LBS.	90,	225
TU D	NE (EBS.)	8,404		FORCING STEEL	-	LBS.	8,4	04
				ICTURAL STEEL		LBS.	84	
_				ENSIONED PRESTRESSED CONCRETE BEAMS	LXD50	EACH	1	
ES	- C.	Y.		TENSIONED PRESTRESSED CONCRETE BEAMS	SEXD115	EACH	P	
		· •		S 20 EXCAVATION	0545.4	CU.YDS		
	-			x57 STEEL FURNISH 9 @ 95' W.A.; 9 @ RING PILING DRIVE 9 @ 95' W.A.; 9 @	9 90'E.A.	LIN.FT.		
	TOT			RING PILING DRIVE 9 @ 95' W.A.; 9 @ 90RED HOLES 9 Ø 15' W.A.; 9 @	SU E.A.	LIN,FT.		
		,4	PREE	JURED HOLES 3 ID IN: W.A. ; 9 K	2 (D F.A.	LIN.FI	2	no.
	97	.2					-	
		.4					-	
	50	2 1	<u> </u>					
		.2						
	50							
	50							
	50 50 23	J		DESIGNER	D 379 SKEW			
	23 22	,I 9					NSIO	
	23 22 7	.1 .9 .2		DUAL 218'-0 ×	: 40' PR	ETE		
	23 22 7	,I 9		DUAL 218'-0 ×	: 40' PR	ETE		
	23 22 7	.1 .9 .2		DUAL 218'-0 × PRESTRESSED COI 50'-9 END SPANS	: 40' PR	ETEI BEAM		GES
	23 22 7	.1 .9 .2		DUAL 218'-0 × PRESTRESSED COI 50'-9 END SPANS	40' PR	ETEI BEAM		GES
С.Ү.	23 22 7 12	.1 .9 .2		DUAL 218'-0 × PRESTRESSED COL 50'-9 END SPANS SUPERSTRUCTURE DE	: 40'PR NCRETE I TAILS - WH			GES
C.Y.	23 22 7 12	,1 ,9 ,2 ,0		DUAL 218'-0 × PRESTRESSED COL 50'-9 END SPANS SUPERSTRUCTURE DE	: 40'PR NCRETE I TAILS - WH		BRIC Interio UND BF	DGES R SPAN RIDGE
с.ү.	23 22 7 12	,1 ,9 ,2 ,0		DUAL 218'-0 × PRESTRESSED COI 50'-9 END SPANS SUPERSTRUCTURE DE STATION : 1416+93.83 (& REL STATION : 24382+81.76 (& IC	: 40'PR NCRETE I TAILS - WI OCATED U.S. 3- WA 16)	ETEI BEAM III6'-6 ESTBO	BRIC Interio UND BF	GES
C.Y.	23 22 7 12	,1 ,9 ,2 ,0		DUAL 218'-0 × PRESTRESSED COI 50'-9 END SPANS SUPERSTRUCTURE DE STATION : 1416+93.83 (& REL STATION : 24382+81.76 (& IC	: 40' PR NCRETE I TAILS - WI OCATED U.S. 3: WA IG) I O COU	ETEI BEAM III6'-6 ESTBOI 1) NTY	BRIC Interio UND BF JUL	OGES R SPAN RIDGE

PROJECT NUMBER NHSX-034-7 (62)--3H-90 WAPELLO COUNTY SHEET NUMBER 17 w:\projects\90034060A94\BRFinal\h900305.s16 \\NTPLTSVR1\Bridge1Tif rrysavy

27-APR-2005 09:49

REINFORCING BAR LIST - EPOXY COATED BAR LOCATION. SHAPE NO. LENGTH WEIGH 6al SLAB TRANSV. TOP & BOTT. 489 42'-10 31.46 SLAB TRANSV. TOP ENDS 602 42 VARIES 1,348 67 SLAB TRANSV. BOTT. ENDS 18 603 40 VARIES 1,284 104 6 5b1 SLAB LONGITUDINAL, TOP & BOTT 582 38'-6 23,37 530 9b2 SLAB LONGITUDINAL @ PIER 92 28'-10 9,020 - 11 143 5d6 ABUT, DIAPH, LONGIT, B.F. 24'-3 40 16 5d7 PAVING NOTCH LONGIT. 8 24'-0 200 8fl ABUT.FOOTING LONGIT.B.F. 16 25'-8 1,096 ABUT, VERT, 8-F 8g I 8g 3 70 8'-6 438 ABUT, DIAPH, VERT, B.F. 62 2,731 161-6 19 5]| TOP OF SLAB TRANSV. (AT RAIL) 171 524 6'-3 3,416 51/1 PAVING NOTCH TRANSV. 1,228 64 4'-9 396 5k2 PAVING NOTCH TRANSV. ι 61 3'-5 5p1 ABUTMENT HOOPS ⊐ 128 10'-6 389 1.40 . 6p3 ABUT.BOTT.AT PIL 28 6'-8 28 5p4 ABUT.HOOPS AT ENDS 8 111-0 267 263 39 BARRIER RAIL - SEE DESIGN SHT. NO. 27 11.98 REINFORCING STEEL (EPOXY COATED) - TOTAL (LBS.) 90.22 ESTIMATED QUANTITIES - SUPERSTRUCTURE 110 (ONE SUPERSTRUCTURE AND TWO ABUTMENTS) -46 ITEM UNIT QUANTITY 1,140 STRUCTURAL CONCRETE (BRIDGE) 406.2 REINFORCING STEEL EPOXY COATED LBS. 90,225 8.404 REINFORCING STEE LBS. 8,404 STRUCTURAL STEEL LBS 848 PRETENSIONED PRESTRESSED CONCRETE BEAMS LXD50 EACH 12 PRETENSIONED PRESTRESSED CONCRETE BEAMS SEXD115 EACH 210 CLASS 20 EXCAVATION CU.YDS. 9 @ 95' W.A.; 9 @ 95' E.A. LIN,FT HPIO×57 STEEL FURNISH 1710 1710 TOTAL BEARING PILING DRIVE 9 @ 95' W.A.; 9 @ 95' E.A. LIN, FT, PREBORED HOLES 9 Ø 15' W.A. : 9 Ø 15' F.A. LIN,FT 270 /1,4 71.4 DUAL 218'-0 × 40' PRETENSIONED 23.4 12.0 PRESTRESSED CONCRETE BEAM BRIDGES 50'-9 END SPANS 116'-6 INTERIOR SPAN SUPERSTRUCTURE DETAILS - EASTBOUND BRIDGE STATION : 1416+93.83 (€ RELOCATED U.S. 34) STATION : 24382+81.76 (€ IOWA IG)

JULY. 2005

WAPELLO COUNTY IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION

7'-2

5'-2

7'-5

6'-7

4'-C

97.2

50.2

50.2

23.2

7,2

406.2

DESIGN SHEET NO. 17 OF 31 FILE NO. 29907 DESIGN NO. 305 PROJECT NUMBER NHSX-034-7 (62)--3H-90 SHEET NUMBER 18

27-APR-2005 09:49

rrvsavv

w:\projects\90034060A94\BRF1nal\h900305.s17 \\NTPLTSVR1\Br1dge1Tif

							.E (EAM	LINE		UNUT		LVAIR	ON2 -	- WES	STBOL	JND	BRID	GE	(SEE N							
		€ W.ABUT. BEARING						€ PIE BEAR													€ PIEF BEAR	R #2 INGS						€ E.ABUT. BEARING
BEA	M LINE A	1	2	3	4	5	6	7	8	9 15.78	10	11	12	13	14	15	16 15.75	17	18 15.61	19 15.51	20	21	22	23	24 15.30	25 15 . 27	26 15.22	27
BEAN	M LINE B	15.94	15.94	15.93	15.93	15.91	15,90	15,88	15,87	15.93	15.97	15,99	16.00	15,99	15.97	15.94	15.89	15.82	15.74	15.65	15.54	15.53	15.51	15,47	15,44	15.40	15.35	15.31
BEAN	M LINE C	16.08 16.16	16.08 16.15	16.08 16.15	16.07 16.14	16.06 16.13	16,04 16,11	16.02 16.09	16.02 16.09	16,07	16.11 16.17	16,13 16,20	16,14	16,13 16,20	16.11 16.19	16.08 16.14	16.03 16.09	15.96 16.02	15.88 15.91	15.78 15.85	15.67 15.74	15.67 15.73	15.64 15.70	15.61 15.67	15.57 15.63	15.53 15.59	15.49 15.55	15.44
	M LINE E M LINE F	16.01 15.86	16,01	16,00	15.99	15.98 15 . 82	15.96 15 . 81	15,94	15.93	15,99	16.02	16.05 15 . 89	16.05 15 . 90	16.05	16.02	15,99 15,83	15.94	15,87	15.79	15.69	15,58 15,42	15,57	15,54	15,51 15 , 35	15.47	15,43 15 , 27	15,39 15 , 22	15.34
· · ·		· · ·	ADD 800.00	· ·							•			II							·•							
		€ W. ABUT.						€ PIE	D #1	MIS	SCELL	ANEC	DUS	DAT	TA	ΤA	BLE				6 DID	R #2	1					C
BE4	M LINE	EEARING	. 1		·			BEAR	INGS	r										(0	BEAR	INGS						E.ABUT. BEARING
TICIPATED		1	2	3	4	5	6	7	8	3	10		12	13	14	15	16	17	18	[9	20	21	22	23	24	25	26	27
FLECTION DUE SLAB (In.)	IΙΔ	0	ic	0		å	I IG	n	0	ó	1 <mark>9</mark> 16	2 9	2 <u> </u>	23	2 <mark>13</mark> 2 16	23	22	2 ¢	l <mark>is</mark>	6	0	n	ц.	6	ů 0	a	l Io	0
DSS SLOPE A,E	B,C,D,E,F											+/	- 16															
LOWABLE MAX													2 - 16															
·····																												
				CROSS SLOPE	+		TOP OF S	.AB 										TC CC DE FI	DNSISTENT ESIGN SHE EVATION"	E WITH TH TET 18, SU THIS VA	HAUNCH R E SPACING BTRACT TH LUE WILL B	S SHOWN I HE SURVEY BE THE HA	ON THE "T YED BEAM AUNCH NEEL	OP OF SL SHOT FRO DED (SEE	AB ELEVAT M THE "BE "FIFID HA	TONS LAYC AM LINE H UNCH" IN H	UT" ON HAUNCH HAUNCH	
			BE DE HA SL AI	TE: DGE SEAT M DEFLEC M HAUNCH ERMINED JNCH ELEV JNCH VALL PE ADJUS	TIONS. TH WITHIN I JSING SUI ATION" DA ES ARE G TMENT" VA FRACTOR	HAUI ONS ARE : DESIGN P. RVEYED T TTA. ALLO SIVEN IN ALUES FRG IN DETER	NCH SET BASE DGE SEAT ARAMETE OP OF BE WABLE MISS OM THE "MISS OM THE "	DETAI	DRETICAL OVIDE A T HAUNCHE TIONS AND D MINIMUM IS DATA" T EOUS DATA	"BEAM LIN	- VE SS							TO CO EL DI TH RE TH	D CALCUL) DNSISTENT ESIGN SHE LEVATION" ETAIL), T HICKNESSE EQUIRED. HE MISCEL	F WITH TH EET 18, SU THIS VA THE "BEAM IS AND AN IF THE FI LLANEOUS	E SPACING: JBTRACT TH	S SHOWN I HE SURVEY BE THE HA NCH ELEVA DEFLECTI H EXCEEDS E, ADJUST	ON THE "T YED BEAM AUNCH NEEL ATION" INCL IONS. NO # S THE MAX FMENTS TO	OP OF SL SHOT FRO DED (SEE LUDES AD ADDITIONAL (MUMS AN	AB ELEVAT M THE "BE "FIELD HA JUSTMENTS L CALCULA	TONS LAYC AM LINE H UNCH" IN H FOR SLAB TIONS ARE IS INDICAT	UT" ON HAUNCH HAUNCH	
			BR BE DE HA HA SL·	TE: DGE SEAT M DEFLEC INCH ELEY INCH ELEY INCH VALU IPE ADJUS IPE ADJUS	TIONS. TH WITHIN I JSING SUI ATION" DA ES ARE G TMENT" VA FRACTOR	HAUI ONS ARE : DESIGN P. RVEYED T TTA. ALLO SIVEN IN ALUES FRG IN DETER	NCH SET BASE DGE SEAT ARAMETE OP OF BE WABLE MISS OM THE "MISS OM THE "	DETAI	DRETICAL OVIDE A T HAUNCHE TIONS AND D MINIMUM IS DATA" T EOUS DATA	HEORETICAL SARE "BEAM LIN I "FIELD ABLE, "CRO " TABLE W	- VE SS	H. Le A	OCAT	H LOCA ION AS UMBER	S TH	E EN	CIRCL	T THE ED L	D CALCUL. DOSISTETIN SDISISTEN ENATION TAIL). T HICKNESSE GUIRED. HICKNESSE GUIRED. HICKNESSE GUIRED. HICKNESSE HICKNESSE SAME TTEF	I WITH TH ETT IS, SU THIS VA INFE "BEAM IS AND AN IS AND AN IS THEFIL LANEOUS NFORCEME	E SPACING BERACT TH LUE WILL B LINE HAUM TICIPATED ELD HAUNCI DATA TABL	S SHOWN I HE SURVEY BE THE HA NCH ELEVA DEFLECTI H EXCEEDS E, ADJUST	ON THE TY YED BEAM ALUNCH NEEL ATION'INCI IONS, NO A SITHE MAAS TMENTS TO ED.	DUAI SHOT FRO DED (SEE LUDES ADA ADDITIONAN THE GRAC DUAI PREST SO:-9 EN SUPEI STATION STATION	AB ELEVAT IM THE "BE "FIELD HA JUSTMENTS L CALCULA DO MINIMUM DE OR ADD DE OR ADD DE OR ADD IL 218 TRESSE ID SPANS RSTRUE : 1416+93.3 : 24382+8 N DE PARTMENT M	DESIGN FC DESIGN FC CONCATIONAL DESIGN FC CONCATIONAL DESIGN FC CONCATIONAL DESIGN FC CONCATIONAL DESIGN FC CONCATIONAL CONCATIONAL DESIGN FC CONCATIONAL DESIGN	DIT ON ALUNCH ALUNCH ALUNCH TED IN TED IN TED IN S CONTROL S C CONTROL S C CONTROL S C C C C C C C C C C C C C C C C C C	(ем (R.A.) PRETEN: E BEAM IIS-6 II ILS – WES ILS – WES OUNTY TION – НІСЯНАХ DESIG

rrysavy

	- I	🖞 W. ABUT.							ER #I									IND	BRID		(SEE N							€ E.ABUT.
		BEARING	2	3	4	6	6		RINGS		10		1 10	(3		15	12	17	10	61	BEAR	INGS		07	24	07	20	BEARING
BE	AM LINE G	15.83	15.82	15.81	4	5 15.78	6	15.73	8	9 15.77	10	15.82	12	13	14	15.74	16	17	18	19	20	21	22 15.26	23	24	25 15.14	26	27
	AM LINE H	15.97	15.96	15.95	15.94	15.92	15.90		15.86	15.91	15.94	15.96	15.96	15.95	15.92	15.87	15.82	15.74	15.66	15.56	15.44	15.43	15.40	15,36	15.32	15.27	15.22	15.16
	AM LINE J	16.11 16.03	16.10 10.02	16.09 16.01	16.07 15.99	16.06 15.97	16.03		16.00	16.04 15.96	16.08 15.99	16.09 16.01	16.09 16.01	16.08 15.99	16.05 15.00	16.01 15.92	15,95	15.88	15.79	15.68 15.59	15,57	15.56	15.53 15.43	15.49 15.40	15.44	15.40 15.30	15.35	15.29
	AM LINE L AM LINE M	15,88	15,87	15,85	15,84	15,82	15,79	-	15.76	15.80 15,65	15.83 15.68	15.85		15.83	15,80	15.76	15.70 15 . 54	15,62 15,46	15.54	15.43 15.27	15.31 15,15	15,31	15,27	15.23	15.19	15.14 14.97	15.09	15.03
DE.	AM LINE M		-				15-64	10.61	15.60	10,60	10.00	12.63	10.69	15.67	15,64	12.60	10,04	15.46	15.37	13,21	13,15	15.14	10,11	10.01	15.02	14.57	14.52	14.00
	L	NUTE : A	DD 800.00	TO ALL	LEVATIO	v5.																						
		. 1								MI	SCEL	LANE	ous	DAT	A	TA	BLE				0							
BE	AM LINE	€ W.ABUT. BEARING							ER #1 RINGS												BEAR	ER #2 TNGS						€ E. ABUT. BEARING
CIPATED		L	2	3	4	5	6	7	8	3	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
ECTION DUE SLAB (In.)	ΔLI	0	l K	8	ł	j Q	l is	0	0	7	l g	2 🖁	2 <u>1</u>	23	213 216	23	2^{+}_{2}	24	1 8	7	0	n	l Ke	ł	l o	ł	l Io	n
SS SLOPE G	,H,J,K,L,M							1				+/	/-36															
STMENTS																												
WABLE MA	AX. ALL												2															
	IN. ALL												-16															
				CROSS SLOPE		104	TOP OF	SLAB	41 160) 31 172	∞ ¥								TO CO DE EL	ONSISTENT ESIGN SHE LEVATION"	F WITH TH EET 20, SU , THIS VA	E SPACING IBTRACT T LUE WILL	S SHOWN (HE SURVEY BE THE HA	ON THE "TO (ED BEAM AUNCH NEED	OP OF SLA SHOT FRO DED (SEE	SURVEY THE AB ELEVATI M THE "BE- "FIELD HAD WISTMENTS	IONS LAYO AM LINE F UNCH" IN F	UT" ON HAUNCH HAUNCH	
			BE DE HA SL A II	TE: IDGE SEA' AM DEFLE AM HAUNC TERMINED UNCH ELE UNCH ELE UNCH ZADJU OPE ADJU O THE COU	H WITHIN USING SU /ATION" D UES ARE STMENT" V ITRACTOR	HAU DUNS ARE THESE BRI DESIGN F INEVED D ATA. ALLO GIVEN IN ALUES FR	INCH SET BAS DGE SEA PARAMETI TOP OF O WABLE T THE "MINING	DETA DETA ED ON THE IS, ACTUA SECELANEO MISCELLANEO	CORETICAL ROVIDE A L HAUNCHE ATIONS AN ND MINIMU US DATA"	CAMBER AN THEORETICA S ARE) "BEAM LI	NE DSS TILL							TO CO EL DI TH RE TH	0 CALCUL ONSISTENT ESIGN SHE LEVATION" ETAIL), 1 HICKNESSE EQUIRED. HE MISCEL	T WITH THE ET 20, SL THIS VA THE "BEAM ES AND AN IF THE FI	E SPACING IBTRACT T LUE WILL LINE HAUI TICIPATED ELD HAUNC DATA TABL	S SHOWN (HE SURVEY BE THE HA NCH ELEVA DEFLECTI H EXCEEDS LE, ADJUST	ON THE "TO YED BEAM AUNCH NEED (TION" INCL ONS. NO A S THE MAX MENTS TO	OP OF SLA SHOT FRO DED (SEE LUDES ADJ DDITIONAL IMUMS ANI	AB ELEVATI M THE "BE	IONS LAYO AM LINE F UNCH" IN F FOR SLAB TIONS ARE S INDICAT	UT" ON HAUNCH HAUNCH	
			BR BE DE HA HA SL	TE: IDGE SEA' AM DEFLE AM HAUNC TERMINED UNCH ELE UNCH ELE UNCH ZADJU OPE ADJU O THE COU	H WITHIN USING SU /ATION" D UES ARE STMENT" V ITRACTOR	HAU IONS ARE HESE BRI RVEVED T ATA, ALLIS GIVEN IN ALUES FR IN DETER	INCH SET BAS DGE SEA PARAMETI TOP OF O WABLE T THE "MINING	DETA DETA ED ON THE IS, ACTUA SECELANEO MISCELLANEO	CORETICAL ROVIDE A L HAUNCHE ATIONS AN D MINIMU US DATA"	CAMBER AN THEORETICA S ARE "BEAM LI M TFIELD TABLE. "CRC AT TABLE W	NE DSS TILL	H L A	OCAT.	H LOCA ION AS UMBER	S THE	E ENG	CIRCL		CALCUL: ONSISTENS: ESIGN SHE EVATION: ETAIL). 1 HICKNESSE EQUIRED. HE MISCEL AUNCH REI AUNCH REI	I WITH THI ETT 20. SJ. THIS VAT THE "BEAM IS AND AN IS AND AN IS THE FIL LANEOUS INFORCEMENT	E SPACING IBTRACT T LUE WILL LINE HAUI TICIPATED ELD HAUNC DATA TABL	S SHOWN (HE SURVEY BE THE HA NCH ELEVA DEFLECTI H EXCEEDS LE, ADJUST	ON THE "TI CE BEAM VEC BEAM JUNCH NEEC JUNT TION" INCL ONS, NO A S THE MAX MENTS TO D.	DUAL PREST Station DUAL PREST S0'-9 ENI STATION	AB ELEVATI M THE "BE. "FIELD HAL UISTMENTS. CALCULAI D MINIMUME D OR ADDI CRESSE D SPANS CSTRUC 24382*81 24382*81 W DEPARTNEI	DESIGN FO DESIGN FO CONCATIONAL DESIGN FO CONCATIONAL	R 23° SK AUNCH ED IN ED IN NCRETI DETA UCRETI UCATED U. WA IG 2 LO C(ANSPORTA	PRETEN E BEAM III6'-6 LS - EA

ώ÷

COATED.

EPOXY

Ê,

CHANGED

4b1

BARS

ώÇ

		ESTIMATED ROADWAY QUANTITIE:	2	10-28-97		POLLUTION PREVENTION PLAN
EM	1 2301-0685	IDE ITEM 120 BR IDGE APPROACH SECTIOS, DOUBLE-RE INFORC 110 IRAFFIC CONTROL 020 SILT FENCE	UNIT TOTAL SY 963. LS 11 LF 1929	AS BUILT QUAN.		All contractors/subcontractors shall conduct their operations in a manner that minimizes erosion and prevents sedime from isaving the highway right-of-way. The prime contractor shall be responsible for compliance and implementation Pollution Prevention Plan (PPP) for their entire contract. This responsibility shall be further shared with subcontractor whose work is a source of potential pollution as defined in this PPP.
		· ESTIMATE REFERENCE INFORMATIO	N ·	100=4A 04-15-03		This Pollution Prevention Plan (PPP) is for the construction of a 4 lane facility in Wapello County around the North side Agency. This PPP covers approximately 420 acres with an estimated 309 acres being disturbed. The portion of the PPP covered by this contract has 2 acres disturbed. The PPP is located in an area of one type of soil association soil association (Lindley-Keswick-Weller). The estimated average SCS number for this PPP after completion will be 75
EM	ITEM CODE	DESCRIPTION				Refer to NHSX-034-7(119)-3H-90,NHSX-034-7(059)-3H-90 (WAPELLO CO.) plan sets for locations of typical slope ditch grades, and majorstructural and non-structural controls. A copy of this plan will be on file at the project engineer
	2301-0685120	BRIDGE APPROACH SECTIOS, DOUBLE-RE INFORC				office. Runoff from this work will flow into various unnamed ditches and waterwayswhich flow into the Sugar Creek and Dee Mohines River. POTENTIAL SOURCES OF POLLUTION:
2528-8445	110	See Tab. 112-6, Sheet C.02 for loactions and details				Site sources of pollution generated as a result of this work relate to sits and sediment which may be transported as a of a storm event. However, this PPP provides conveyance for other (non-project related) operations. These other operations have storm water runoff, the regulation of which is beyond the control of this PPP. Potentially this runoff or contain various pollutants related to site-specific land uses. Examples are:
2602-0	000020	See Traffic Control Plan on Sheet C.01 SiLT FENCE Tab quantity multiplied by 1.5. Use additional silt fence quantit				Rural Agricultural Activities: Runoff from agricultural land use can potentially contain chemicals including herbicides, pesticides, fungicides and fertilizers.
		replacements. Refer to Tab. 100-17 on sheet C.O2 for locations an	d detials.			Commercial and Industrial Activities: Runoff from commercial, industrial, and commerce land use may contain constituents associated with the specific operation. Such operations are subject to potential leaks and spills which could be commingled with run-off from the f Pollutants associated with commercial and industrial activities are not readily available since they are typically propriet
Co Tr	. Rd. V43 will be	TRAFFIC CONTROL PLAN	238 to coordinate his within the same a	s operations with those of area. Other work in progr include construction of f ect 1197-3H-90	203-2 contractor vill be required other contractors working sess during the same period the following projects: Type of Work GRADING PROJECT GRADING PROJECT	2. CONTROLS At locations where runoff can move officite, eilt fence shall be placed along the perimeter of the areas to be disturbed to beginning grading, excavation or clearing and grubbing operations. Vegetation in areas not needed be discurbed to be preserved. As areas reach their final grade, additional silt knows, silt basins, intercepting diches, sod flumes, ield bridge end drains, and earth dikes shall be installed as specifical the places shall be stabilized by the project enginee. This will include using silt forces as eithch checks and to protect interkes. Temporary stabilizing seeding shall be comple as the disturbed areas are constructed. If construction adivity is not planned to occur in a disturbed area for at least 2 days, the area shall be stabilized by temporary seeding or mulching within 14 days. Other stabilizing methods shall be outside the seeding time period. This work shall be done in accordance with Section 2502 of the Standard Specification. If the work involved is not
		this project shall be in accordance with Standard Road Plans RS-1, RS-2, RS-				applicable to any contract items, the work shall be paid for according to Article 1109.03 paragraph B.
- 15	5, RS-26A, RS-	27, RS-61 AND RS-62. For additional complementary information, refer to Par nform Traffic Control Devices and the current Standard Specifications.	Ê VI			As the work progresses, additional erosion control items may be required as determined by the contractor after field investigation. The contractor will complete the construction with the establishment of permanent perennial vegetation distributed ensures.
-15 th	, RS-26A, RS- e Manual on (27, RS-61 AND RS-62. For additional complementary information, refer to Par				As the work progresses, additional erosion control items may be required as determined by the contractor after held investigation. The contractor will complete the construction with the establishment of permanent perennial vegetation disturbed areas.
i-15, the me con	RS-26A, RS- Manual on t ntractor sha	 RS-61 AND RS-62. For additional complementary information, refer to Par inform Traffic Control Devices and the current Standard Specifications. 	L VI			investigation. The contractor will complete the construction with the establishment of permanent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposel of unused construction materials and construction material wastes shall compty with applicable st and local waste disposal, sanitary sever, or septic system regulations. In the event of a conflict with other government
i-15, the ie co I tra iere	RS-26A, RS- Manual on U ntractor sha ffic control possible. all	27, RS-61 AND RS-62. For additional complementary information, refer to Par inform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area.	L VI	ROADWAY DES		investigation. The contractor will complete the construction with the establishment of permanent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable st and local waste disposal, samitary sever, or septic system regulations. In the event of a conflict with other government laws, rules and regulations, the more restrictive laws, rules or regulations shall apply. APPROVED STATE OR LOCAL PLANS:
i-15, the co I tra iere ishoi ie lo	RS-26A, RS- Manual on U ntractor sha ffic control possible. all ulder. cation for :	27, RS-61 AND RS-62. For additional complementary information, refer to Par inform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area. devices shall be furnished, erected, maintained, and removed by the contractor	r.	I hereby certify that this my direct personal supervi	IGN plan uss prepared by mo or under sion and that I am a duly licensed or the laws of the State of lova.	investigation. The contractor will complete the construction with the establishment of permanent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable st and local waste disposal, samilary sever, or septic system regulations. In the event of a conflict with other governmen laws, rules and regulations, the more restrictive laws, rules or regulations shall apply.
	-15, RS-26A, RS- the Manual on t e contractor sha i traffic control ere possible, all shoulder. e location for : proved by the ere e engineer may nent edge lines e, center lines,	27, RS-61 AND RS-62. For additional complementary information, refer to Parnuform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area. devices shall be furnished, erected, maintained, and removed by the contract post mounted signs shall be placed at least 2.0 ft beyond the curb or edge torage of equipment by the contractor during non-working hours shall be :	r. 15 16 16 16 16 16 16 16 16 16 16 16 16 16	I hereby certify that this my direct personal supervi Professional Engineer und Sundation R. DAVID Particle of Land Here	plan vas prepared by me or under sion and that I am a duly licensed er the laws of the State of Iova. 4(405) SKOGERBOE	investigation. The contractor will complete the construction with the establishment of permanent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable st and local waste disposal, samitary sever, or sceptic system regulations. In the event of a conflict with other governmen laws, rules and regulations, the more restrictive laws, rules or regulations shall apply. APPROVED STATE OR LOCAL PLANS: During the course of this construction, it is possible that situations will arise where unknown materials will be encounte When such situations are encountered, they will be handled according to all federal, state, and local regulations in effit When such situations are encountered, they will be handled according to all federal.
ie ie ie ie ie ie ie ie ie ie ie ie ie i	15, R5-26A, R5- the Hanual on U contractor sha traffic control re possible, all shoulder. I location for : roved by the et engineer may ent edge lines is, center lines, current Stande posed stan spar	27, RS-61 AND RS-62. For additional complementary information, refer to Parinform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area. devices shall be furnished, erected, maintained, and removed by the contractor post mounted signs shall be placed at least 2.0 ft beyond the curb or edge torage of equipment by the contractor during non-working hours shall be a gineer in charge of construction. equire modifications to the pavement marking details shown. Conflicting pe center lines, or lane lines shall be removed. As applicable, permanent edg and lane lines shall be paced before the removed. As applicable, permanent tagf and lane lines shall be paced before the removed.	r. ss e t. t. t. t. t. t. t. t. t. t.	I hereby certify that this my direct personal supervi Professional Engineer und Sundation R. DAVID Particle of Land Here	plan was prepared by no or under sion and that 1 an a duly licensed er the laws of the State of lows. $\underbrace{\Psi(405)}_{\text{Oute}}$ SKOGERBOE a is December 31, 20 C/2	investigation. The contractor will complete the construction with the establishment of permianent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable st and local waste disposal, samitary sever, or septic system regulations. In the event of a conflict with other government laws, rules and regulations, the more restrictive laws, rules or regulations shall apply. APPROVED STATE OR LOCAL PLANS: During the course of this construction, it is possible that situations will arise where unknown materials will be encounter the time. 4. MAINTENANCE The contractor is regulated to maintain all temporary erosion control measures in proper working order, including dean repeating, or replacing them throughout the contract period. Cleaning of silt control devices shall begin when the featur have tost od/s of their capacity. 5. INSPECTIONS
RS of . Th . Al . Wh of . Th ap . Th mat In Th . Pr . Pe no	-15, RS-26A, RS- the Manual on (e contractor sha traffic control ere possible, all shoulder. e location for i proved by the ere e engineer may nent edge lines es, center lines, e current Stande oposed sign space onos or to prever manent signing	27, RS-61 AND RS-62. For additional complementary information, refer to Parmiform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area. devices shall be furnished, erected, maintained, and removed by the contractor post mounted signs shall be placed at least 2.0 ft beyond the curb or edge torage of equipment by the contractor during non-working hours shall be a gineer in charge of construction. equire modifications to the pavement marking details shown. Conflicting pe center lines, or lane lines shall be placed before the readway is returned to normal traffi of Specifications and supplemental specifications shall equip.	r. ss e t. b Pages or sheets cov	i horeby certify that this my direct personal supervi- Pripfessional Engineer and Standard W. R. DAVID Perstad or Typed Name My license reneval data	plan was prepared by no or under sion and that 1 an a duly licensed er the laws of the State of lows. $\underbrace{\Psi(405)}_{\text{Oute}}$ SKOGERBOE a is December 31, 20 C/2	investigation. The contractor will complete the construction with the establishment of permianent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable st and local weste disposal, samitary sever, or septic system regulations. In the event of a conflict with other governmen laws, rules and regulations, the more restrictive laws, rules or regulations shall apply. APPROVED STATE OR LOCAL PLANS: During the course of this construction, it is possible that situations will arise where unknown materials will be encounted the time. 4. MAINTENANCE The contractor is required to maintain all temporary encoion control measures in proper working order, including clean repairing, or regulating them throughout the contract period. Cleaning of all control devices shall begin when the featu neve tost 60% of their capacity.
RS of 3. TH 4. AI 5. WH 5. WH 6. TH mm 10. Pr 10. Pr 10. Pr	-15, RS-26A, RS- the Manual on (e contractor sha traffic control ere possible, all shoulder. e location for : proved by the er e engineer may ment edge lines es, center lines, e current Stando opposed sign spac- coms or to preve mmanent signing e engineer.	27, RS-61 AND RS-62. For additional complementary information, refer to Parinform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area. devices shall be furnished, erected, maintained, and removed by the contract post mounted signs shall be placed at least 2.0 ft beyond the curb or edge torage of equipment by the contractor during non-working hours shall be - gineer in charge of construction. equire modifications to the pavenent marking details shown. Conflicting te center lines, or lane lines shall be removed. As applicable, permanent and lane lines shall be placed before the roadway is returned to normal traffi disputifications on applications to the pavenent marking details shown, conflicting te center lines, or lane lines shall be removed. As applicable, permanent and lane lines shall be placed before the roadway is returned to normal traffi disputifications of the motorist's view of perments signing. that conveys a message contrary to the message of the temporary signing at the working conditions shall be covered by the contractor when directed to in the traffic control plan shall be reviewed for approval by RCE	r. ss e t. b Pages or sheets cov	L horeby certify that this my direct personal super/ Perfectional Engineer und Saddaw R, DAVID Ponted ar Typed time My license renewal data ered by this seels <u>C.01-C.C</u>	plan vas prepared by me or under ston and that I am a duly licensed er the laws of the State of Iova. 4(4(05) SKOGERBOE) is December 31, 20 C/2 12 N NO. 305	investigation. The contractor will complete the construction with the establishment of permianent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable st and local waste disposal, samilary sewer, or septic system regulations. In the event of a conflict with other government laws, rules and regulations, the more restrictive laws, rules or regulations shall apply. APPRVED STATE OR LOCAL PLANS: During the course of this construction, it is possible that situations will arise where unknown materials will be encounting the time. 4. MAINTENANCE The contractor is requiring the material and temporary encolon control measures in proper working order, including clean repeating, or replacing the mitroughout the contract period. Cleaning of silt control devices shall begin when the featu nave tost 50% or their capacity. 5. INSPECTIONS Inspections shall be made jointly by the contractor and the contracting authority every seven calendar days and after rain event that to 5 in or greater. The contractor shall immediately begin corrective action and all deficiencies found. findings of this inspection shall be recorded in the project day. This PPP may be revised based on the lindings of the inspection. The contractor shall be conducted to the integreent.
RS of 3. TH 4. AI 5. WH 5. WH 6. TH mm 10. Pr 10. Pr 10. Pr	-15, RS-26A, RS- the Manual on U e contractor sha i traffic control ere possible, all shoulder. e location for i proved by the ere e engineer may nent edge lines es, center lines, e current Stande oposed sign space ons or to prever manent signing t applicable to e englineer.	27, RS-61 AND RS-62. For additional complementary information, refer to Parinform Traffic Control Devices and the current Standard Specifications. Il coordinate traffic control with other projects in the area. devices shall be furnished, erected, maintained, and removed by the contract post mounted signs shall be placed at least 2.0 ft beyond the curb or edge torage of equipment by the contractor during non-working hours shall be - gineer in charge of construction. equire modifications to the pavenent marking details shown. Conflicting te center lines, or lane lines shall be removed. As applicable, permanent and lane lines shall be placed before the roadway is returned to normal traffi disputifications on applications to the pavenent marking details shown, conflicting te center lines, or lane lines shall be removed. As applicable, permanent and lane lines shall be placed before the roadway is returned to normal traffi disputifications of the motorist's view of perments signing. that conveys a message contrary to the message of the temporary signing at the working conditions shall be covered by the contractor when directed to in the traffic control plan shall be reviewed for approval by RCE	r. ss e t. b Pages or sheets cov	L horeby certify that this my direct personal super/ Perfectional Engineer und Saddaw R, DAVID Ponted ar Typed time My license renewal data ered by this seels <u>C.01-C.C</u>	plan was prepared by no or under ston and that I am a duly licensed er the laws of the State of lowe. $\underbrace{4 4 05}_{bete}$ SKOGERBOE s is December 31, 20 Clo	investigation. The contractor will complete the construction with the establishment of permianent perennial vegetation disturbed areas. 3. OTHER CONTROLS Contractor disposal of unused construction materials and construction material wastes shall comply with applicable stand local waste disposal, sanitary sever, or septic system regulations. In the event of a conflict with other governmentaws, rules and regulations, the more restrictive laws, rules on regulations shall apply. APPROVED STATE OR LOCAL PLANS: During the course of this construction, it is possible that situations will arise where unknown materials will be encounter When such situations are encountered, they will be handled according to all federal, state, and local regulations in effect the time. 4. MAINTENANCE The contractor is required to maintain all temporary erosion control measures in proper working order, including clean repairing, or replacing them throughout the contract period. Cleaning of all control devices shall begin when the feature have lost 30% of ther capacity. 5. INSPECTIONS Inspections shall be made jointly by the contractor and the contracting authority every seven calendar days and after rain event that is 0.5 in. or greater. The contractor shall mediately begin corrective action on all eldiciences found, findings of this inspection. All contractor shall be morecided in the project diary. This PPP may be revised based on the findings of the inspection. 8. NON-STORM DISCHARGES The indudes subsurface drains (i.e. longitudinal and standard subdrains), slope drains and bridge end drains. The vertex

C.01

								Road Plans.						*Not a bi	d item
Location			Ap	proach Pave	ament				Subdr	ain					
Bridge Station	End	(T) Thickness	Pay Length	Non-Reinf. Pavement Area	Reinf. Pavement Area	Double- Reinf, Pavement Area	Fixed or Movable Abutment	Perforated	Subdrain Outle		Porous Backfill	Class 'A' * Crushed Stone Backfill	* Modified Subbase	* Polymer Gråd	Remark
		Inches	Feet	Sq. Yds.	Sq. Yds.	Sq. Yds.	ForM	Lin. Ft.	Station	Side	Cu. Yds.	Cu. Yds.	Tons	Sq. Yds.	
1416+93.83	W	12	71.52	83.96	55.97	101.30	М	137.80	1415+00.56	lι	75.86	1,31	257.9	276.3	
WB US34.	E	12	70.87	83.96	55.97	100.70	М	137.80	1418+45.37	L	85.02	1.31	257.9	276.3	
1416+93.83	W	12	70.21	83.96	55.97	100.70	м	196.85	1415+67.62	R	71.94	1.31	257.9	276.3	
EB US34	E	12	71.85	83.96	55.97	100.70	M	118.11	1418+86.06	R	53.63	1.05	257.9	276.3	
	-									-					
										+					
					-										
	1				1					1					
										1					

TABUL	TABULATION OF SILT FENCES						
Station t	Location o Station	Side	Length (Lin. Ft.)	Remarks			
1415+18.88	1417+94.40	BOTH	1286	BERM AREAS			

		RD ROAD		E	105:4 12-03-96
	1		1	instruction vark or	
NUMBER	DATE	NUMBER	DATE	NUMBER	DATE
RH-50	4/19/2005				
RH-51	4/20/2004				
RH-52	4/19/2005				
RK-20(1)	4/19/2005				
RK-20(2)	4/19/2005				
RK-20(3)	4/19/2005				
RK-21	4/19/2005				
RK-30	4/20/2004				
RM-37	4/27/1999				

					DES	IGN NO. <u>3</u> E NO. 299
					FILE	E NO. 299
METRIC	IOWA DDT * OFFICE OF DESIGN	WAPELLO COUNTY	PROJECT NUMBER	NHSX-034-7(62)3H-90		SHEET NUMBER

Appendix C

Moment Magnification Calculations

Moment Magnification Calculations for Load Combination 1010 for Bottom of Column 1 Aashto Lrfd 5.7.4.3 and 4.5.3.2.2b

Factored Load Reactions from RC-Pier

Column 1	Column 2	Column 3
$F_{y1} = 727.65 \text{ k}$	$F_{y2} = 709.02 \text{ k}$	$F_{y3} = 597.08 \text{ k}$
$M_{x1} = 313.24 \text{ k*ft}$	$M_{x2} = 311.86 \text{ k*ft}$	$M_{x3} = 313.24 \text{ k*ft}$
$M_{z1} = -25.43 \text{ k*ft}$	$M_{z2} = -11.38 \text{ k*ft}$	$M_{z3} = 23.60 \text{ k*ft}$

RC-Pier assumes minimum eccentricity according to Aashto Std. Spec. 8.16.5.2.8 $e_{min} = 0.6 + 0.03*h = 0.6 + (0.03)*(30") = 1.5" = 0.125'$

$$\begin{split} M_{x_min1} &= M_{z_min1} = (F_{y1})^*(e_{min}) = (727.65 \text{ k})^*(0.125') = 90.956 \text{ k*ft} \\ M_{x_min2} &= M_{z_min2} = (F_{y2})^*(e_{min}) = (709.02 \text{ k})^*(0.125') = 88.628 \text{ k*ft} \\ M_{x_min3} &= M_{z_min3} = (F_{y3})^*(e_{min}) = (597.08 \text{ k})^*(0.125') = 74.635 \text{ k*ft} \end{split}$$

Factored Loads Considered

Column 1	Column 2	Column 3
$F_{y1} = 727.65 \text{ k}$	$F_{y2} = 709.02 \text{ k}$	$F_{y3} = 597.08 \text{ k}$
$M_{x1} = 313.24 \text{ k*ft}$	$M_{x2} = 311.86 \text{ k*ft}$	$M_{x3} = 313.24 \text{ k*ft}$
$M_{z1} = -90.956 \text{ k*ft}$	$M_{z2} = -88.628 \text{ k*ft}$	$M_{z3} = 74.635 \text{ k*ft}$

Moment Magnification from Aashto Lrfd 4.5.3.2.2b with RC-Pier Modifications

$$\begin{split} M_c &= \delta_b M_{2b} + \delta_s M_{2s} \\ M_c &= \delta_s M_2 \end{split} \qquad \qquad & \text{RC-Pier modifies this equation for unbraced frames by assuming} \\ \text{that all moments are to be magnified by } \delta_s \text{ alone.} \end{split}$$

where $\delta_s = 1 / [1 - \Sigma P_u / (\phi_k * \Sigma P_e)]$	
$\phi_{\rm k}=0.75$	Stiffness reduction factor for concrete
$P_e = \pi^2 * EI / (k * l_u)^2$	Euler buckling load
$EI = (E_c * I_g / 2.5) / (1 + \beta_d)$	Flexural column stiffness
-	β_d is ratio of maximum factored dead load moment to
	maximum factored total moment, always positive

Calculate $\beta_d = |$ Maximum Factored Dead Load Moment / Maximum Factored Total Load Moment | Loads from RC-Pier

Unfactored Self-weight		
$F_{y1} = 40.10 \text{ k}$	$F_{y2} = 44.88 \text{ k}$	$F_{y3} = 40.10 \text{ k}$
$M_{x1} = 0.00 \text{ k*ft}$	$\dot{M}_{x2} = 0.00 \text{ k*ft}$	$\dot{M}_{x3} = 0.00 \text{ k*ft}$
$M_{z1} = -0.41 \text{ k*ft}$	$M_{z2} = 0.00 \text{ k*ft}$	$M_{z3} = 0.41 \text{ k*ft}$
Unfactored DC loads		
$F_{y1} = 305.22 \text{ k}$	$F_{y2} = 282.22 \text{ k}$	$F_{y3} = 305.22 \text{ k}$
$M_{x1} = 0.00 \text{ k*ft}$	$\dot{M}_{x2} = 0.00 \text{ k*ft}$	$\dot{M}_{x3} = 0.00 \text{ k*ft}$
$M_{z1} = 4.87 \text{ k*ft}$	$M_{z2} = 0.00 \text{ k*ft}$	$M_{z3} = -4.87 \text{ k*ft}$

Factored Self $F_{y1} = 50.125$ $M_{x1} = 0.00$ k ² $M_{z1} = -0.512$	*ft	factor = 1.25) $F_{y2} = 56.10 \text{ k}$ $M_{x2} = 0.00 \text{ k*ft}$ $M_{z2} = 0.00 \text{ k*ft}$	$\begin{split} F_{y3} &= 50.125 \text{ k} \\ M_{x3} &= 0.00 \text{ k*ft} \\ M_{z3} &= 0.5125 \text{ k*ft} \end{split}$
Factored DC $F_{y1} = 381.523$ $M_{x1} = 0.00$ k $M_{z1} = 6.0875$	*ft	$f_{y2} = 352.775 \text{ k}$ $M_{x2} = 0.00 \text{ k*ft}$ $M_{z2} = 0.00 \text{ k*ft}$	$\begin{split} F_{y3} &= 381.525 \ k \\ M_{x3} &= 0.00 \ k^* \text{ft} \\ M_{z3} &= -6.0875 \ k^* \text{ft} \end{split}$
Factored Self $F_{y1} = 431.650$ $M_{x1} = 0.00$ k ² $M_{z1} = 5.575$ k	*ft	oads $F_{y2} = 408.875 \text{ k}$ $M_{x2} = 0.00 \text{ k*ft}$ $M_{z2} = 0.00 \text{ k*ft}$	$\begin{split} F_{y3} &= 431.650 \text{ k} \\ M_{x3} &= 0.00 \text{ k*ft} \\ M_{z3} &= -5.575 \text{ k*ft} \end{split}$
$M_{x_min1} = M_{z}$ $M_{x_min2} = M_{z}$	$_{\min 1} = (431.650)$ $_{\min 2} = (408.875)$	n eccentricity $(e_{min} = 0.125')$ $(k)^*(0.125') = 53.956 \text{ k*ft}$ $(k)^*(0.125') = 51.109 \text{ k*ft}$ $(k)^*(0.125') = 53.956 \text{ k*ft}$	
Factored Loa $F_{y1} = 431.650$ $M_{x1} = 53.956$ $M_{z1} = 53.956$	6 k*ft	for β_d $F_{y2} = 408.875 \text{ k}$ $M_{x2} = 51.109 \text{ k*ft}$ $M_{z2} = 51.109 \text{ k*ft}$	$\begin{split} F_{y3} &= 431.650 \text{ k} \\ M_{x3} &= 53.956 \text{ k*ft} \\ M_{z3} &= -53.956 \text{ k*ft} \end{split}$
β _d Calculatio Column 1	$\beta_{dx1} = (53.95) $	56 k*ft) / (313.24 k*ft) = 0.1 56 k*ft) / (-90.956 k*ft) = 0.3	
Column 2	•	09 k*ft) / (311.86 k*ft) = 0.1 09 k*ft) / (-88.628 k*ft) = 0.3	
Column 3		56 k*ft) / (313.24 k*ft) = 0.1 56 k*ft) / (-74.635 k*ft) = 0.7	
	$50 \text{ pcf})^{1.5} * (3500)$	(1000) psi) ^{0.5} *[(144 in ² /ft ²) / (1000) (5*2.5') ⁴ = 1.9175 ft ⁴	lb/k)] = 516,472.7 ksf
Column 1	$EI_{x1} = [(516, 4)]{EI_{z1}} = [(516, 4)]$	472.7 ksf)*(1.9175 ft ⁴) / 2.5] / 472.7 ksf)*(1.9175 ft ⁴) / 2.5] /	$k^{2}(1 + 0.172252) = 337,921.8 \text{ k}^{*}\text{ft}^{2}$ $k^{2}(1 + 0.593211) = 248,636.0 \text{ k}^{*}\text{ft}^{2}$
Column 2	$EI_{x2} = [(516, 4)]{EI_{x2}} = [(516, 4)]$	472.7 ksf)*(1.9175 ft ⁴) / 2.5] / 472.7 ksf)*(1.9175 ft ⁴) / 2.5] /	$k^{2}(1 + 0.163886) = 340,350.9 \text{ k}^{*}\text{ft}^{2}$ $k^{2}(1 + 0.576676) = 251,243.4 \text{ k}^{*}\text{ft}^{2}$
Column 3	EI _{x3} = [(516,4 EI _{z3} = [(516,4	72.7 ksf)*(1.9175 ft ⁴) / 2.5] / 72.7 ksf)*(1.9175 ft ⁴) / 2.5] /	$f(1 + 0.172252) = 337,921.8 \text{ k}^{\circ}\text{ft}^{2}$ $f(1 + 0.722935) = 229,915.6 \text{ k}^{\circ}\text{ft}^{2}$

	$I/(k*l_u)^2$ $k_x = 2.1, k_z = 1.2, l_u = 20.5'$
Column 1	$P_{ex1} = [(\pi^2)^*(337,921.8 \text{ k}^*\text{ft}^2)] / [(2.1)^*(20.5^{\circ})]^2 = 1799.574 \text{ k}$ $P_{ez1} = [(\pi^2)^*(248,636.0 \text{ k}^*\text{ft}^2)] / [(1.2)^*(20.5^{\circ})]^2 = 4055.025 \text{ k}$
	$\Gamma_{ez1} = [(\pi + 1)(240,030.0 \text{ K} + 1)] / [(1.2)(20.3)] = 4035.023 \text{ K}$
Column 2	$P_{ex2} = \left[(\pi^2)^* (340,350.9 \text{ k}^* \text{ft}^2) \right] / \left[(2.1)^* (20.5') \right]^2 = 1812.51 \text{ k}$
	$P_{ez2} = [(\pi^2)^* (251,243.4 \text{ k*ft}^2)] / [(1.2)^* (20.5^2)]^2 = 4097.55 \text{ k}$
Column 3	$P_{ex3} = \left[(\pi^2)^* (337,921.8 \text{ k}^* \text{ft}^2) \right] / \left[(2.1)^* (20.5') \right]^2 = 1799.574 \text{ k}$
	$P_{ez3} = [(\pi^2)^*(229,915.6 \text{ k}^*\text{ft}^2)] / [(1.2)^*(20.5^*)]^2 = 3749.712 \text{ k}$
Calculate $\delta_s = 1 / [1 - \delta_s]$	$-\Sigma P_u/(\phi_k * \Sigma P_e)]$ for Column 1
Column 1	$\delta_{sx} = 1 / [1 - (727.65 \text{ k} + 709.02 \text{ k} + 597.08 \text{ k}) / [(0.75)*(1799.574 \text{ k} + 1812.51 \text{ k} + 1700.574 \text{ k})]$
	1799.574 k)]]

= 2.0043

$$\begin{split} \delta_{sz} &= 1 \ / \ [1 - (727.65 \ k + 709.02 \ k + 597.08 \ k) \ / \ [(0.75)*(4055.025 \ k + 4097.55 \ k + 3749.712 \ k)]] \\ &= 1.2950 \end{split}$$

Factored Loads with Magnification for Column 1

$$\begin{split} F_{y1} &= 727.65 \ k \\ M_{x1} &= (313.24 \ k^*ft)^*(2.0043) = 627.827 \ k^*ft \\ M_{z1} &= (-90.956 \ k^*ft)^*(1.2950) = -117.793 \ k^*ft \end{split}$$

Appendix D

RC-Pier and Footing Surcharge

The user needs to be aware of how RC-Pier handles footing surcharge loads:

- Load factors are not applied to the footing surcharge if the EV load case is not specified on the Loads tab.

The problem will be illustrated using a simple example. Consider the unusual pier below. The cap is 2' x 2' x 2'. The column is 2' x 2' x 8' tall. The footing is 10' x 10' x 0.5" thick. There is one pile in the center of the footing. Two bearings are centered over the column.

I modeled the pier like this to make it easier to see what the loads are. Essentially the footing weight is 0 kips because it is very thin and because I set the unit weight of the footing to the really small value of 0.101 pcf (see below).

Materials					
Column:	ength psi 3500. 3500. 3500.	Concrete D Cap: Column: Footing:	ensity pcf 150. 150. 0.101	Concrete Mi Cap: Column: Footing:	odulus of Elasticity ksi 3586.62 3586.62 3586.62
Steel Yield S Cap (flex): Cap (shear): Column: Footing:	ksi 60.	Concrete Cap: Column: Footing:	Type Normal Normal Normal	• •	<u>Q</u> K <u>C</u> ancel

On the Loads tab I selected only load type DC; however, I didn't enter any loads for the DC1 load type. Notice that I also selected Strength Group 1.

🖓 Main	
🔗 Project 📅 Geometry 👑 Loads 📄 🗃 Analysis 🚰 Cap 📄 💄 Column 👃 Footing	
Load Type: Selected Loads:	
DC: Component and Attachments → DC1 DD: Downdrag → DC1 DW: Wearing Surfaces and Utilities → DC1 EH: Horizontal Earth Pressure → DC1 EV: V. Pressure from Dead Load of Earth Fill → DC1 ES: Earth Surcharge Load ↓ ↓ LL: Vehicular Live Load + IM ■ CE: Vehicular Centrifugal Forces BR: Braking Force PL: Pedestrian Loads ↓ LS: Live Load Surcharge ↓ WA: Water and Stream Pressure ↓ WS: Wind Load on Structure ↓ WL: Wind Load on Live ↓ FR: Friction Forces ↓ TU: Uniform temperature ↓ CR: Creep ↓ SH: Shrinkage ↓ EL: Locked-in Effect ↓ TG: Temperature Gradient ✓	Edit Copy Delete Delete All EQ details LL dețails
Available Groups: Selected Groups:	
STRENGTH GROUPI STRENGTH GROUPII STRENGTH GROUPII STRENGTH GROUPV EXTREME EVENT GROUPI EXTREME EVENT GROUPI SERVICE GROUPI SERVICE GROUPII SERVICE GROUPII SERVICE GROUPII SERVICE GROUPI SERVICE GROUPINV FATIGUE EXTREME EVENT SEISMIC GROUPI IASTR 1 IASTR 5 IASTR 5 IASER 1	Combinations

The only load on my pier footing at this point is the self-weight of the cap and column. Remember that the footing is "weightless".

Unfactored Cap + Column Weight = $(2')^{*}(2')^{*}(2' + 8')^{*}(0.150 \text{ kcf}) = 6 \text{ kips}$ Max. Factored Cap + Column Weight = $(1.25)^{*}(6 \text{ kips}) = 7.50 \text{ kips}$ Min. Factored Cap + Column Weight = $(0.90)^{*}(6 \text{ kips}) = 5.40 \text{ kips}$

If I check the Design Status of my footing pile (since I only have one pile) in RC-Pier I can see that my calculations above concur with RC-Pier's results for the maximum and minimum factored pile reaction.

Pile Reactions, Factored										
Pile	Loc(X) ft	Loc(Z) ft	X in	Z in	comb	Ovs	P kips	Mxx kft	Mzz kft	Pile Reac. kips
1	0.00	-5.00	60.0	0.0	1	_	-7.50	0.00	-0.00	7.50
					3	_	-5.40	0.00	-0.00	5.40

Now let's add in a footing surcharge load and see how RC-Pier handles that. We will assume we have 2' of fill on the footing and that the unit soil weight is 0.120 kcf.

Footing: Isolated Pile/Shaft Design	
Footing Definition Piles Definition Footing Reinforcement	
 ft bescription: From Library Spread 12 ft x 12 ft Spread/Cap Position Concentric under Column C Eccentric under Column 	Spread/Cap Strap Length Width Depth (Y) Depth (Y) Multiplier in in (X Dir) (Z Dir) 0.5 1. 1. Footing Surcharge Constant 0.24 ksf Variable © X © Z ksf 20. ksf ksf
	OK Cancel

Constant Footing Surcharge = (2')*(0.120 kcf) = 0.240 ksf

When we check the Design Status of our footing in RC-Pier we get the following results:

Pile Reactions, Factored										
Pile	Loc(X) ft	Loc(Z) ft	X in	Z in	comb	Ovs	P kips	Mxx kft	Mzz kft	Pile Reac. kips
1	0.00	-5.00	60.0	0.0	1	_	-7.50	0.00	-0.00	31.50
					2	_	-5.40	0.00	-0.00	29.40

Footing Design : Notes
Only max, force in piles is considered for design.
Pile coordinates X and Z are from the most left edge of the footing.
Plong= Lateral load in longitudinal direction at the top of pile, Kips.
Php= Available resisting horizontal component due to batter= batter * Vertical pile reaction, Kips.
Plong-Php= Remaining lateral force required to resist by pile.

Max. Pile Reaction Used in Design: (without selfweight and surc	harge)
Factored pile reaction	7.50 kips

The maximum factored pile reaction is now 31.50 kips. We can calculate this as follows:

Unfactored Surcharge Load = $(0.240 \text{ ksf})^*(10^{\circ})^*(10^{\circ}) = 24.00 \text{ kips}$ Max. Pile Rxn = (Max. Factored Cap + Column Weight) + (Unfactored Surcharge Load) Max. Pile Rxn = 7.50 kips + 24.00 kips = 31.50 kips

So we can see that the surcharge load is <u>not</u> being factored. Now let's see what happens when we add the EV load on the Loads tab screen as shown below. Note that we are not actually entering any load as an EV1 load or as a DC1 load.

🕫 Main	
🤗 Project 🖙 Geometry 😬 Loads 📑 Analysis 🚰 Cap 📜 💄 Column 📣 Footing	
Load Type: Selected Loads:	
DC: Component and Attachments DD: Downdrag DW: Wearing Surfaces and Utilities EH: Horizontal Earth Pressure	<u>E</u> dit <u>C</u> opy
EV: V. Pressure from Dead Load of Earth Fill ES: Earth Surcharge Load LL: Vehicular Live Load + IM CE: Vehicular Centrifugal Forces BR: Braking Force	<u>D</u> elete Delete A <u>l</u> l

This time we get the different results as shown below.

Pile Reactions, Factored											
Pile	Loc(X) ft	Loc(Z) ft	X in	Z in	comb	Ovs	P kips	Mxx kft	Mzz kft	Pile Reac. kips	
1	0.00	-5.00	60.0	0.0	1	_	-7.50	0.00	-0.00	39.90	
					4	_	-5.40	0.00	-0.00	27.00	

Footing Design : Notes
Only max, force in piles is considered for design.
Pile coordinates X and Z are from the most left edge of the footing.
Plong= Lateral load in longitudinal direction at the top of pile, Kips.
Php= Available resisting horizontal component due to batter= batter * Vertical pile reaction, Kips.
Plong-Php= Remaining lateral force required to resist by pile.

Max. Pile Reaction Used in Design: (without selfweight and su	rcharge)
Factored pile reaction	7.50 kips

The maximum factored pile reaction is now 39.90 kips. We can calculate this as follows:

Factored Surcharge Load = (1.35)*(24.00 kips) = 32.40 kipsMax. Pile Rxn = (Max. Factored Cap + Column Weight) + (Factored Surcharge Load) Max. Pile Rxn = 7.50 kips + 32.40 kips = 39.90 kips

So we can see that the surcharge load is being factored when we add EV to the Loads tab screen. [Note that I also tried an ES load instead of an EV load. The ES load did not result in a load factor being applied to the Footing Surcharge load.] So, the Footing Surcharge is only factored when the EV load is specified on the Loads tab screen. Excluding the load factor for the fill loads on the footing can be fairly significant if you have a deep fill and relatively light superstructure loads.

So, if you typically enter the footing surcharge load on the Footing tab then you should still supply an EV load on the Loads tab even if you don't enter a load for it. Apparently RC-Pier hasn't always functioned in this manner. An office example I put together for 305 Wapello around 10/10/2006 (RC-Pier Version 4.1.0) shows some calculations that make it apparent that the load factor was being included in the footing surcharge load when it was entered on the Footing tab, but no EV load was specified on the Loads tab.

One recommended procedure might be to enter the footing fill load for each pier footing as an EV load near the bottom of each column on the Loads tab. [I recommend the load be placed just a fraction above the bottom of the column for the RC-Pier footing design runs since that ensures the Analysis Results on the Analysis tab reflect the load.] Doing it this way may affect whether or not you want to make use of RC-Pier to design your footing reinforcement since it will have some effect on those results.

An interesting side note concerns the footing self-weight applied by RC-Pier. Not that you would ever do this, but... if you were ever to do a run of RC-Pier with no DC loads then you would find that the cap and column self-weight would not be included as a load on your footing. However, the footing self-weight would be applied to your footing, but it would not have a load factor applied.

Finally it should be noted that the column area is not deducted from the footing area when the footing surcharge is actually computed. Normally this isn't a big deal since the column area is generally quite a bit smaller than the footing area, but it is something to keep in mind.

Appendix E

RC-Pier and Battered Piles

As you may have seen, RC-Pier allows the user to enter pile batter in the z-axis direction only. For instance, in the figure below I have entered a batter of 14.03 degrees which is approximately a 1:4 batter. When a pile batter is entered the program prints some additional output to the Pile Reactions table. Some of the calculations for this additional output are demonstrated on the following pages.

For these example calculations we are going to run only one combination (#79).

Comb # 79 (IA STR 1) = 1.00 (1.25 DC1 + 1.50 DW1 + 1.35 EV1 + 1.75 LL1 - 1.75 BR1 + 0.50 TU1 + 0.50 SH2)

We are only going to look at the calculations for footing 1 which corresponds with node 1 of member 1. The forces for combination 79 at node 1 are as follows.

P:\ RCPier V8i (SELECTseries 1) - P:\	data\DesignerJunk\RCP	ierFooting001.rcp	- [Main]			
💋 File Show Libraries LEAP Bridge He	þ					_ 8 ×
New Open Save Save As Print Ima	🖸 👬 🧧 📔 age Model Results Diagra	ams Vehicle Library	ر الله الله الله الله الله الله الله الل	y Pile Groups Help Be	ntley Site About E-mail	📚 🚫 Manual Tutorials
🤔 Project 🔤 🕶 Geometry 🔛 Loads	🧧 Analysis 🚰 Cap 💧	🤳 Column 🗼 Fool	ting			
<u>B</u> un Analysis Type: Load Co	ombination 💌 Ite	m: 79 (IA STR				Units kips
A/D Parameters Effect: Forces	& Moment 🗾 Fo	rmat: General Right		ilter		kips-ft
Type of Analysis: 💿 Frame 🔿 Strut an	d Tie			Co	oord. System: 🔿 Local 🤇	Global Print
Memb Node	Fx	Fy	Fz	Mx	Му	Mz
1 1	-12.31	880.6	9.941	253.2	0.4691	121.5 🔼

The pile reactions for this footing are as follows. The last three columns of output are printed because we have input a pile batter.

Pile	Reac	tions,	Fac	tore	d									
Pile	Loc(X)	Loc(Z)	Х	Z	Batter	comb	0	Р	Mxx	Mzz	Pile Reac.	Php	Plong	Plong-Php
File	ft	ft	in	in	degree	comp	019	kips	kft	kft	kips	kips	kips	kips
1	-3.00	-1.50	18.0	-36.0	14	79	_	-880.62	-253.16	-121.55	129.74	32.42	-1.42	31.00 #
						79	_	-880.62	-253.16	-121.55	129.74	32.42	-1.42	31.00 #
2	0.00	-1.50	54.0	-36.0	14	79	_	-880.62	-253.16	-121.55	139.87	34.95	-1.42	33.53 #
						79	_	-880.62	-253.16	-121.55	139.87	34.95	-1.42	33.53 #
3	3.00	-1.50	90.0	-36.0	14	79	_	-880.62	-253.16	-121.55	150.00*	37.48	-1.42	36.06 #
						79	_	-880.62	-253.16	-121.55	150.00*	37.48	-1.42	36.06 #
4	0.00	-4.50	54.0	0.0	0	79	_	-880.62	-253.16	-121.55	125.80	0.00	-1.42	-1.42
						79	_	-880.62	-253.16	-121.55	125.80	0.00	-1.42	-1.42
5	-3.00	-7.50	18.0	36.0	-14	79	_	-880.62	-253.16	-121.55	101.61	-25.39	-1.42	-26.81
						79	_	-880.62	-253.16	-121.55	101.61	-25.39	-1.42	-26.81
6	0.00	-7.50	54.0	36.0	-14	79	_	-880.62	-253.16	-121.55	111.74	-27.92	-1.42	-29.34
						79	_	-880.62	-253.16	-121.55	111.74	-27.92	-1.42	-29.34
7	3.00	-7.50	90.0	36.0	-14	79	_	-880.62	-253.16	-121.55	121.87	-30.45	-1.42	-31.87
						79	_	-880.62	-253.16	-121.55	121.87	-30.45	-1.42	-31.87

Footing Design : Notes	
* Factored Force in pile is greater than factored pile capacity	r.

= Pile needs to resist remaining lateral force.

Only max, force in piles is considered for design.

Pile coordinates X and Z are from the most left edge of the footing

Plong= Lateral load in longitudinal direction at the top of pile, Kips.

Php= Available resisting horizontal component due to batter= batter * Vertical pile reaction, Kips.

Plong-Php= Remaining lateral force required to resist by pile.

The following calculations are developed for pile #1.

The section moduli for pile #1 in the X and Z directions with respect to the center of the footing are:

Sx = $[(2 \text{ rows})^*(3 \text{ piles})^*(3')^2] / 3' = 18 \text{ pile*ft}$ Sz = $[(2 \text{ rows})^*(2 \text{ piles})^*(3')^2] / 3' = 12 \text{ pile*ft}$

The pile reaction for pile #1 is:

Pile Rxn = [(880.62 k) / (7 piles)] + [(253.16 k*ft) / (18 pile*ft)] - [(121.55 k*ft) / (12 pile*ft)] = 129.74 k

The horizontal component of the pile reaction due to pile batter is:

Php = (129.74 k) * (tan(14.03 deg)) = 32.42 k

The lateral forces on the pile are as follows. RC-Pier currently ignores Fx forces since they are perpendicular to the direction of batter.

Fx = (12.31 k) / (7 piles) = 1.76 kFz = (-9.941 k) / (7 piles) = -1.42 k

Plong = Fz = -1.42 k

The sign convention for this lateral force and the horizontal component of the pile reaction are opposed and thus RC-Pier assumes:

Plong-Php = 32.42 k - 1.42 k = 31.00 k

It appears (from additional testing) that RC-Pier flags any positive value for "Plong-Php" as a failure. The additional RC-Pier output for battered piles is somewhat confusing and, for the time being, you should simply refer to the Bridge Design Manual for guidance in dealing with lateral pile forces for vertical and battered piles.

BDM 6.6.4.1.3.1

"The pile group supporting a pier footing shall be checked for lateral loading [OBS MM No. 9]. Each vertical pile may be assumed to have shear resistance, and each battered pile may be assumed to have shear resistance plus the horizontal component of the axial resistance. See the pile resistance guidelines for steel H-piles [BDM 6.2.6.1] and for timber piles [BDM 6.2.6.3]."

Appendix F

		tion\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 2010-0 📃 🔲
	is LEAP Bridge Help	
New Open Save S	jave As Print Image Model Results Diagra	ns Vehicle Library Load Groups Footing Library Pile Groups Help Bentley Site About E-mail Manual Tutorials
🔗 Project 📅 Geo	metry 🔛 Loads 🛛 🧧 Analysis 🛹 Cap 🗍 .	🖫 Column 🛛 🥾 Footing
Project Information -		
Project Name:	305 Wapello	
User Job Number:	Pier 1 on WB Bridge	
State:	lowa	State Job Number: Example
Date:	8-24-2010	By: Mike Nop
Date Checked:	8-24-2010	Checked By: Mike Nop
Description:	FOOTING DESIGN	
	218'x40' PPCB Bridge 50.75' - 116.5' - 50.75'	
	23 Degree RA Skew Integral Abutments 3 Column Fixed Frame Pier on Steel HP Piling	
	Note: Footing weight and surcharge were entered	on
	footing tab and pile batter was removed.	This run will be used to illustrate
		footing design in RC-Pier. I'm only going
		to show screens that have been
		modified from the cap/column run.
	,	
	Structure type Design Spe	cifications Units
	Pier	C AASHTO Standard Specifications (* U.S Units
	C Abutment	AASHTO LRFD None C SI Units (Metric)
		👾 Updates IBS: Not Connected IBS: Manual Pier View:Upstation
		Updates IBS: Not Connected IBS: Manual Pier ViewUpstation
the second s		nation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 🔳 🗃
💋 Eile Show Libraria	es LEAP Bridge Help	nation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201
	es LEAP Bridge Help	ation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 🖃 🗃 – 🕫
Ele Show Librarie Image: Show Image: Show Image: Show Image: Show Image: Show Image: Show	es LEAP Bridge Help	ation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 - - - - - - - - - -
Elle Show Librarie New Open Save : Project	es LEAP Bridge Help	ation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 - - - - - - - - - -
Elle Show Librarie Den Save Project T Gec Project Gec Project Gec	es LEAP Bridge Help	Aation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201
Elle Show Librarie New Open Save : Project	es LEAP Bridge Help	Anation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201,
Elle Show Librarie Den Save Project T Gec Project Gec Project Gec	es LEAP Bridge Help Save As Print Image Model Results Diag sometry As Loads Analysis & Cap The columns have been extended 3.5'	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Librari Open Save Project Project Cap 	es LEAP Bridge Help Save As Print Image Model Results Diag ometry A Loads Analysis P Cap The columns have been extended 3.5' to the bottom of	Anation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201,
Elle Show Librarie Open Save Open Save Project Project Project Superstr.	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Librari Open Save Project Project Cap 	es LEAP Bridge Help Save As Print Image Model Results Diag ometry A Loads Analysis P Cap The columns have been extended 3.5' to the bottom of	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria New Open Save Project T Gec Project Gec Project Gec Config. Cap Column Strut 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
Elle Show Librariu Open Save Project Project Progect Progect Config. Config. Config. Coup Coup Coup Coup	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria New Open Save Project T Gec Project Gec Project Gec Config. Cap Column Strut 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria Open Save Open Save Project Config. Superstr. Cap Column Strut Strut Material 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Librari Open Save Project Freig Config. Superstr. Cap Column Strut Strut 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria Open Save Open Save Project Config. Superstr. Cap Column Strut Strut Material 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria Open Save Project T Gec Config. Superstr. Cap Column Strut Brng/Grdr Material Str. Model Hammer 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria New Open Save Project T Gec Project Gec Project Gec Project Gec Config. Superstr. Cap Column Strut Brng/Grdr Material Str. Model 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria Open Save Project Transform Config. Superstr. Cap Column Strut Brng/Grdr Material Str. Model 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria New Open Save Project T Gec Project Gec Project Gec Config. Superstr. Cap Cap Column Strut Brng/Grdr Material Str. Model Hammer 3D View 2D View 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Ination\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201 Image: Second
 Elle Show Libraria New Open Save Project T Gec Project Gec Project Gec Config. Superstr. Cap Cap Column Strut Brng/Srdr Brng/Srdr Material Str. Model Hammer 3D View ZD View Front View 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	Antion/Development/LRFD_Frame_Pier/305 Wapello/Official Example/LRFD RC-Pier Final 201
 Elle Show Libraria New Open Save Project T Gec Project Gec Project Gec Project Gec Config. Superstr. Cap Cap Column Strut Brng/Srdr Brng/Srdr Brng/Srdr Str. Model Str. Model Str. Model Str. Model Str. Model Str. Weiw Cap Uview Front View Side View 	ELEAP Bridge Help Save As Print Image Model Results Diag metry A Loads Analysis Top The columns have been extended 3.5' to the bottom of the footing for this	hation\Development\LRFD_Frame_Pier\305 Wapello\Official Example\LRFD RC-Pier Final 201

RC-Pier and Pile Footing Design: Flexure and Shear

entries on the "Footing" tab since I am interested in looking at RC-Pier's methodology for footing design.

v:Upstation

Tapered Cap Parameters 🛛 🛛 🔀						
Cap Length (X)	45.	ft	Start Elevation:	25.5	ft	
Length of Non-tapered Segment (X) :	35.	ft	End Elevation:	25.5	ft	
Cap Min Height (Y) :	36.	in	Skew Angle (deg):	23.		
Cap Max Height (Y) :	48.	in				
Cap Depth (Z) :	39.	in				
Factor of Reduced Morr	ent of Inerti	1.				
	<u>o</u> k		<u>C</u> ancel			

Notice that the column length has been increased by 3.5' from 22' to 25.5'.

Materials			
Concrete Strength psi Cap: 3500. Column: 3500. Footing: 3500.	Concrete Density pcf Cap: 150. Column: 150. Footing: 150.	Concrete Modulus of Elasticity ksi Cap: 3586.62 Column: 3586.62 Footing: 3586.62	The footing concrete
Steel Yield Strength	Concrete Type		density was left as 150 pcf since the self- weight will be
Cap (flex): 60. Cap (shear): 60 Column: 60. Footing: 60.	Cap: Normal Column: Normal Footing: Normal		calculated by RC-Pier.

DC1 Removed th	e weight due to the 3.5' co	olumn extension to c	counteract the	
Loads: Load data	ts self-weight: [(π)*(0.5*2	5') ²]*(3.5')*(0.150 k	cf) = 2.577 k	
Bearing / Girder loads	Column Loads / Settlement			
Bearing Line Bearing Point# Dir Load (kips) 1 1 Y -142.7260 1 2 Y -151.8040 1 3 Y -151.8040 1 4 Y -151.8040	Col Nr Load Type Dir 1 Col Nr Force Y 2 Force Y 3 Force Y *	2.5770 0.0010 0.0	2 y2/L 0000 0.0000 0000 0.0000 0000 0.0000	Units kips kips kips
1 • 5 • Y • -151.8040 1 • 6 • Y • -142.7260				The reduction in
*	Cap Loads	<u>C</u> opyDele	ete Delete <u>A</u> ll	column weight is placed just above
	Load Type Dir Arm (ft)	Mag1 x1/L Mag2	x2/L	the bottom of the
				column to ensure
Strain Load				it is included in
Unit 0.				the analysis results.
+ Expansion - Contraction	Insert	<u>C</u> opy <u>D</u> elete		
Name: DC1 Description:	Multiplier for Loads: 1.	Auto Generation	Import Load:	nport
Note: Vertically downward loads be added as negative loads in Y direction.	OK Cancel			
WS1				
Loads: Load data				
Bearing / Girder loads	Column Loads / Settlement			
Bearing / Girder loads Bearing Bearing Dir Load Line Point# (kips)	Col Nr Load Type Dir		0000 0.8780	Units
Bearing / Girder loads Bearing Line Bearing Point# Dir (kips) 1 1 × 5.6550 1 1 Y 3.3760	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X	0.1000 0.1950 0.0 0.1000 0.1950 0.0		
Bearing / Girder loads Bearing Line Bearing Point# Dir Load (kips) 1 1 × 5.6550 1 1 Y 3.3760 1 1 Z 0.9470 1 2 X 5.6550	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X 2 UDL Z 1 UDL X	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0	0000 0.8780 0000 0.8780	
Bearing / Girder loads Bearing Line Bearing Point# Dir (kips) Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Z 0.9470 1 2 X 5.6550 1 2 Y 0.0000 1 2 Y 0.9470	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X 2 UDL Z	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0	0000 0.8780 0000 0.8780 0000 0.8780 0000 0.8780 0000 0.8780 0000 0.8780	
Bearing / Girder loads Bearing Line Bearing Point# Dir (kips) Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Y 3.3760 1 2 X 5.6550 1 2 X 5.6550 1 2 Y 0.0000 1 2 Z 0.9470 1 3 X 5.6550 1 3 Y 0.0000	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X 2 UDL Z 1 UDL X	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0	0000 0.8780 0000 0.8780 0000 0.8780 0000 0.8780 0000 0.8780 0000 0.8780	
Bearing / Girder loads Bearing Line Bearing Point# Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Z 0.9470 1 2 X 5.6550 1 2 Y 0.0000 1 2 X 5.6550 1 2 X 5.6550 1 3 X 5.6550 1 3 X 5.6550 1 3 X 5.6550 1 3 Z 0.9470 1 4 X 5.6550	Col Nr Load Type Dir 3 UDL X X 3 UDL Z Z 2 UDL Z Z 1 UDL Z Z 1 UDL Z Z 1 UDL Z Z 1 UDL X Z 1 UDL X Z 1 Cap Loads Load Type Dir Arm (ft)	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000	0000 0.8780 0 0000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.8780 0 0.000 0 0.0000 0 0.00000 0 0.00000000	Units
Bearing / Girder loads Bearing Point# Point# Point# (kips) Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Y 3.3760 1 2 X 5.6550 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 4 Y 0.0000	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X 2 UDL Z 1 UDL X Cap Loads Ir Arm	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1950 0.0 0.0 0.1950 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.00000000	Units Units Units Since the
Bearing / Girder loads Bearing Point# Point# Point# (kips) Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Y 3.3760 1 1 Z 0.9470 1 2 X 5.6550 1 2 Y 0.0000 1 2 Z 0.9470 1 2 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Z 0.9470 1 3 Z 0.9470 1 4 Y 0.0000	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL Z 1 UDL Z Cap Loads Ir Ir Force X 0.0000	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.5000 0.000	0000 0.8780 0 0000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.0000 0 0.00000000	Units
Bearing / Girder loads Bearing Line Point# Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Y 3.3760 1 1 Y 3.3760 1 2 X 5.6550 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 4 Y 0.0000 1 4 Y 0.0000	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL Z 1 UDL Z 1 UDL X Cap Loads Ir Ir Force X 0.0000 UDL Z 0.0000	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.5000 0.000	0000 0.8780 0 0000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.0000 0 0.00000000	Units Units Since the columns were
Bearing / Girder loads Bearing Point# Point# Point# (kips) Dir Load (kips) 1 1 X \$ 5.6550 1 1 Y \$ 3.3760 1 1 Y \$ 3.3760 1 1 Y \$ 3.3760 1 1 Y \$ 0.9470 1 2 Y \$ 0.0000 1 2 Y \$ 0.0000 1 2 Y \$ 0.0000 1 3 X \$ 5.6550 1 3 Y \$ 0.0000 1 3 Z \$ 0.9470 1 3 Z \$ 0.9470 1 4 Y \$ 0.0000 1 4 Y \$ 0.0000 1 4 Y \$ 0.0000 Insert Copy Delete Delete All	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL Z 1 UDL Z 1 UDL X Cap Loads Ir Ir Force X 0.0000 UDL Z 0.0000	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.5000 0.000	0000 0.8780 0 0000 0.8780 0 000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Units Units Since the columns were extended 3.5' to the bottom of the footing,
Bearing / Girder loads Bearing Point# Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Y 3.3760 1 2 X 5.6550 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 3 X 5.6550 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Y 0.0000 1 4 Y 0.0000 1 4 Y 0.0000 Image: Copy Delete Delete All	Col Nr Load Type Dir 3 UDL X 2 UDL X 2 UDL X 2 UDL X 2 UDL X 1 UDL X Cap Loads Insert Cap Loads Insert Force X 0.0000 UDL Z 0.0000 UDL Z 0.0000 Force X 0.0000 Factors Insert	0.1000 0.1950 0.0 0.1000 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000	0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0 0 0	Units Units Since the columns were extended 3.5' to the bottom of the footing, the Start and End locations
Bearing / Girder loads Bearing Point# Dir Load (kips) 1 1 X \$ \$ \$ 1 1 X \$	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X 2 UDL Z 1 UDL X 2 UDL X 1 UDL X Cap Loads Insert Load Type Dir Arm (ft) Force X 0.0000 UDL Z 0.0000 WDL Z 0.0000	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000	0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0 0 0	Units Units Since the columns were extended 3.5' to the bottom of the footing,
Bearing / Girder loads Bearing Point# Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Z 0.9470 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 3 X 5.6550 1 3 Y 0.0000 1 3 Y 0.0000 1 3 Z 0.9470 1 3 Y 0.0000 1 3 Z 0.9470 1 4 Y 0.0000 1 4 Y 0.0000 Inset Copy Delete Delete All Strain Load	Col Nr Load Type Dir 3 UDL X 2 UDL X 2 UDL X 2 UDL X 2 UDL X 1 UDL X Cap Loads Insert Cap Loads Insert Force X 0.0000 UDL Z 0.0000 UDL Z 0.0000 Force X 0.0000 Factors Insert	0.1000 0.1950 0.0 0.1000 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000	0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0.000 0 0 0 0	Units Units Units Since the columns were extended 3.5' to the bottom of the footing, the Start and End locations
Bearing / Girder loads Bearing Point# Dir Load (kips) 1 1 X 5.6550 1 1 Y 3.3760 1 1 Y 3.3760 1 1 Y 3.3760 1 1 Y 0.9470 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 3 X 5.6550 1 3 Y 0.0000 1 3 Z 0.9470 1 3 Z 0.9470 1 3 Z 0.9470 1 4 Y 0.0000 1 4 Y 0.0000 Image: Copy Delete Delete All Strain Load Image: Image: Image: Unit 0 Image: Image: Image: Description: Image: Imag	Col Nr Load Type Dir 3 UDL X 2 UDL X 2 UDL X 2 UDL X 1 UDL X Load Type Dir Arm (ft) Force X 0.0000 UDL Z 0.0000 UDL Z 0.0000 UDL Z 0.0000 Hultiplier for Loads: 1.	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.1950 0.0 0.000 0.000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000 0.1560 0.0000 0.000	0000 0.8760 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 000 0.8780 0 0.8780 0 0.0000 0	Units Units Since the columns were extended 3.5' to the bottom of the footing, the Start and End locations of the wind loads on the columns
Bearing / Girder loads Bearing Point# Dir Load (kips) 1 1 X \$ 5.6550 1 1 Y 3.3760 1 1 Y \$ 3.3760 1 1 Y \$ 0.9470 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 2 Y 0.0000 1 3 X 5.6550 1 3 Y 0.0000 1 3 Z 0.9470 1 3 Z 0.9470 1 3 Z 0.9470 1 3 Z 0.9470 1 4 Y 0.0000 Imsert Copy Delete Delete All Strain Load Unit . . Variance WS1 . . Description: . . . Note: Vertically downward loads be added as negative loads in	Col Nr Load Type Dir 3 UDL X 3 UDL Z 2 UDL X 2 UDL Z 1 UDL X I Insert Insert Insert Insert Insert Insert	0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1000 0.1950 0.0 0.1500 0.5000 0.000 0.1560 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000000	0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 0000 0.8780 0 000 0.8780 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.8780 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0 0 0	Units Units Since the columns were extended 3.5' to the bottom of the footing, the Start and End locations of the wind loads on the

Loads: Load data	
Bearing / Girder loads	
Bearing Dir Load [kips] Dir Load [kips] Dir Load Type Dir Mag1 y1/L Mag2 y2/L	Units
Insert Copy Delete Delete	The fill weight is not entered here. It will be entered on the footing tab as a surcharge.
Load Type Dir Arm Mag1 x1/L Mag2 x2/L	This blank entry is needed so that
<u> Copy</u> <u> Delete</u> <u> Delete</u>	RC-Pier applies
_ Strain Load	the EV load factor
Unit 0.	to the surcharge
+ Expansion - Contraction Insert Copy Delete Delete All	on the footing tab.
Name: EV1 Factors Auto Generation Import Lo Description: Multiplier for Loads: 1. Generate Import Lo	Import
Note: Vertically downward loads be OK Cancel	

RCPier V8i (SELECTseries 1) - W: \High Did Elle Show Libraries LEAP Bridge Help	way\Bridge\Automation\Development\LRFD_Fra	me_Pier\305 Wapello\Official Example\LRFD R	C-Pier Final 2010-0 💶 🗖 🗙
New Open Save Save As Print Image M	ideel Results Diagrams Vehicle Library Load Groups	Footing Library Pile Groups Help Bentley Site	t E-mail Manual Tutorials
Click on this for screen below.		Filter Coord. System Fz Mx Coord. System 0 -0 <td< td=""><td>Units kips kips kips kips kips kips kips My Mz 0 11.36 0 0 0 4.548 0 11.36 0 0 0 4.548 0 11.36 0 0 0 4.548 0 -11.36 0 0 0 -371.1 0 -371.1 0 -371.1 0 -371.1 0 -5652 0 -5652 0 -5651 0 -66.11 0 -416.1 0 -416.1 0 -416.1 0 -151.4</td></td<>	Units kips kips kips kips kips kips kips My Mz 0 11.36 0 0 0 4.548 0 11.36 0 0 0 4.548 0 11.36 0 0 0 4.548 0 -11.36 0 0 0 -371.1 0 -371.1 0 -371.1 0 -371.1 0 -5652 0 -5652 0 -5651 0 -66.11 0 -416.1 0 -416.1 0 -416.1 0 -151.4
11 13 12 13 12 6 13 6 13 14 14 14 14 15 15 15	0.6629 10.61 -0.6629 -162.4 0.6629 162.4 0 142.7 0 -142.7 0 142.7 0 142.7 0 -142.7 0 0 142.7	were set to analysis res	c load allowance factors 0 to ensure that the sults exclude impact if ritten to a file.
	950)		
Analysis/Design Parameters (L Resistance Factor, phi	Dumentic Local Allowance IM		Clear Concrete Cover, in
 Phi as per 2006 classification Phi as per classic aproach 	Truck Lane Fatigue Cap: 0. 0. 0.	Crack Control Criteria C LRFD 2004 C LRFD 2005 Interims	Cap top/bottom: 2.
Tension Controlled: 0.9	Column: 0. 0. 0. Footing: 0. 0. 0.	atigue ff term: 24.	Cap side: 2.
Shear and torsion: (normal weight)	Multiple Presence Factors Crack Cor	ntrol Factor, z, kips/in	Column: 2.
Shear and torsion: (lightweight) Compression Controlled:	Lane# 1: 1.2 Cap:	170. Cap: 1.	Footing top/bottom: 3.
(ties) U.75 Compression Controlled: 0.75	Lane# 3: 0.85	100	
(spiral) Compression in STM: 0.7	Modulus of rupture	Seismic Design—	Footing side: ^{3.}
	Normal: 0.37 x sqr(fc)	Seismic Design	Parameters
Shear and Torsion CalculationsCap methodFooting methodSimplified (5.8.3.4.1)Simplified (5.8.3.4.1)General (5.8.3.4.2)General (5.8.3.4.2)Vci, Vcw (5.8.3.4.3)Vci, Vcw (5.8.3.4.3)Beta-Theta (5.8.3.4.2)Beta-Theta (5.8.3.4.2)	Sand-lightweight: 0.2 × sqr(fc) All-lightweight: 0.17 × sqr(fc) Design cap/footing for magnified moments Design cap for magnified moments Design footing for magnified moment C/dt ratio Comp -> 0.6 <- Transition -> 0.3	ts Degree of Fixity in Moment Magnifica	effective length factors, K is: auto = 2.1 Foundations for
	OK	Cancel	

<u>HP10x57 Structural Resistance Level 1</u> Factored Resistance = (6 ksi)*(0.1167 ft²)*(144 in²/ft²)*(1.45) = 146.16 k BDM Table 6.2.6.1-1 shows (0.6)*(243 k) = 145.8 k

Library Setup		X	Pile Type Library
Type LRFD Truck LRFD Load Footing Piles Pattern Bundled Bars Piles Section Type	File Name LrfdTrk.rp1 IowaLrfdLoad.rp2 Footing.rp3 PilePatterns.rp4 BundledBars.rp5 Iowa_HP_PileSection.rp6	<u>S</u> elect <u>C</u> lose	
C:\Program Files\Ber	tley\LEAP Bridge Suite\Lib\Iowa_	HP_PileSection.rp6	

Dialog				
Available Shape: Round Square Chamfer H-Steel	T1 Section P	9.99 D 10.225 0.565 T2 0.565	W	
Description: HP10x57 Description Sh	Area: ft	^2 Ixx: in ^4 Izz: in ^4 294. 101. Dimensions	Н-	Steel
HP10x42 H- HP10x57 H- HP12x53 H- HP14x73 H-	Steel Steel Steel Steel Steel	W = 9.7, D = 10.075, T1 = 0. W = 9.99, D = 10.225, T1 = 0 W = 11.78, D = 12.045, T1 = W = 13.61, D = 14.585, T1 = W = 14.21, D = 14.885, T1 =	<u>A</u> dd Delete Modify	<u>Save</u> Sa <u>v</u> e As
			ОК	Cancel

Footing: Isolated Pile/Shaft Design	Footing reinforcement was entered according to the plans.
Footing Definition Piles Definition Footing Reinforcement Footing Reinforcement Dir. Bar dist. in Bar Size: Num. Bars Hook Image: Transformed state st	 Strut and Tie Model STM - ½ dir STM - ½ dir STM - ½ dir Design Delete
Design pile reaction Factored 0	kips kips kips kips kips
	OK Cancel

_

ISOLATED FOOTING DESIGN

ISOLATED FOOTING DESIGN

Code: AASHTO LRFD 2007 (with Interims) Units: US Pier View: Upstation.

GEOMETRY

Name : PilePtg01
Shape : Rectangular, Type : Pile/Shaft Cap
Bf(X) = 9.00 ft, Hf(Z) = 9.00 ft, Thickness(Y) = 42.00 in
Ag = 81.00 ft^2, Ix = 54.00 ft^2, Iz = 36.00 ft^2
Footing concentric.
Columns located on the footing:
Column No. 1 at $x = 0.00$ ft, Round D = 30.00 in
Surcharge = 0.48 ksf
Piles: H-Steel Size: W = 9.99 in, D = 10.23 in, T1 = 0.56 in, T2 = 0.56 in
Service Capacity: 100.00 kips Factored Capacity: 145.80 kips
Piles Section Properties: Area = 0.12 ft^2 lx = 294.00 in^4 lz = 101.00 in^4

DESIGN PARAI	METERS
fc = 3500.00 psi	fy = 60000.00 psi
phitens = 0.90	
phi comp = 0.75	phi shear = 0.90
Tens below = 0.375	Comp Above = 0.600
Ec = 3586.6 ksi	Es = 29000.0 ksi
Crack check as per 2	005 Interims
Crack control Exposu	ıre = 1.00
Concrete Type : Nom	nal Weight.

Pile Reactions, Service Pile Reac. Loc(X) Loc(Z) X Mxx Mzz Z P Pile comb Ovs in in kips kft kft kips ft ft -3.00 -1.50 18.00 -36.0 8308 1.000 -580.67 -109.97 159.98 1 114.02* 8019 1.000 -332.59 109.97 -197.05 36.61 2 0.00 -1.50 54.00 -36.0 8204 1.000 -560.28 -365.26 -10.32 111.96* 8125 1.000 -351.20 365.26 -15.23 41.51 3 3.00 -1.50 90.00 -36.0 8412 1.000 -551.99 -365.26 -105.22 119.55* 7917 1.000 -359.48 365.26 79.66 36.05 0.00 -4.50 54.00 7879 1.000 -592.36 196.58 216.79 96.25 4 0.0 8424 1.000 -319.12 -196.58 -242.34 57.22 196.58 216.79 5 -3.00 -7.50 18.00 36.0 7879 1.000 -592.36 125.24* 8422 1.000 -320.90 -196.58 -253.85 25.40 6 0.00 -7.50 54.00 36.0 7866 1.000 -569.11 365.26 81.61 113.22* 8411 1.000 -357.15 -365.26 -107.30 42.36 7 3.00 -7.50 90.00 36.0 8074 1.000 -560.82 365.26 -13.28 113.15* 8203 1.000 -365.44 -365.26 -12.40 44.58

I've included some portions of RC-Pier's output for the footing.

Not interested in the Service capacity of the piles at this time.

Maximum Service Reaction

Pile Reactions, Factored										
Pile	Loc(X) ft	Loc(Z) ft	X in	Z	comb	Ovs	P kips	Mxx kft	Mzz kft	Pile Reac. kips
1	-3.00	-1.50	18.0		1652	_	-740.48	-236.79	104.78	142.76
					1078	_	-229.24	288.04	-241.31	7.10
2	0.00	-1.50	54.0	-36.0	57	_	-792.01	-253.16	-57.54	142.30
					1086	_	-239.43	415.69	-156.16	21.58
3	3.00	-1.50	90.0	-36.0	83	_	-787.87	-253.16	-104.99	150.46*
					1070	_	-243.58	415.69	-108.71	31.23
4	0.00	-4.50	54.0	0.0	18	_	-817.16	253.16	97.77	131.83
					1077	_	-224.24	111.98	-273.96	42.50
- 5	-3.00	-7.50	18.0	36.0	18	_	-817.16	253.16	97.77	154.04*
					7590	_	-273.86	-158.07	-205.23	23.71
6	0.00	-7.50	54.0	36.0	18	_	-817.16	253.16	97.77	145.89*
					7579	_	-318.10	-364.43	-28.70	35.66
- 7	3.00	-7.50	90.0	36.0	1418	_	-724.44	364.43	-30.66	141.38
					1064	_	-347.78	-415.69	137.49	25.60

This is greater than the factored resistance of 145.80 k. So, I should modify my pile arrangement or add more piling. I won't do that at this time.

Footing Design : Notes

* Service Force in pile is greater than service pile capacity.

* Factored Force in pile is greater than factored pile capacity.

Only max. force in piles is considered for design.

Pile coordinates X and Z are from the most left edge of the footing.

Plong= Lateral load in longitudinal direction at the top of pile, Kips.

Php= Available resisting horizontal component due to batter= batter * Vertical pile reaction, Kips.

Plong-Php= Remaining lateral force required to resist by pile.

Max. Pile Reaction Used in Design: (without selfwe	ight and surcharge)
Factored pile reaction	138.95 kips
Service pile reaction	113.61 kips

Note that the maximum factored pile reaction is not 154.04 kips in this table. This is because the footing and surcharge (fill weight) have been deducted. The same is true for the service pile reaction.

Re	inforce	men	t Sched	ule		
Dir	Quantity	Size	Bar dist.	As total in ^2	Spacing in	Hook
Х	7	#9	13.56	7.00	16.81	None
Ζ	10	#9	14.69	10.00	11.21	None

Footing Self-weight = (0.150 kcf)*(9')*(9')*(3.5') / (7 piles) = 6.075 k/pile

Surcharge = (0.120 kcf)*(9')*(9')*(4' fill depth) / (7 piles) = 5.5543 k/pile

Factored Pile Reaction = $154.04 \text{ k} - (1.25)^{*}(6.075 \text{ k}) - (1.35)^{*}(5.5543 \text{ k}) = 138.95 \text{ k}$

Service Pile Reaction = 125.24 k - (1.00)*(6.075 k) - (1.00)*(5.5543 k) = 113.61 k

Note that the column footprint in the fill is not deducted.

Fle	exure		<u> </u>		critical fa		olumn			
Dir ft	Loc	d in	Mmax kft	Comb Cl	Asb_req in^2	Asb_prv in^2	Asb_eff in^2	Ast_req in^2	Ast_prv in^2	Ast_eff in^2
Х	-1.11	28.44	525.8	18 T	5.57	7.00	7.00	3.40	0.00 *	0.00 *
Х	1.11	28.44	525.8	18 T	5.57	7.00	7.00	3.40	0.00 *	0.00 *
Ζ	-1.11	27.31	788.8	18 T	8.80	10.00	10.00	3.40	0.00 *	0.00 *
Ζ	1.11	27.31	788.8	18 T	8.80	10.00	10.00	3.40	0.00 *	0.00 *

$As = 0.0015^*Ag/2 = (0.0015)^*(9')^*(12$
in/ft)*(3.5')*(12 in/ft) / 2 = 3.402 in2

This appears to be based on the 2005 Aashto Lrfd Code Art. 5.10.8.2

See hand calculations for Asb required

Flexure Note

CL: Section classification as per LRFD 2006 interims for provided reinforcement.

C = Compression controlled, I = In-Transition, T = Tension controlled.

Required reinforcement is based on phi for tension controlled sections..

* The provided reinforcement is not adequate, either less than required or larger than maximum allowed.

Cracking check as per AASHTO LRFD 2007 with Interims (2005)

Cn	ackiı	ng/Fa	itigue								
Dir	Loc ft	d in	Cracking Mmax kft	Cracking Comb	Cracking fs ksi	Cracking Srq in	Cracking Spr in	Fatigue Mmax kft	Fatigue Comb	Fatigue fs ksi	Fatigue ratio fs
Х	-1.11	28.44	429.9	7879	28.27	***	16.8*	0.0	0	0.00	0.00
Х	1.11	28.44	429.9	7879	28.27	***	16.8*	0.0	0	0.00	0.00
Ζ	-1.11	27.31	644.9	7879	31.28	***	11.2*	0.0	0	0.00	0.00
Ζ	1.11	27.31	644.9	7879	31.28	***	11.2*	0.0	0	0.00	0.00

See hand calculations for cracking check

Cracking/Fatigue Note

* Provided rebar spacing is not adequate for crack control.

*** Spacing is negative.

On	e Way	y She	ar (Si	mplifi	ed Me	thod)	
Col	Dir	Dist ft	Comb	dv in	Vu kips	phi*Vc kips	
1	Х	-3.63	18			347.8	3
	X	3.63	18			347.8	_
	Z	-3.63	18	30.24	0.0	347.8	_
	Ζ	3.63	18	30.24	0.0	347.8	3
Tw	o Way	y She					
	#	Bo ft	Ao ft^2	Comb	Avg. du in	r Vu kips	phi*Vc kips
С	olumns	_					
	4	45 77			00.0	000.7	40444
	I	15.11	19.79	18	30.24	4 833.7	1214.1
Piles	- max	_					
	: - max 4	13.41	19.79 11.24	18		4 833.7 4 138.9	1214.1
	- max	13.41			30.24		

Two Way Shear Note

TWO WAY SHEAR IN FOOTING IS NOT DESIGNED AND STIRRUPS ARE NOT CONSIDERED.

Flexure

$$\frac{X - \text{Dir}^{n}: 7 - \#9_{s}}{d_{s} = 42^{n} - 13^{n} - \frac{1.128^{n}}{2} = 28.436^{n}}$$

$$\frac{W - \text{Max Pile Load neglecting fill & footing wright}}{W - \text{Max Pile Load neglecting fill & footing wright}}$$

$$\frac{M \text{max} = (138.95^{k}/\text{pile})(2\text{piles})(3^{1} - 1.108^{1}) = 525.8^{k-1}$$

$$As \text{ prov} = (7\text{bars})(1.00 \text{ in}^{2}) = 7\text{ in}^{2} \qquad 7 - \#9_{s}$$

$$\alpha = \frac{A_{s} \cdot 5_{v}}{0.855 \text{Lb}} = \frac{(7\text{in}^{2})(60\text{Ksi})}{(0.85)(3.5\text{Ksi})(9^{1}\times12\%)} = 1.307^{n}$$

$$Mr = \emptyset As \cdot 5_{v} (d_{s} - \frac{a}{2}) = (0.9)(7\text{ in}^{2})(60\text{ ksi})(28.436^{n} - \frac{1.307^{n}}{2}) = 10, \text{ sol } ^{k-11}$$

$$= 875.15^{k-1}$$

$$Check \quad if \text{ Tension-Lontrolled } ? \qquad Yes$$

$$E_{s} = \frac{(28.436^{n} - 1.528^{n})}{(28.436^{n} - 1.538^{n})}(6.003) = 0.052 > 0.005$$

$$E_{s} = \frac{(d_{s} - c)}{c} \epsilon_{v}$$

$$\begin{array}{l} First d A_{S, reg} \lambda^{2} \\ R_{n} &= \frac{M_{0}}{\varphi^{2} b \, d_{s}} = \frac{(525, 8^{n-1})(12Y)}{(0, 9)(9^{1}n(2Y)/(28, 436^{3})^{2}} = 0.08028 \text{ Ksi} \\ \mathcal{C} &= 0.2895 \lambda_{s}^{2} \left(1 - \sqrt{1 - \frac{2R_{n}}{0.85(1)}}\right) = \frac{(0.85)(3.5 \, \mathrm{Ksi})}{60 \, \mathrm{Ksi}} \left(1 - \sqrt{1 - \frac{(0)(0.008 \, \mathrm{Ksi})}{(0.005(2.9 \, \mathrm{Ksi})}}\right) \\ &= 0.0013865 \end{array}$$

$$\begin{array}{l} A_{S, reg} \lambda^{2} &= (9^{1} b \, \mathrm{d}_{s} = (0.0013865)(9^{1} \times 12^{10})(28.436^{10}) = \frac{4}{1.166} \ln^{2} \\ \frac{4}{3} \, \mathrm{A}_{S, reg} \lambda^{2} &= (9^{1} b \, \mathrm{d}_{s})(4.166 \, \mathrm{d}_{s}^{2}) = 5.555 \, \mathrm{d}_{s}^{2} & - Matcher R(-R)Y \end{array}$$

$$\begin{array}{l} I_{g} &= \frac{1}{12} \, \mathrm{b} \, \mathrm{h}^{3} = \left(\frac{1}{12} \sqrt{4} \, \mathrm{vi}^{2}\right) \sqrt{42^{10}} \sqrt{3} = 666, 972 \, \mathrm{d}_{s}^{4} \\ F_{1} &= 0.27 \, \sqrt{f_{2}} = (0.37) \sqrt{3.5 \, \mathrm{Ksi}} = 0.6922 \, \mathrm{Kri} \end{array}$$

$$\begin{array}{l} M_{01} &= \frac{5}{57} \, \frac{\Gamma}{C} = \left(\frac{0.6922 \, \mathrm{Kri}}{(4^{10} \, \mathrm{d})}\right) = 21, 979^{16 \, \mathrm{KeV}} = 1831, 6^{4 \, \mathrm{KeV}} \\ I.2 \, M_{02} &= (1.2) \left(1831.6^{4 \, \mathrm{KeV}}\right) = 2197.9^{4 \, \mathrm{KeV}} > \frac{4}{3} \, \mathrm{Mov} = \left(\frac{4}{3}\right)(515.8^{4 \, \mathrm{KeV}}) = 701.1^{4 \, \mathrm{KeV}} \\ S_{0} \, A_{S, reg} \, \mathrm{d} = 5.959 \, \mathrm{i} \, \mathrm{s}^{2} \, 4 \, \mathrm{A}_{S, POV} = 7 \, \mathrm{i} \, \mathrm{s}^{2} \\ \Lambda_{S, reg} \, \mathrm{d} = 5.959 \, \mathrm{i} \, \mathrm{s}^{2} \, 4 \, \mathrm{A}_{S, POV} = 7 \, \mathrm{i} \, \mathrm{s}^{2} \\ S_{0} \, A_{S, reg} \, \mathrm{d} = 5.959 \, \mathrm{i} \, \mathrm{s}^{2} \, 4 \, \mathrm{A}_{S, POV} = 7 \, \mathrm{i} \, \mathrm{s}^{2} \\ \Lambda_{S, reg} \, \mathrm{d} \, \mathrm{s}^{2} \, \mathrm$$

$$j = l - \frac{k}{3} = l - \frac{0.236053}{3} = 0.9213$$

$$S_{ss} = \frac{M}{A_{s}jd_{s}} = \frac{(429.90^{k-1})(12^{k})}{(7.0 in^{2})(0.9213)(28.436^{u})} = 28.130 \text{ ksi} : \text{ close to } \text{ RC-Picr}$$

$$5 \leq \frac{(700)(1.00)}{(1.6814)(28.130 \text{ ksi})} - (2)(13.564'') = -12.328'' :: Negative spacing}$$

One Way Shear Aoshto Lifd 5.13.3.6 \$ 5.8.1.4 \$ 5.8.3.2 $d_v = max \text{ of } \begin{cases} 0.72h = (0.72)(42^u) = 30.24^u & \text{controls} \\ 0.9ds = (0.90)(28.436^u) = 25.5924^u \\ ds - \% = 25.5924^u - \frac{1.307^u}{2} = 24.939^u \end{cases}$

. The piles in the Z - dir will also be inside the critical section

X-dirn

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

Appendix H

Hand Calculations for Pile Footing Design Spradsheet

$R_r = \bigotimes R_n = 145.8^k$: Factored Pile Resistance used to
	disign for one-way beam shear.
$P_{Um} = 153,986^{K}$: Maximum factored pile load used to
	disign flexure R/I.
Pua = 131.374k	: Maximum factored average pileload
	used to design for tain-man

punching shear.

Note: Normally Pum should be less than Rr. However, the point of these calculations is to simply demonstrate the procedure.

> The footing weight will not be deducted for the Losign of the flexural reinforcement and shear capacity of the footing.

$$\frac{f(x,y)}{|z|^{2}}$$

$$\frac{x - Dir^{n}}{|z|^{2}} = 2B_{1} + 3b^{n} - 7 - k^{n} + 3$$

$$M_{0} = (153.586^{n})(2p_{1}k_{0})(3^{1} - 1.10B) = 58/(2^{n-1})$$

$$a_{0} = \frac{A_{0} \frac{5}{2}}{(0.85)^{2}(2p_{1}k_{0})(3^{1} - 1.10B)} = 58/(2^{n-1})$$

$$a_{0} = \frac{A_{0} \frac{5}{2}}{(0.85)^{2}(2p_{1}k_{0})(3^{1} - 1.10B)} = \frac{1.307^{n}}{2}$$

$$M_{1} = \frac{A_{0} \frac{5}{2}}{(0.85)^{2}(2p_{1}k_{0})(3^{1} - 1.10B)} = \frac{1.307^{n}}{1.530^{n}} = 10.501.8^{n+1}n$$

$$x = \frac{A_{0} \frac{5}{2}}{(0.85)^{2}(2p_{1}k_{0})(3^{1} - 1.10B)} = \frac{1.307^{n}}{(20,85)^{2}(2p_{1}+35^{n})} = 10.501.8^{n+1}n$$

$$x = \frac{A_{0} \frac{5}{2}}{(2p_{1}+30)^{2}(2p_{1}+3p_{1})(60 + p_{1})(2p_{1}+35^{n})} = 10.501.8^{n+1}n$$

$$x = \frac{A_{0} \frac{5}{2}}{(2p_{1}+3p_{1})^{2}(2p_{1}+3p_{1})(60 + p_{1})(2p_{1}+3p_{1})^{n}} = 10.501.8^{n+1}n$$

$$x = \frac{A_{0} \frac{5}{2}}{(2p_{1}+3p_{1}+3p_{1})^{2}(2p_{1}+3p_{1})^{2}(2p_{1}+3p_{1})^{2}} = 10.501.8^{n+1}n$$

$$x = \frac{A_{0} \frac{5}{2}}{(2p_{1}+3p_{1}+3p_{1})^{2}(2p_{1}+3p_{1})^{2}(2p_{1}+3p_{1}+3p_{1})^{2}} = 10.501.8^{n+1}n$$

$$x = \frac{A_{0} \frac{5}{2}}{(2p_{1}+3p_{1}+3p_{1}+3p_{1})^{2}(2p_{1}+3p_{1}+3p_{1}+3p_{1})^{2}} = 0.005155^{2} 0.005^{n} x + 1x^{n} + x^{n} + x^$$

4/3 Asrig

•

x-dirn

: To use B=2 the point of O shear to the Equiv. Column Face must be less than 3 du

 $3.4167' - \frac{2.216'}{2} = 2.309' < 3d_v = (3)\left(\frac{26.374''}{12''_{1}}\right) = 6.594'$

:. OK

Appendix I

Pier Loads - CE

<u>CE – Vehicular Centrifugal Force</u>

- CE is applied 6.0 feet above the deck surface to piers with horizontally curved roadways.
- Design speed for the appropriate highway classification shall be taken from the Office of Design's *Design Manual*.
- Number of lanes loaded for CE shall be consistent with number of lanes loaded for vertical LL. Multiple presence factors apply to CE.
- Each pier shall resist the total CE force individually it is not distributed among the bents.

<u>CE – Vehicular Centrifugal Force (continued)</u>

- The commentary of AASHTO LRFD 3.6.3 speaks of including and excluding CE in order to determine the worst case scenario for pier design. Our manual says CE should always be included when LL is included.
- CE is based on a percentage of total truck (72 kips) or tandem (50 kips) axle weight, not a LL pier reaction of said weight.
 [The Iowa DOT does not consider 90% of two design trucks.]

$$CE = C * LL_{truck or tandem}$$
 $C = f \frac{v^2}{gR}$ where $f = 4/3$

Pier Loads – CE

Consider: 3 span PPC bridge (70.75'-91.5'-60.75') 32 degree LA skew. 6 beam lines at 7.401' (8.727' skewed spacing). Upstation Coordinate System.

Upstation Coordinate System skew69 Beam Line 1 Beam Line 6 R X N Beam Line 6 X N Beam Line 6 X N Beam Line 6 X N Beam Line 1 N Beam Line 6 N Beam Line 1 N Beam Line 6 N Beam Line 1 Beam Line 1 N Beam Line 1

Auto Load Generation: Vehicular Centrifugal Forces (CE)				
⊂Live Load		Selected:		
Design Truck Cesign Truck + Lane Load Design Tandem + Lane Load Two Design Trucks + Lane L Two Design Tandem + Lane Fatigue Truck P-5 Truck P-7 Truck P-9 Truck V	Add -> <- Remove <- Remove All View	Design Truck		
C Manual input: Total Live Load Truck load:	0	kips		
Radius of Curve; Design speed; Number of Lanes Loade	500 102.67 ed: 3 💌	ft ft/s		
Direction of centrifugal force (X)		 • -(X) Cancel 		

-- This is not 305 Wapello

Height of CE Above Cap = 6' + [8'' Slab Thk + 54'' Beam Hgt] / (12 in/ft) = 11.167' $C = f * v^2 / (g * R) = (4/3) * (102.67 \text{ ft/s})^2 / [(32.2 \text{ ft/s}^2) * (500')] = 0.8730$ Design Truck Axle Weight = 32 k + 32 k + 8 k = 72 kCE = Fx' = (72 k) * (0.8730) * (3 lanes) * (0.85) = 160.283 k[MPF = 0.85] $Fx = -(160.283 \text{ k})^*(\cos(32 \text{ deg})) = -135.928 \text{ k}$ $Fz = (160.283 \text{ k})^*(\sin(32 \text{ deg})) = 84.937 \text{ k}$ Fx per beam = (-135.928 k) / (6 beams) = -22.655 kFz per beam = (84.937 k) / (6 beams) = 14.156 kOverturning Mom., Mz = (135.928 k)*(11.167') = 1517.908 k*ft Fy for beam $1 = -(1517.908 \text{ k*ft}) / [(5 \text{ beam spa})^*(8.727)^2 \text{ skewed})] = -34.786 \text{ k}$ Fy for beam 6 = (1517.908 k*ft) / [(5 beam spa)*(8.727' skewed)] = 34.786 kOverturning Mom., $Mx = (84.937 \text{ k})^*(11.167') = 948.491 \text{ k}^*\text{ft}$

Office policy is to delete Mx since we assume the connection between the pier and slab cannot transmit a moment in that direction.

Pier Loads – CE

Loads: Load data		
Bearing / Girder loads Line Image: First Second Bear.Pt#: Dir: Loads: kips Line Image: Second Bear.Pt#: Dir: Loads: kips Line Image: Second 1 1 2 14.155 1 1 2 14.155 1 2 1 2 2 14.155 1 3 2 14.155 1 3 2 14.155 1 3 2 14.155 1 3 2 14.155 1 3 2 14.155 1 3 2 14.155 3 2 Add Modify Delete Strain Load Unit 0.	Column Loads / Settlement Col #: Load Type: Dir. Mag1: y1/L: Mag2: y2/L: 1 ▼ Force ▼ X ▼ 0. 0. 0. 0. 0. Add Modify Delete Cap Loads Cap Loads Load Type: Dir. Arm (Y): Mag1: x1/L: Mag2: x2/L: Moment X - 948.431 0.5 -	Mag Units Force: kips Trap: klf UDL: klf Pres: ksf Settl.: in Force: kips UDL: klf Moment: k-ft Arm: ft
+ Expansion - Contraction	<u>A</u> dd <u>M</u> odify <u>D</u> elete	
Name: CE1 Description: Note: Vertically downward loads be added as negative loads in Y direct	Multiplier for Loads: 1.	o Generation <u>G</u> enerate