Appendix A

		TOTAL ESTIMATED	BRIDGE	QUANTITIES	S - BOTH	BRIDGES	
ITEM NO.	ITEM CODE	ITEM DESCRIPIION	UNIT	wEStBounc bridge	EASt ibunnd bridge	total	A5 built quantity
1	2301-9091100	Long itudinal grooving in conc	SY	885	885	1770	
2	2402-2720000	excavation, cl 20	cr	451	507	958	
3	2403-0100010	Struct conc (8R10GE)	Cr	532.7	533.8	1066.5	
4	2404-7775000	RE INFORC STEEL	LB	28,242	28,242	56,484	
b	2404-7775005	Reinforc steel, epoxy coateo	LB	90,225	90,225	180,450	
6	2407-0580450	BEAM, PPC, LXO5O	EACH	12	12	24	
7	2407-0550000	BEAM, FPC, SLXDI 15	Each	5	6	12	
8	24146424110	conc barricr rail	L「	490	490	980	
9	2501-5125057	Pile, drive steel bear, hp lox57	LF	4650	1650	9105	
10	2501-5550057	PILE, FURN STEEL BEAR, HP Iox 57	LF	4650	4650	9105	
11	2501-6.3.3010	PRFR FIRFI Hol F	IF	270	270	540	
12	2533-4980005	mobilization	Ls			1	
13	2601-2638620	MACADAM STONE SLOPE Protection	${ }_{5} \mathrm{~S}$	632	632	1264	
N NO.		ESTIMATE REFERENCE					

ENT OF THE CONCRETE.
 (or rebars) p porous backfill or granular subease backfill at front face of abutwent footing, and all reguired excavating,
shaping and compacting.

DESIGN STRESSES

SPECIFICATIONS :

CENSTRUCTION: IOMA DEPARTMENT OF TRANSFORTATION STANDARD SPECIFICATIONS

ENERAL SUPPLEMENTAL SPECIF ICATIONS. DEVELOPMENTAL

TRAFFIC CONTROL PLAN ON RELOCATED U.S. 34

TRAFFIC CONTROL PLAN ON IOWA V43
 NOTE: THE ROADWAY WILL BE CLOSED TO THRU TRAFFIC EY THE GFAGING CONTRACTOR BEFORE
 TRAFFIC Eí THE GRADING CONTRAC BRIDGE CONSTRUCTION IS STARED.

GENERAL NOTES
IT IS THE INTENT OF THESE PLANS TO CONSTRUCT DUAL $218{ }^{3}-0 \times 40$ PRETENSIONED
PRESTRESSED CONCGETE BEAM BRIDGES AT STATION $1416+93.83$ (ENGLISH PRELOCATED ON

 LAN MOTE ON THIS SHEET.

 Excess cxcavatro matcrial. no rayment ror ovcriaul will oc allowco ror matcrial
Haled To These sites. EXCAVAIION QUANITIIES FOR THE PIER AND ABUTMENTS ARE BASED ON THE ASSUMP TION THAT
ROODWAF EXAVAIIN MILHAVE BEEN COMPLETED PRIOR TO STARTING CONSTRUCTION OF THE
PIFR AND ABIIIMFNTS.

 The brigege contractor is to install suborains behind the abutmenis, see ESIGE BRIOGE CONIRACTOR IS SH INSTALL SUBURAINS BEHIND THE AEUTMENIS, SEE

 APPROVED GY THE ENGINEER SHALL BE PROVIDED BY THE BRIDGE CONTRACTOR AT

> brall is to ee placed bi others.
 SHOWN ORESSIING OF SLOPES OUTSIDE THE BRIDGE AREA NO
BFIDEE CONTRACTOR SHALL BE PAID FDR AS EXTRA WREK.
 INTO THE HARDENED CONCRETE SURFACES USING A MECHANICAL CUTTING DEVICE. THIS

THE LONG TIUCINAL GROVING IS TO BE BIC ON A SQUARE YARD BASIS. THE NMMBER OF
SRUARE YARIS OF LONGITUOINAL GROOVING WILL BE PAID FOR AT THE CONTRACT PRICE

fains anid cuirreivi specifications.
this brioge has been converted from metric to english for design and

DUAL $218^{\text {deESGN }}-0 \times 40^{\prime}$ PRERETENSIONED PRESTRESSED CONCRETE BEAAM BRIIDGES

NOTES \& QUANTITIES

Iowa defartmant of transpor COTION - highur uly zoos

WAPELLO COUNTY \quad PROUEET NUMEER \quad NHSXX-034-7 (62)--3H-90

(Page 5 of 36)

(Page 6 of 36)

CONCRETE PLACEMENT DIAGRAM AND LONGITUDINAL REINFORCING LAYOUT

PROPOSEO METHOD ANO EVIDENCE THAT THE CONTRACTOR POSSESSES THE NECESSARY EQUIPMENT AND
FACLITITES 10 ALLOMPLISH IHE REAUUKEU RESUL

* gars shall be centered over pier

SECTION A-A

ESTIMATED QUANTITIES - SUPERSTRUCTURE TWO BRIDGES (Two superstructures and four abutwents)				
${ }_{\text {ITEM }}$	units	WESTEOUND	$\begin{aligned} & \text { EASTBOUND } \\ & \hline \text { BRIOGE } \end{aligned}$	quantity
	Cu.YDS.	405.6	406.2	81.8
REINFORCING STEEL EPOXY COATED	Les.	90,225	90,225	180,450
KEINTUKLING SIEEL	Les.	y,407	b,904	16,80¢
structural steel	Les.	${ }^{3} 48$	$\hat{0}^{4}$ ¢	1696
PRETENSICNED PRESTRESSED CONCRETE DEAMS LXCSS	cacil	12	12	24
PRETENSIOMED PRESTRESSED COMCRETE EEMMS SLXOUS	Each	6	ε	2
class 20 excavation	curves.	[8]	210	391
	LIN, F T.	9@ 95' W.A.; 9 9 95' E.A.	9@ 95' W.A.; 9 ¢ 95' E.A.	3470
bearing pling	LIN,FT.	9®95'W.A.; 9 @ 95'E.A.		3420
PRREORED HILES	LIN.FT.	9815 W.A. ; 9 \& 15 E.A.		540

 PRESTRESSED CONCRETE BEAM BRIIGGES SUPERSTRUCTURE DETAILS STATION: 1416 E93.8S (4 RELCOATED U.S. 34
STATION: $12392181.7 C$ R TATION: E13s- WAPELIO COUNTY Julr,zoo

AUTO-SP-RA-HIGH
wape-Lo county
PPROJET NUMEER NHSX-034-7 (62)--3H-90
SHEET NUMEER 16

BENT BAR DETAILS
5d4 5d5 5d6 8 g 3 $6 p 3$ $5 p 4$

REINFORCING BAR LIST - NON-COATED (ONE SUPERSTRUCTURE AND TWO ABUTMENTS)					
BAR	location	SHAPE	No.	LENGTH	WEIGHT
501	PIER DIAAP. ENOS	\square	12	3^{\prime}-11	49
5 d 2	PIER \& ABUT. DIAPH. LONGIT.		90	${ }^{7}-2$	673
503	PIER \& ABIIT. DIA PFH. LONGIT.		30		
504	PIER DIAPH. LONGIT.	-	10	$10^{\prime}-0$	104
505	ABUT. DIAPH. ENOS	\square	12	5'-2	65
588	ABUT. DIAPH, wING EXT. LONGIT.		48	$10^{\circ}-7$	530
501	PIER DIAPH. HOOPS	\square	40	$12^{2} 9$	532
5×2	PIER DIAPH. IIES ENOS		4	$2^{\prime}-9$	11
5 5 3	PIER DIAPH. TIES	\square	40	$3^{3}-5$	143
56^{4}	PIER DIAPH. HOOPS ENOS	\square	4	$12^{\prime}-1$	50
$8+2$	ABUT. FOOTING LONGIT. F.F.	\square	20	$25^{\circ}-3$. 348
$8 \mathrm{f3}$	ABUT. EXTENSION LONGIT.		16	10^{-3}	438
${ }^{\text {Pf }}$	ABUT. Extension Lonsil.		8	$8^{8}-11$	190
$8+5$	ABUT. ExTENSION LONGIT.		8	8-0	171
8 g 2	ABUT. VERT. F.F.		62	$7^{7}-5$	228
694	ABUT, DIAPH, WING EXT, YERT.	-	10	$6^{\prime}-7$	396
5 hl	ABUT. WING HORIZ.		56	${ }^{6^{\prime}-8}$	389
5h2	ABUT. TO MING ANCHOR	-	8	4-0	33
5 P 2	ABUT. EXTENSION HOOPS	$\stackrel{\square}{\square}$	24	$10^{\prime-8}$	267
5.81	winti vert.		56	varifs	26
$4+1$	UNCER BEAMS AT ABUTMENTS	\checkmark	12	$4{ }^{4}-11$	39
\#2	PILE SPIRAL	5	18	38-6	116
	SPIRAL SFACERS,L $\overline{1 / 8} \times 1 / 8 \times 1 / 8 \times 0.00$		36	i^{1-10}	${ }^{46}$
INTERM. DIAPH. - SEE DES. SHT. NO. 22					,140
REINFGRCING STEEL (NON-CUATEO) - TUITAL (LES. ${ }^{\text {a }}$]					8,404

CONCRETE PLACEMENT QUANTITIES (ONE SUPERSTRUCTURE AND Tw ABUTMENTS:	$C_{0} Y_{0}$
गEUIUN	IUIAL
	11.4
SECTION? - SLAE	97,2
SECTION 3 - SLAE, ABUT. DIAPH, WINGWALLS	71.4
SECTION 4 - SLAE, PIER DIAPH.	50.2
SECTION 5 - SLAE, PIER OIAPH.	50.2
wEST ABUTMENT FOQTING	23.1
EAST ABUTMENT FOOTING	22.9
abut. winges 4 at i. 8 cuitios. EACH	7.2
	12.0
TOTAL C.Y.	405.6

ESTIMATED QUANTITIES - SUPERSTRUCTURE

 PRESTRESSED CONCRETE BEAM BRIDGES SUPERSTRUCTURE DETALLS - WESTBOUND BRIDGE

WAPELLO COUNTY

alito-gilant
wapello county
PROUEET NUMEEP NHSX-034-7 (62)--3H-90

BENT BAR DETAILS

REINFORCING BAR LIST - NON-COATED (ONE SUPERSTRUCTURE AND TWO ABUTMENTS)					
BAR	location	SHAPE	No.	LENGTH	WEIGHT
501	PIEE DIAAP. ENOS	\square	12	$3^{3}-11$	49
5 d 2	PIER \& ABUT. DIAPH. LONGIT.		90	$7^{7}-2$	673
503	PIER \& ABIUT. DIAPH.LONGIT.	\square	50	5*-10	185
5 d 4	PIER D IAPP. LONGIT.	S	10	$10^{\circ}-0$	104
5 C 5	ABUT. DIAPH. ENDS	\ulcorner	12	$5^{\prime}-2$	65
508	ABUT. DIAPH. WING EXT. LONGIT.	-	48	$0^{\prime \prime}-7$	530
501	PIER DIAPH. HIOPS	\ulcorner	40	$12^{\prime \cdot}$	532
$5 \mathrm{5e} 2$	PIER DIAPH. TIES ENDS	\square	4	$2^{\prime \prime}-9$	11
$5{ }_{5}{ }^{5}$	PIER DIAPH, TIES	\square	40	$3^{3}-5$	143
564	PIER DIAPH, HOOPS ENOS	\square	4	$12^{2}-1$	50
$8+2$	ABUT. FOOTING LONGIT. F.F.	-	20	25'-3	. 348
$8{ }^{8} 3$	ABUT. ExTENSION LONGIT.	-	16	10^{-3}	438
${ }^{8+4}$	ABUT. Extension lonsit.		8	$8^{8^{\prime}-11}$	190
895	ABUT. EXTENSION LONGIT.	\square	8	8 -0	171
8 g 2	ABUT. VERT. F.F.		62	7'-5	,28
${ }^{694}$	ABUT, DIAPH, WING EXT, VERT.	-	10	$6^{\prime}-7$	396
5 Fl	ABUT. WING HORIZ.	-	56	$6^{\prime}-8$	389
5 F 2	ABUT. TO WING ANCHOR		8	4 ${ }^{-0}$	33
5p2	ABUT. EXTENSION HOOPS	$\stackrel{\square}{7}$	24	10^{-8}	267
5.81	WINT VERT.		56	VABIFS	26,
$4+1$	UNCER EEAMS AT ABUTMENTS	\checkmark	12	$4{ }^{4}-11$	39
\#2	PILE SPiral	\bigcirc	18	38-6	116
			36	i-io	46
		PH. - SEE	ES. SHT	.N0. 22	,140
	REINFCRC	NON-CUATE	- TiSt	L [LES.)	8,404

CONCRETE PLACEMENT QUANTITIES GONE SUPERSTRUCTURE AMD TWO ABUTMENTSI	$C_{0} Y_{0}$
Jeulun	iUIAL
SECIIUN I - SLAE, ABUI. UIAPH., VINLWALLS	11.4
SECTION 2-SLAE	97.2
SECTION 3 - SLAB, ABUT. DIAPH., WINGWALLS	71.4
SECTION 4 - SLAE, PIER DIAPH.	50.2
SECTION 5 - SLIAE, PIER DIAPH.	50.2
WEST ABUTMENT FODTING	23.2
East abutment footing	23.4
AEUT, winçs 4 at liob culicos. EaCH	7.2
	12.0
STRUCTURAL CONCRETE - TOTAL C.Y.	106.2

ESTIMATED QUANTITIES - SUPERSTRUCTURE

DUAL $218^{\circ}-0 \times 40^{\circ} \mathrm{DESGN} \times \mathrm{PRET}$ FNSIONED PRESTRESSED CONCRETE BEAM BRIDGES SUPERSTRUCTURE DETAILS - EASTBOUND BRIDGE

WAPELLO COUNTY Julr,zoos

alito-gilant
wapello county

SHEET NUMEER 18

NOTE : ADD 800.00 TO ALL ELEVATIONS.

HAUNCH DETAIL $\stackrel{\text { 気 }}{\text { W. }}$
noriog seat elevations are set based on theoretical camber and CLAM DCILCCTIONS. TIIESL DRIDGE SEATS WILL RRONIDC ACTILORETICAI CETURM NED USING SUVEYED TOP OL EEAM ELEVATIONS ANS "EEAM LINE ALUNCH" VALUES ARE GIVEN IN THE MISCELLANEOUS OATA" TABLE. CROSS
SLOPE ADUSTMENTV VALUES FROM THE MISCELAAEOUS DATA"TAELE WILL

NOTE 1:
to calculate field haunch required at each locaion subyey the beam tops

 REQURED. II THE FIELD HAUNCH EXCEEDS THE MAXIMUMS AND MINIMMMS INDICGTED
THE MISCLLANEOUS DATA TAELE, ADUUSTMENTS TO THE GRADE OR ADDITIONAL HAÜ'CH RE INFORCEMEVIT WiLL EE REQUIFEO.

	NOTE : HAUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE ENCIRCLED LETTERS AND NUMBERS SHOWN ON DESIGN SHEET 18.			DUAL 218'0 $\times 40^{\prime}$ PRETENSIONED PRESTRESSED CONCRETE BEAM BRIUGGES SUPERSTRUCTURE DETAILS - WESTBOUND \qquad STATION: 21392 WAPELLO COUNTY IOWA DEFARTMENT OF TRANSFORTATION - HIGHWAY DIVISION [DESIGN SHEET NO. 19 OF 31 FILE NO. 29907 OESIGN NO. 305		
(its	WAPELLO COUNTY	Proder NIMMER	NHSX-034-7 (6)	62)-3H-90	SHEET NUMEER	20

NOTE : ADD 800.00 TO ALL ELEVATIONS.

HAUNCH DETAIL 空|免
note: MCAM DCILCTIONSH TILEC DRIDGE SEATS WILL PRONIDLACTILORETICAL CETERM NED USING SURVEYED TOR OF EEAM ELLVATONS AND "EEAM LINE HAUNCH" VALUES ARE GIVEN IN THE MISCELLANEOUS OATA" TABLE. CRESS
SLOPE ADUSTMENTV VALUES FROM THE "MISCELAAEOUS DATA" TAELE WILL

NOTE 1:
to calculate field haunch required at eacy locaion, survey the beam tops CONSISTENT WITH THE SPACIIGS SHONN ON THE TOF OF SLAB ELEVATIONS LAYOUTO O

 HAÜ'CH RE INFORCEMEVIT WiLL EE REQUIFEO.

	NOTE : HAUNCH LOCATIONS ARE AT THE SANEE LOCATION AS THE ENCIRCLED LETTERS AND NUMBERS SHOWN ON DESIGN SHEET 20.			DUAL 218'0 \times 40'PRETENSIONED PRESTRESSED CONCRETE BEÄM BRIŪGES $50^{\circ}-9$ END SPANS SUPERSTRUCTURE DETAILS - EASTBOUND SIATION: $1416+93.83$ (4 Relocated U.S. 34 \qquad WAPELLO COUNTY IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION DESICN SHEET NO. 21 OF 31 FILE NO. 29907		
	WAPELLO County	Provecr numeer	NH5X-034-7	62)--3H-90	ShEET Mumeer	22

LIFTING LOOP DETAIL

Mugeg and exact location or coll
TIES TO QEAS
BRIDEE DESIGN.

COIL TIE DETAIL

SPECIFICATIONS:

construction: sTandad specifications of the Iowa
OEPARTMENI OF TRANSPORTATION, CURRENT SERIES, WITH
CURENT APPIICABL SFECIAL PROVISIONS ANO SUPFLE-
DESIGN: A.A.S.H.T.O., SERIES OF 1989 , with MiNOR MODIFICATIONS.

5is

STRAND PROJECTION AT BEAM ENDS WHEN EMBEDDED IN CONCRETE END DIAPHRAGMS

SECTION A-A SHOWING PLACEMENT OF STIRRUPS NEAR END OF BEAM

DESIGN STRESSES

PRESTRESSING STEEL IN ACCORDANCE with SECTION 9 ,
RESSING STEEL IN
$+\quad=2=210, U U C$ PSI.

DUAL 218'-0 $\times 40^{\prime}$ PRETENSIONED

Iowa WAPEIIO COUNTY Julr, zoos
WAPELLO COUNTY
ICWA DEFARTHENT OF TRASPORATION - HIGHWY DIVISION
23
SHEET NUMEER 24

STRAND PROJECTION AT BEAM ENDS WHEN EMBEDDED IN CONCRETE END DIAPHRAGMS

PART SECTION A-A SHOWING PLACEMENT OF STIRRUPS NEAR END OF BEAM

$$
\begin{aligned}
& \text { NOTES: }
\end{aligned}
$$

LIFTING LOOP DETAIL
BEAM SLXDII5

Strancs $A R E$ AT 9 beam and
bill

$$
\begin{aligned}
& \text { SEAM. DEFLECTEO STRANDS } \\
& \text { O }
\end{aligned}
$$

$$
\begin{aligned}
& \text { O DEELECTEO STRANDS } \\
& \triangle \text { VIIMENSIOSS AT END OF BEAM } \\
& \triangle \triangle \text { EPOXY COATED BARS } \\
& \hline
\end{aligned}
$$ CROSS SECTION

DUAL $218^{\circ}-0 \times 40^{\prime}$ PRETENSIONED $\underset{50-9 \text { ENO SPANS }}{\text { PRESTRESSEU CONCRETE BEAMM BRIUGES }}$ BEAM DETAILS

COUNTY Julr,zod

SLXDIIS BEAN

design stresses for the folowing materials are io be
IN Accordence with ais.
ITO. STANDARD SPEIFICATIONS

ESTIMATED ROADWAY QUANTITIES					\| $100-08$ ¢
ITE4 wo.	IEEM COCE	$\mathrm{IFPM}^{\text {a }}$	uwir	Totich	A5 gult duan.
	$\frac{2301-0853120}{2520-9515}$			963.1	
		IRAFF IC coirol	$\stackrel{\text { c }}{\text { F }}$	$19 \frac{1}{19}$	

- estimate reference information			(100-41
	Item COOE	description	
	2301-0655120	brioge approach sectios, douele-re inforc See Tab. 112-6, Sheet C .02 for loactions and detalls	
2	$2 \overline{2588-8445110}$	 See Iratfic Lontrol \vdash Ian an Sheet L.Ul	
	$\overline{20602-0000020 ~}$		

TRAFFIC CONTROL PLAN		
 Traffic cill be detared from Co. Rd. v43 east on 95th. to 20th. Ave.; then south on 20th. to exstung u.5. 34 . 3. The contractor shall coordinate traficic control wht other projects in the area. 4. All traffic control devices shall be fumisted, erected, maltalined, and remveed by the contractor. 5. Where possitle. all post nounted signs shall be plased at least 2.0 ft beyord the curt or edge of spoulder. appoveed by the engineer in charge of construction. 8. Proposed slig spacing may be modtheded as sporved by the engireer to meet exssung field conditions or to prevent obstruction of the motorist's viev ol permarent signing. 9. Permanent stepnong that convers a message contrany to the message of the tenoraray signim and not apil catil to the working conditions shall be coveren by the contractor then directed by 10. Proposed charges in the traffic control plan shall be reverened for speroval by RCE		

4. All traffic control devices shall be furished, erected, malntained, and removed by the contractor.

Yhere possible.
of shoulder.
The location for storage of equirment by the emntractor during nan-wotking hours shall be as
approved by the engineer in charge of construction.
The engineer may require modifications to the pavenent marking detalls shourt. Conflicting per-
manent edge lines, center lines, or lane lines shall be removed. As applicable, permanent edpe Hnes, center lines, and lane lines shall be placed before the roadway is returred to normal traf fic.
8. Proposed slign spacing may be modified as approved by the engineer to meet exsting field cond-
itions or to prevent obstruction of the motorist's viev of permarent signing. 9. Permanent slenning that corveys a message contrary to the message of the temporary signima and
not appplicalie to the working conditions shall be covered by the contractor when directed by
the englieel.
10. Proposed changes in the traffic control plan shall be reviened for approval by RCE
before changes are made.

ROADWAY DESIGN

DESIGN NO. 305
FILE NO. 29907

All contractersssubcontractors shall condicet their pperations in a mannes that minimimies ernsion and preverts seximents

 1. SITE DESCRIPTION

Agency.
Tisepp
This PPP covers sporroximataly 420 acrese with ne estimatad 309 acrees being distureed. The pertion of the PPP covened yy this cortriact has 2 acces disturreac
The PPP is located in an area of one type of scil association soil association (Lindley. Keswid. Weller).
ine estmated average SES unolt cune
-

Rural Astivalural Activitie:
 fertilizers.
Conmarial and Industiol Activitios:
opcration. Suct operations are sibicict commerce land use may contain conssituents associated with the specifice
 2 controls
 be preserned. As artas reach their final grade, addifional sitit fencos, silt basins, interceppting ditches, sod flumes, latcowns

 autside the seeding time period.

 disturbed areas.
3. OTHER CONTROLS
 and local waste disposas, sanitay sewer, or sepplic system regulutains. In the evernt of a conflidet with other govemmental laws, riles and regulabons, me more cest
APPROVED STATE OR LOCAL PLANS:
 the lime.
4. mantenance
 have lost 55°, of their capacaity
5. INSPECTIONS

Inspections shall be made jointy by the contriactor and the contraccing authority every zeven calendar days and after each

 inspection. The contractor shall implement all revisions. All comedive axtions shal be complefed within 3 calendar dar the inspection.
6. NON-STORM DISCHARGES

criow rem Skocerboe kriunder	Mrate	tina ber * ortice or mecien	WAPELLO

| sitct mimer
c. 01

Appendix C

Moment Magnification Calculations for Load Combination 1010 for Bottom of Column 1 Aashto Lrfd 5.7.4.3 and 4.5.3.2.2b

Factored Load Reactions from RC-Pier

Column 1	Column 2	Column 3
$\mathrm{~F}_{\mathrm{y} 1}=727.65 \mathrm{k}$	$\mathrm{F}_{\mathrm{y} 2}=709.02 \mathrm{k}$	$\mathrm{F}_{\mathrm{y} 3}=597.08 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=313.24 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{x} 2}=311.86 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{x} 3}=313.24 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 1}=-25.43 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{z} 2}=-11.38 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{z} 3}=23.60 \mathrm{k} * \mathrm{ft}$

RC-Pier assumes minimum eccentricity according to Aashto Std. Spec. 8.16.5.2.8

$$
\mathrm{e}_{\min }=0.6+0.03 * \mathrm{~h}=0.6+(0.03)^{*}\left(30^{\prime \prime}\right)=1.5 "=0.125^{\prime}
$$

$\mathrm{M}_{\mathrm{x}_{_} \min 1}=\mathrm{M}_{\mathrm{z}_{_} \min 1}=\left(\mathrm{F}_{\mathrm{y} 1}\right)^{*}\left(\mathrm{e}_{\text {min }}\right)=(727.65 \mathrm{k})^{*}\left(0.125^{\prime}\right)=90.956 \mathrm{k}^{*} \mathrm{ft}$
$\mathrm{M}_{\mathrm{X}_{-} \min 2}=\mathrm{M}_{\mathrm{Z}_{_} \min 2}=\left(\mathrm{F}_{\mathrm{y} 2}\right)^{*}\left(\mathrm{e}_{\text {min }}\right)=(709.02 \mathrm{k})^{*}\left(0.125^{\prime}\right)=88.628 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x}_{-} \min 3}=\mathrm{M}_{\mathrm{z}_{-} \min 3}=\left(\mathrm{F}_{\mathrm{y} 3}\right) *\left(\mathrm{e}_{\min }\right)=(597.08 \mathrm{k})^{*}\left(0.125^{\prime}\right)=74.635 \mathrm{k} * \mathrm{ft}$
Factored Loads Considered

Column 1	Column 2	Column 3
$\mathrm{~F}_{\mathrm{y} 1}=727.65 \mathrm{k}$	$\mathrm{F}_{\mathrm{y} 2}=709.02 \mathrm{k}$	$\mathrm{F}_{\mathrm{y} 3}=597.08 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=313.24 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{x} 2}=311.86 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{x} 3}=313.24 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 1}=-90.956 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{z} 2}=-88.628 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{z} 3}=74.635 \mathrm{k} * \mathrm{ft}$

Moment Magnification from Aashto Lrfd 4.5.3.2.2b with RC-Pier Modifications

$$
\begin{array}{ll}
\mathbf{M}_{\mathrm{c}}=\delta_{\mathrm{b}} \mathbf{M}_{2 \mathrm{~b}}+\delta_{\mathrm{s}} \mathbf{M}_{2 \mathrm{~s}} & \text { RC-Pier modifies this equation for unbraced frames by assuming } \\
\mathbf{M}_{\mathrm{c}}=\delta_{\mathrm{s}} \mathbf{M}_{2} & \text { that all moments are to be magnified by } \delta_{\mathrm{s}} \text { alone. }
\end{array}
$$

$$
\text { where } \delta_{\mathrm{s}}=1 /\left[1-\Sigma \mathrm{P}_{\mathrm{u}} /\left(\phi_{\mathrm{k}} * \Sigma \mathrm{P}_{\mathrm{e}}\right)\right]
$$

$\phi_{\mathrm{k}}=0.75$
$\mathrm{P}_{\mathrm{e}}=\pi^{2} * \mathrm{EI} /\left(\mathrm{k}^{*} \mathrm{l}_{\mathrm{u}}\right)^{2}$
$\mathrm{EI}=\left(\mathrm{E}_{\mathrm{c}} * \mathrm{I}_{\mathrm{g}} / 2.5\right) /\left(1+\beta_{\mathrm{d}}\right)$

Stiffness reduction factor for concrete
Euler buckling load
Flexural column stiffness β_{d} is ratio of maximum factored dead load moment to maximum factored total moment, always positive

Calculate $\beta_{\mathrm{d}}=\mid$ Maximum Factored Dead Load Moment / Maximum Factored Total Load Moment |
Loads from RC-Pier
Unfactored Self-weight
$\mathrm{F}_{\mathrm{y} 1}=40.10 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{F}_{\mathrm{y} 2}=44.88 \mathrm{k}$
$\mathrm{F}_{\mathrm{y} 3}=40.10 \mathrm{k}$
$\mathrm{M}_{\mathrm{z} 1}=-0.41 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 3}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z2}}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z3}}=0.41 \mathrm{k} * \mathrm{ft}$

Unfactored DC loads

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{y} 1}=305.22 \mathrm{k} & \mathrm{~F}_{\mathrm{y} 2}=282.22 \mathrm{k} & \mathrm{~F}_{\mathrm{y} 3}=305.22 \mathrm{k} \\
\mathrm{M}_{\mathrm{x} 1}=0.00 \mathrm{k} * \mathrm{ft} & \mathrm{M}_{\mathrm{x} 2}=0.00 \mathrm{k} * \mathrm{ft} & \mathrm{M}_{\mathrm{x} 3}=0.00 \mathrm{k} * \mathrm{ft} \\
\mathrm{M}_{\mathrm{z} 1}=4.87 \mathrm{k} * \mathrm{ft} & \mathrm{M}_{\mathrm{z} 2}=0.00 \mathrm{k} * \mathrm{ft} & \mathrm{M}_{\mathrm{z} 3}=-4.87 \mathrm{k} * \mathrm{ft}
\end{array}
$$

Factored Self-weight $($ Load factor $=1.25)$
$\mathrm{F}_{\mathrm{y} 1}=50.125 \mathrm{k}$
$\mathrm{F}_{\mathrm{y} 2}=56.10 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{F}_{\mathrm{y} 3}=50.125 \mathrm{k}$
$\mathrm{M}_{\mathrm{z} 1}=-0.5125 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 3}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{23}=0.5125 \mathrm{k} * \mathrm{ft}$

Factored DC loads (Load factor $=1.25$)
$\mathrm{F}_{\mathrm{y} 1}=381.525 \mathrm{k}$
$\mathrm{F}_{\mathrm{y} 2}=352.775 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 1}=6.0875 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{F}_{\mathrm{y} 3}=381.525 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 3}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 3}=-6.0875 \mathrm{k} * \mathrm{ft}$

Factored Self-weight + DC loads
$\mathrm{F}_{\mathrm{y} 1}=431.650 \mathrm{k}$
$\mathrm{F}_{\mathrm{y} 2}=408.875 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{F}_{\mathrm{y} 3}=431.650 \mathrm{k}$
$\mathrm{M}_{\mathrm{z} 1}=5.575 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 2}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x} 3}=0.00 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z3}}=-5.575 \mathrm{k} * \mathrm{ft}$

Check $\mathrm{M}_{\text {min }}$ due to minimum eccentricity ($\mathrm{e}_{\text {min }}=0.125^{\prime}$)
$\mathrm{M}_{\mathrm{x}_{-} \min 1}=\mathrm{M}_{\mathrm{z}_{-} \min 1}=(431.650 \mathrm{k})^{*}\left(0.125^{\prime}\right)=53.956 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{x}_{\mathrm{_}} \min 2}=\mathrm{M}_{\mathrm{z}_{_} \min 2}=(408.875 \mathrm{k})^{*}\left(0.125^{\prime}\right)=51.109 \mathrm{k}^{*} \mathrm{ft}$
$\mathrm{M}_{\mathrm{x}_{-} \min 3}=\mathrm{M}_{\mathrm{z}_{-} \min 3}=(431.650 \mathrm{k})^{*}\left(0.125^{\prime}\right)=53.956 \mathrm{k}^{*} \mathrm{ft}$
Factored Loads considered for β_{d}

$\mathrm{F}_{\mathrm{y} 1}=431.650 \mathrm{k}$	$\mathrm{F}_{\mathrm{y} 2}=408.875 \mathrm{k}$	$\mathrm{F}_{\mathrm{y} 3}=431.650 \mathrm{k}$
$\mathrm{M}_{\mathrm{x} 1}=53.956 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{x} 2}=51.109 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{x} 3}=53.956 \mathrm{k} * \mathrm{ft}$
$\mathrm{M}_{\mathrm{z} 1}=53.956 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{z} 2}=51.109 \mathrm{k} * \mathrm{ft}$	$\mathrm{M}_{\mathrm{z} 3}=-53.956 \mathrm{k} * \mathrm{ft}$

β_{d} Calculations
Column $1 \quad \beta_{\mathrm{dx} 1}=|(53.956 \mathrm{k} * \mathrm{ft}) /(313.24 \mathrm{k} * \mathrm{ft})|=0.172252$

$$
\beta_{\mathrm{dz} 1}=|(53.956 \mathrm{k} * \mathrm{ft}) /(-90.956 \mathrm{k} * \mathrm{ft})|=0.593211
$$

Column $2 \quad \beta_{\mathrm{dx} 2}=|(51.109 \mathrm{k} * \mathrm{ft}) /(311.86 \mathrm{k} * \mathrm{ft})|=0.163886$

$$
\beta_{\mathrm{d} 22}=|(51.109 \mathrm{k} * \mathrm{ft}) /(-88.628 \mathrm{k} * \mathrm{ft})|=0.576676
$$

Column $3 \quad \beta_{\mathrm{dx} 3}=|(53.956 \mathrm{k} * \mathrm{ft}) /(313.24 \mathrm{k} * \mathrm{ft})|=0.172252$ $\beta_{\mathrm{d} 23}=|(53.956 \mathrm{k} * \mathrm{ft}) /(-74.635 \mathrm{k} * \mathrm{ft})|=0.722935$

Calculate $\mathrm{EI}=\left(\mathrm{E}_{\mathrm{c}} * \mathrm{I}_{\mathrm{g}} / 2.5\right) /\left(1+\beta_{\mathrm{d}}\right)$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{c}}=(33)^{*}(150 \mathrm{pcf})^{1.5 *}(3500 \mathrm{psi})^{0.5} *\left[\left(144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right) /(1000 \mathrm{lb} / \mathrm{k})\right]=516,472.7 \mathrm{ksf} \\
& \mathrm{I}_{\mathrm{g}}=0.25^{*} \pi^{*} \mathrm{r}^{4}=0.25^{*} \pi^{*}\left(0.5^{*} 2.5^{\prime}\right)^{4}=1.9175 \mathrm{ft}^{4}
\end{aligned}
$$

Column $1 \quad \mathrm{EI}_{\mathrm{x} 1}=\left[(516,472.7 \mathrm{ksf}) *\left(1.9175 \mathrm{ft}^{4}\right) / 2.5\right] /(1+0.172252)=337,921.8 \mathrm{k}^{*} \mathrm{ft}^{2}$ $\mathrm{EI}_{\mathrm{z} 1}=\left[(516,472.7 \mathrm{ksf}) *\left(1.9175 \mathrm{ft}^{4}\right) / 2.5\right] /(1+0.593211)=248,636.0 \mathrm{k} * \mathrm{ft}^{2}$

Column $2 \quad \mathrm{EI}_{\mathrm{x} 2}=\left[(516,472.7 \mathrm{ksf}) *\left(1.9175 \mathrm{ft}^{4}\right) / 2.5\right] /(1+0.163886)=340,350.9 \mathrm{k}^{*} \mathrm{ft}^{2}$ $\mathrm{EI}_{\mathrm{z2}}=\left[(516,472.7 \mathrm{ksf}) *\left(1.9175 \mathrm{ft}^{4}\right) / 2.5\right] /(1+0.576676)=251,243.4 \mathrm{k}^{*} \mathrm{ft}^{2}$

Column $3 \quad \mathrm{EI}_{\mathrm{x} 3}=\left[(516,472.7 \mathrm{ksf}) *\left(1.9175 \mathrm{ft}^{4}\right) / 2.5\right] /(1+0.172252)=337,921.8 \mathrm{k}^{*} \mathrm{ft}^{2}$
$\mathrm{EI}_{\mathrm{z} 3}=\left[(516,472.7 \mathrm{ksf}) *\left(1.9175 \mathrm{ft}^{4}\right) / 2.5\right] /(1+0.722935)=229,915.6 \mathrm{k}^{*} * \mathrm{ft}^{2}$

Calculate $\mathrm{P}_{\mathrm{e}}=\left(\pi^{2} * \mathrm{EI}\right) /\left(\mathrm{k}^{*} 1_{\mathrm{u}}\right)^{2} \quad \mathrm{k}_{\mathrm{x}}=2.1, \mathrm{k}_{\mathrm{z}}=1.2, \mathrm{l}_{\mathrm{u}}=20.5$,
Column $1 \quad \mathrm{P}_{\mathrm{ex} 1}=\left[\left(\pi^{2}\right) *\left(337,921.8 \mathrm{k}^{*} \mathrm{ft}^{2}\right)\right] /\left[(2.1) *\left(20.5^{\prime}\right)\right]^{2}=1799.574 \mathrm{k}$

$$
\mathrm{P}_{\mathrm{ez} 1}=\left[\left(\pi^{2}\right) *\left(248,636.0 \mathrm{k}^{*} \mathrm{ft}^{2}\right)\right] /\left[(1.2) *\left(20.5^{\prime}\right)\right]^{2}=4055.025 \mathrm{k}
$$

Column $2 \quad \mathrm{P}_{\mathrm{ex} 2}=\left[\left(\pi^{2}\right)^{*}\left(340,350.9 \mathrm{k}^{*} \mathrm{ft}^{2}\right)\right] /\left[(2.1)^{*}\left(20.5^{\prime}\right)\right]^{2}=1812.51 \mathrm{k}$

$$
\mathrm{P}_{\mathrm{e} z 2}=\left[\left(\pi^{2}\right) *\left(251,243.4 \mathrm{k}^{*} \mathrm{ft}^{2}\right)\right] /\left[(1.2)^{*}\left(20.5^{\prime}\right)\right]^{2}=4097.55 \mathrm{k}
$$

Column $3 \quad \mathrm{P}_{\mathrm{ex} 3}=\left[\left(\pi^{2}\right) *\left(337,921.8 \mathrm{k}^{*} \mathrm{ft}^{2}\right)\right] /\left[(2.1)^{*}\left(20.5^{\prime}\right)\right]^{2}=1799.574 \mathrm{k}$

$$
\mathrm{P}_{\mathrm{ez} 3}=\left[\left(\pi^{2}\right)^{*}\left(229,915.6 \mathrm{k}^{*} \mathrm{ft}^{2}\right)\right] /\left[(1.2)^{*}\left(20.5^{\prime}\right)\right]^{2}=3749.712 \mathrm{k}
$$

Calculate $\delta_{\mathrm{s}}=1 /\left[1-\Sigma \mathrm{P}_{\mathrm{u}} /\left(\phi_{\mathrm{k}} * \Sigma \mathrm{P}_{\mathrm{e}}\right)\right]$ for Column 1
Column $1 \quad \delta_{\text {sx }}=1 /[1-(727.65 \mathrm{k}+709.02 \mathrm{k}+597.08 \mathrm{k}) /[(0.75) *(1799.574 \mathrm{k}+1812.51 \mathrm{k}+$ $1799.574 \mathrm{k})$]]

$$
\begin{aligned}
& =2.0043 \\
\delta_{\text {sz }} & =1 /\left[1-(727.65 \mathrm{k}+709.02 \mathrm{k}+597.08 \mathrm{k}) /\left[(0.75)^{*}(4055.025 \mathrm{k}+4097.55 \mathrm{k}+\right.\right. \\
& =1.2950
\end{aligned}
$$

Factored Loads with Magnification for Column 1

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{y} 1}=727.65 \mathrm{k} \\
& \mathrm{M}_{\mathrm{x} 1}=(313.24 \mathrm{k} * \mathrm{ft})^{*}(2.0043)=627.827 \mathrm{k} * \mathrm{ft} \\
& \mathrm{M}_{\mathrm{z} 1}=(-90.956 \mathrm{k} * \mathrm{ft})^{*}(1.2950)=-117.793 \mathrm{k} * \mathrm{ft}
\end{aligned}
$$

Appendix D

RC-Pier and Footing Surcharge

The user needs to be aware of how RC-Pier handles footing surcharge loads:

- Load factors are not applied to the footing surcharge if the EV load case is not specified on the Loads tab.

The problem will be illustrated using a simple example. Consider the unusual pier below. The cap is $2^{\prime} \times 2^{\prime} \times 2^{\prime}$. The column is $2^{\prime} \times 2^{\prime} \times 8^{\prime}$ tall. The footing is $10^{\prime} \times 10^{\prime} \times 0.5^{\prime \prime}$ thick. There is one pile in the center of the footing. Two bearings are centered over the column.

I modeled the pier like this to make it easier to see what the loads are. Essentially the footing weight is 0 kips because it is very thin and because I set the unit weight of the footing to the really small value of 0.101 pcf (see below).

On the Loads tab I selected only load type DC; however, I didn't enter any loads for the DC1 load type. Notice that I also selected Strength Group 1.

The only load on my pier footing at this point is the self-weight of the cap and column. Remember that the footing is "weightless".

Unfactored Cap + Column Weight $=\left(2^{\prime}\right)^{*}\left(2^{\prime}\right)^{*}\left(2^{\prime}+8^{\prime}\right)^{*}(0.150 \mathrm{kcf})=6 \mathrm{kips}$
Max. Factored Cap + Column Weight $=(1.25) *(6 \mathrm{kips})=7.50 \mathrm{kips}$
Min. Factored Cap + Column Weight $=(0.90) *(6 \mathrm{kips})=5.40 \mathrm{kips}$
If I check the Design Status of my footing pile (since I only have one pile) in RC-Pier I can see that my calculations above concur with RC-Pier's results for the maximum and minimum factored pile reaction.

Pile Reactions, Factored										
Pile	$\begin{gathered} \operatorname{Loc}(0) \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \operatorname{Loc}(\mathbb{1}) \\ \mathrm{ft} \end{gathered}$	$\begin{aligned} & X \\ & \text { in } \end{aligned}$	$\begin{aligned} & Z \\ & \text { in } \end{aligned}$	comb	Ovg	${ }^{\mathrm{Vs}} \underset{\mathrm{kips}}{\mathbf{p}}$	lft	$\begin{gathered} \mathrm{H} / \mathrm{zz} \\ \text { hft } \end{gathered}$	Pile Reac. Kips
1	0.00	-5.00	60.0	0.0	1	-	-7.50	0.00	-0.00	7.50
					3	$3-$	-5.40	0.00	-0.00	5.40

Now let's add in a footing surcharge load and see how RC-Pier handles that. We will assume we have 2 ' of fill on the footing and that the unit soil weight is 0.120 kcf .

Constant Footing Surcharge $=\left(2^{\prime}\right)^{*}(0.120 \mathrm{kcf})=0.240 \mathrm{ksf}$

When we check the Design Status of our footing in RC-Pier we get the following results:

Pile Reactions, Factored

Pile	$\begin{gathered} \text { Loc }(0) \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \operatorname{Loc}(\Omega) \\ \mathrm{ft} \end{gathered}$	$\begin{aligned} & X \\ & \text { in } \end{aligned}$	$\begin{aligned} & 7 \\ & \text { in } \end{aligned}$	comb	Ov9	$\underset{\text { kips }}{\underset{\sim}{P}}$	Mxx lft	$\begin{array}{r} \mathrm{Hzz} \\ \text { hft } \end{array}$	Pile Reac. Kips
1	0.00	-5.00	60.0	0.0	1	-	-7.50	0.00	- 0.00	31.50
					2	-	-5.40	0.00	-0.00	29.40

Footing Design : Notes

Only max. force in piles is considered for design.
Pile coordinates X and Z are from the most left edge of the footing.
Plong= Lateral load in longitudinal direction at the top of pile, Kips.
Php= Available resisting horizontal component due to batter= batter * Vertical pile reaction, Kips.
Plong-Php= Remaining lateral force reguired to resist by pile.

Max. Pile Reaction Used in Design: (without selfweight and surcharge)
Factored pile reaction

The maximum factored pile reaction is now 31.50 kips. We can calculate this as follows:
Unfactored Surcharge Load $=(0.240 \mathrm{ksf})^{*}\left(10^{\prime}\right)^{*}\left(10^{\prime}\right)=24.00 \mathrm{kips}$
Max. Pile Rxn $=($ Max. Factored Cap + Column Weight $)+($ Unfactored Surcharge Load $)$
Max. Pile Rxn $=7.50 \mathrm{kips}+24.00 \mathrm{kips}=31.50 \mathrm{kips}$
So we can see that the surcharge load is not being factored. Now let's see what happens when we add the EV load on the Loads tab screen as shown below. Note that we are not actually entering any load as an EV1 load or as a DC1 load.

This time we get the different results as shown below.

Pile Reactions, Factored											
Pile	$\begin{gathered} \operatorname{Loc}(0) \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \operatorname{Loc}(1) \\ \mathrm{ft} \\ \hline \end{gathered}$	$\begin{aligned} & X \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & \text { in } \end{aligned}$	comb	Ovs		$\underset{\mathbf{k i p s}}{\mathbf{p}}$	Hxx lft	$\begin{array}{r} \text { Hzz } \\ \text { lft } \end{array}$	Pile Reac. Kips
1	0.00	-5.00	60.0	0.0	1	1 -	- -7	-7.50	0.00	-0.00	39.90
					4	4 -	- -5	-5.40	0.00	-0.00	27.00

Footing Design : Notes

Only max. force in piles is considered for design.
Pile coordinates X and Z are from the most left edge of the footing.
Plong= Lateral load in longitudinal direction at the top of pile, Kips.
Php=Available resisting horizortal component due to batter= batter * Verical pile reaction, Kips.
Plong-Php= Remaining lateral force required to resist by pile.

Max. Pile Reaction Used in Design: (without selfweight and surcharge)
Factored pile reaction $\quad 7.50$ kips

The maximum factored pile reaction is now 39.90 kips. We can calculate this as follows:
Factored Surcharge Load $=(1.35)^{*}(24.00 \mathrm{kips})=32.40 \mathrm{kips}$
Max. Pile Rxn $=($ Max. Factored Cap + Column Weight $)+($ Factored Surcharge Load $)$
Max. Pile Rxn $=7.50$ kips +32.40 kips $=39.90$ kips
So we can see that the surcharge load is being factored when we add EV to the Loads tab screen. [Note that I also tried an ES load instead of an EV load. The ES load did not result in a load factor being applied to the Footing Surcharge load.] So, the Footing Surcharge is only factored when the EV load is specified on the Loads tab screen. Excluding the load factor for the fill loads on the footing can be fairly significant if you have a deep fill and relatively light superstructure loads.

So, if you typically enter the footing surcharge load on the Footing tab then you should still supply an EV load on the Loads tab even if you don't enter a load for it. Apparently RC-Pier hasn't always functioned in this manner. An office example I put together for 305 Wapello around 10/10/2006 (RC-Pier Version 4.1.0) shows some calculations that make it apparent that the load factor was being included in the footing surcharge load when it was entered on the Footing tab, but no EV load was specified on the Loads tab.

One recommended procedure might be to enter the footing fill load for each pier footing as an EV load near the bottom of each column on the Loads tab. [I recommend the load be placed just a fraction above the bottom of the column for the RC-Pier footing design runs since that ensures the Analysis Results on the Analysis tab reflect the load.] Doing it this way may affect whether or not you want to make use of RC-Pier to design your footing reinforcement since it will have some effect on those results.

An interesting side note concerns the footing self-weight applied by RC-Pier. Not that you would ever do this, but... if you were ever to do a run of RC-Pier with no DC loads then you would find that the cap and column self-weight would not be included as a load on your footing. However, the footing self-weight would be applied to your footing, but it would not have a load factor applied.

Finally it should be noted that the column area is not deducted from the footing area when the footing surcharge is actually computed. Normally this isn't a big deal since the column area is generally quite a bit smaller than the footing area, but it is something to keep in mind.

Appendix E

RC-Pier and Battered Piles

As you may have seen, RC-Pier allows the user to enter pile batter in the z-axis direction only. For instance, in the figure below I have entered a batter of 14.03 degrees which is approximately a $1: 4$ batter. When a pile batter is entered the program prints some additional output to the Pile Reactions table. Some of the calculations for this additional output are demonstrated on the following pages.

For these example calculations we are going to run only one combination (\#79).

```
Comb # 79 (IA STR 1 )=1.00 (1.25 DCl + 1.50 DWl + 1.35 EV1 + 1.75 LLI
```

 \(-1.75 \mathrm{BRI}+0.50 \mathrm{TUl}+0.50 \mathrm{SH} 2\))
 We are only going to look at the calculations for footing 1 which corresponds with node 1 of member 1. The forces for combination 79 at node 1 are as follows.

The pile reactions for this footing are as follows. The last three columns of output are printed because we have input a pile batter.

Pile Reactions, Factored														
Pile	$\begin{gathered} \text { Loc }(0) \\ f t \end{gathered}$	$\begin{gathered} \operatorname{Loc}(\lambda) \\ \mathrm{ft} \end{gathered}$	x	$\begin{aligned} & z \\ & \text { in } \end{aligned}$	Batter degree	mb	Ovs	$\underset{\text { kips }}{\mathbf{P}}$	Mxx kft	Hzz lft	Pile Reac. Kips	Php kips	Plong kips	Plong.Php Kips
	-3.00	-1.50	18.0	-36.0	14	79	-	-800.62	-253.16	-121.55	129.74	32.42	-1.42	31.00\#
						79	-	-800.62	-253.16	-121.55	129.74	32.42	-1.42	31.00 \#
	0.00	-1.50	54.0	36.0	14	79	-	- 8800.62	-253.16	-121.55	139.87	34.95	-1.42	33.53 \#
						79	-	- 8800.62	-253.16	-121.55	139.87	34.95	-1.42	33.53 \#
3	3.00	-1.50	90.0	36.0	14	79	-	-800.62	-253.16	-121.55	150.00^{*}	37.48	-1.42	36.06 \#
						79	-	- 8800.62	-253.16	-121.55	150.00^{*}	37.48	-1.42	36.06 \#
4	0.00	4.50	54.0	0.0	0	79	-	- 8800.62	-253.16	-121.55	125.80	0.00	-1.42	-1.42
						79	-	- 880.62	-253.16	-121.55	125.80	0.00	-1.42	-1.42
5	-3.00	-7.50	18.0	36.0	-14	79	-	- 8800.62	-253.16	-121.55	101.61	-25.39	-1.42	26.81
						79	-	- 8800.62	-253.16	-121.55	101.61	-25.39	-1.42	-26.81
6	0.00	-7.50	54.0	36.0	-14	79	-	- 8800.62	-253.16	-121.55	111.74	-27.92	-1.42	29.34
						79	-	- -800.62	-253.16	-121.55	111.74	-27.92	-1.42	-29.34
7	3.00	-7.50	90.0	36.0	-14	79	-	- 8800.62	-253.16	-121.55	121.87	-30.45	-1.42	-31.87
						79	-	880.6	53.	121.55	121.87	-30.45	-1.42	-31.0

Footing Design : Notes

* Factored Force in pile is greater than factored pile capacity.
\# = Pile needs to resist remaining lateral force.
Only max. force in piles is considered for design.
Pile coordinates X and Z are from the most left edge of the footing.
Plong= Lateral load in longitudinal direction at the top of pile, Kips.
Php= Available resisting horizontal component due to batter= batter * Verical pile reaction, Kips.
Plong-Php= Remaining lateral force required to resist by pile.

The following calculations are developed for pile \#1.
The section moduli for pile \#1 in the X and Z directions with respect to the center of the footing are:
Sx $=\left[(2 \text { rows })^{*}(3 \text { piles })^{*}\left(3^{\prime}\right)^{2}\right] / 3^{\prime}=18$ pile ${ }^{*} \mathrm{ft}$
$\mathrm{Sz}=\left[(2 \text { rows })^{*}(2 \text { piles })^{*}\left(3^{\prime}\right)^{2}\right] / 3^{\prime}=12$ pile ${ }^{*} \mathrm{ft}$

The pile reaction for pile \#1 is:
Pile Rxn $=[(880.62 \mathrm{k}) /(7$ piles $)]+[(253.16 \mathrm{k} * \mathrm{ft}) /(18$ pile*ft $)]-$ $[(121.55 \mathrm{k} * \mathrm{ft}) /(12$ pile $* \mathrm{ft})]=129.74 \mathrm{k}$

The horizontal component of the pile reaction due to pile batter is:
$\operatorname{Php}=(129.74 \mathrm{k}) *(\tan (14.03 \mathrm{deg}))=32.42 \mathrm{k}$

The lateral forces on the pile are as follows. RC-Pier currently ignores Fx forces since they are perpendicular to the direction of batter.
$\mathrm{Fx}=(12.31 \mathrm{k}) /(7$ piles $)=1.76 \mathrm{k}$
$\mathrm{Fz}=(-9.941 \mathrm{k}) /(7$ piles $)=-1.42 \mathrm{k}$

Plong $=\mathrm{Fz}=-1.42 \mathrm{k}$

The sign convention for this lateral force and the horizontal component of the pile reaction are opposed and thus RC-Pier assumes:

Plong-Php $=32.42 \mathrm{k}-1.42 \mathrm{k}=31.00 \mathrm{k}$
It appears (from additional testing) that RC-Pier flags any positive value for "Plong-Php" as a failure. The additional RC-Pier output for battered piles is somewhat confusing and, for the time being, you should simply refer to the Bridge Design Manual for guidance in dealing with lateral pile forces for vertical and battered piles.

BDM 6.6.4.1.3.1
"The pile group supporting a pier footing shall be checked for lateral loading [OBS MM No. 9]. Each vertical pile may be assumed to have shear resistance, and each battered pile may be assumed to have shear resistance plus the horizontal component of the axial resistance. See the pile resistance guidelines for steel H-piles [BDM 6.2.6.1] and for timber piles [BDM 6.2.6.3]."

Appendix F

RC-Pier and Pile Footing Design: Flexure and Shear

| Tapered Cap Parameters | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |

Notice that the column length has been increased by 3.5' from 22^{\prime} to 25.5'.

HP10x57 Structural Resistance Level 1

Factored Resistance $=(6 \mathrm{ksi})^{*}\left(0.1167 \mathrm{ft}^{2}\right)^{*}\left(144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right)^{*}(1.45)=146.16 \mathrm{k}$
BDM Table 6.2.6.1-1 shows (0.6$)^{*}(243 \mathrm{k})=145.8 \mathrm{k}$

ISOLATED FOOTING DESIGN

ISOLATED FOOTING DESIGN

Code: AASHTO LRFD 2007 (with Interims')
Units: US
Pier Viem: Upstation.

GEOMETRY

DESIGN PARAMETERS

$\mathrm{p}_{\mathrm{C}}=3500.00 \mathrm{psi}$	$\mathrm{fy}_{\mathrm{ps}}=600000.00 \mathrm{psi}$
phitens $=0.90$	
phi comp $=0.75$	phi shear $=0.90$
Tens belown $=0.375$	Comp Above $=0.600$
$\mathrm{Ec}=3586.6 \mathrm{ksi}$	$\mathrm{Es}_{\mathrm{c}}=290000.0 \mathrm{ksi}$

Crack check as per 2005 Interims
Crack cortrol Exposure $=1.00$
Concrete Type : Nomal Weight.

Concrete Type: Nomal lileight.										
Pile Reactions, Service					4			Hxx lft	$\begin{gathered} \mathrm{Hzz} \\ \mathbf{k f t} \end{gathered}$	Pile Reac. Kips
Pile	$\begin{gathered} \text { Loc }(0) \\ \mathrm{ft} \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{Loc}(\Lambda) \\ \mathrm{ft} \end{gathered}$	$\begin{aligned} & X \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \text { in } \end{aligned}$		Ovs	$\begin{gathered} \mathbf{P} \\ \mathbf{k i p s} \end{gathered}$			
1	-3.00	-1.50	18.00		8308	1.000	-580.67	-109.97	159.98	14.02*
						1.000	-332.59	109.97	-197.05	36.61
2	0.00	-1.50	54.00			1.000	-560.28	-365.26	-10.32	111.90^{*}
						1.000	-351.20	365.26	-15.23	41.51
3	3.00	-1.50	90.00			1.000	-551.99	-365.26	-105.22	119.55^{*}
						1.000	-359.48	365.26	79.66	36.05
4	0.00	-4.50	54.00	0.0		1.000	-592.36	196.58	216.79	96.25
					8424	1.000	-319.12	-196.58	-242.34	57.22
5	-3.00	-7.50	18.00		7879	1.000	-592.36	196.58	216.79	125.24*
						1.000	-320.90	-196.58	-253.85	25.40
6	0.00	-7.50	54.00	36.0	7866	1.000	-569.11	365.26	81.61	113.22*
					8411	1.000	-357.15	-365.26	-107.30	42.36
7	3.00	-7.50	90.00	36.0	8074	1.000	-560.82	365.26	-13.28	113.15*
					8203	1.000	-365.44	-365.26	-12.40	44.58

Service capacity of the piles at this time.

Footing Design : Notes

* Service Force in pile is greater than service pile capacity.
${ }^{*}$ Factored Force in pile is greater than factored pile capacity.
Only max. force in piles is considered for design.
Pile coordinates X and Z are from the most left edge of the footing.
Plong= Lateral load in longitudinal direction at the top of pile, Kips.
Php= Available resisting horizontal component due to batter= batter * Verical pile reaction, Kips.
Plong-Php= Remaining lateral force required to resist by pile.

Max. Pile Reaction Used in Design: (without selfweight and surcharge)

Factored pile reaction	138.95 kips
Service pile reaction	113.61 kips

Note that the maximum factored pile reaction is not 154.04 kips in this table. This is because the footing and surcharge (fill weight) have been deducted. The same is true for the service pile reaction.

Reinforcement Schedule						
	tity		Bar dist in	$\begin{aligned} & \text { As total } \\ & \text { in }{ }^{\wedge} 2 \end{aligned}$	Spacing in	
X	7	\#9	13.56	7.00	16.81	None
Z	10	\#9	14.69	10.00	11.21	None

Footing Self-weight $=(0.150 \mathrm{kcf})^{*}\left(9^{\prime}\right)^{*}\left(9^{\prime}\right)^{*}\left(3.5^{\prime}\right) /(7$ piles $)=6.075 \mathrm{k} /$ pile
Surcharge $=(0.120 \mathrm{kcf})^{*}\left(9^{\prime}\right)^{*}\left(9^{\prime}\right)^{*}\left(4^{\prime}\right.$ fill depth $) /(7$ piles $)=5.5543 \mathrm{k} /$ pile
Factored Pile Reaction $=154.04 k-(1.25)^{*}(6.075 k)-(1.35)^{*}(5.5543 k)=138.95 k$
Service Pile Reaction $=125.24 \mathrm{k}-(1.00)^{*}(6.075 \mathrm{k})-(1.00)^{*}(5.5543 \mathrm{k})=113.61 \mathrm{k}$
Note that the column footprint in the fill is not deducted.

See hand calculations for Asb required

Flexure Note

CL: Section classification as per LRFD 2006 interims for provided reirforcement.
$\mathrm{C}=$ Compression cortrolled, $\mathrm{I}=\ln$-Transition, $\mathrm{T}=$ Tension controlled.
Required reinforcement is based on phi for tension controlled sections..

* The provided reirforcement is not adequate, either less than required or larger than maximum allowed.

Cracking check as per AASHTO LRFD 2007 with Interims (2005)

CrackinglFatigue Note

* Provided rebar spacing is not adequate for crack control.
*** Spacing is negative.
One Way Shear (Simplified Method)

Col Dir	Dist ft	Comb	dv in	Vus hips	phi*v hips
$1 \times$	-3.63	18	30.24	0.0	347.8
X	3.63	18	30.24	0.0	347.8
Z	-3.63	18	30.24	0.0	347.8
Z	3.63	18	30.24	0.0	347.8

Columns					
1	15.77	19.79	18	30.24	833.7
Piles - max					
4	13.41	11.24	18	30.24	130.9
Piles -min					
1	6.35	10.09	18	30.24	130.9

Two Way Shear Note

TUO WUY SHEAR IN FOOTING IS NOT DESIGNED AND STIRRUPS ARE NOT CONSIDERED.

RC-Pier Footing Design

Flexure

X-Dirn: 7-\#95
$d_{s}=42^{\prime \prime}-13^{\prime \prime}-\frac{1.128^{\prime \prime}}{2}=28.436^{\prime \prime}$
6^{-}- Max Pile Load neglecting fill \& footing wright

$$
M_{\max }=\left(138.95^{k} / \text { pile }^{\prime}\right)\left(2_{\text {pills }}\right)\left(3^{\prime}-1.108^{\prime}\right)=525.8^{k-1}
$$

$A_{s p r o u}=(7$ bars $)\left(1.00 \mathrm{in}^{2}\right)=7 \mathrm{in}^{2}<7-\# 9$.

$$
a=\frac{A_{s} f_{y}}{0.885 i b}=\frac{\left(7 \mathrm{in}^{2}\right)(60 \mathrm{ksi})}{(0.85)(3.5 k \mathrm{si})\left(9^{1} \times 12^{\%} /\right)}=1.307^{\prime \prime}
$$

$$
\begin{aligned}
M_{r}=\phi A_{s} f_{y}\left(d_{s}-\frac{a}{2}\right)=(0.9)\left(7 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(28.436^{4}-\frac{1.307^{\prime \prime}}{2}\right) & =10,901^{k-11} \\
& =875.1 \mathrm{~s}^{k-1}
\end{aligned}
$$

Check if Tension-controlled? Yes

$$
\begin{aligned}
& B_{1}=0.8 s \\
& c=a / B_{1}=1.307^{\prime \prime} \\
& \varepsilon_{s}=\frac{\left(28.4366^{\prime \prime}-1.538^{\prime \prime}\right.}{1.538^{\prime \prime}}(0.003)=0.052>0.005
\end{aligned}
$$

Find Asrigd

Crocking Aoshtolifd 5.7 .3 .4

In past calculations RC-Pior used en, but now it appears quite likely that it is using 2 en from Aashto Lifd 5.7.1

$$
\begin{aligned}
& s \leq \frac{700 \gamma_{e}}{B_{s} f_{s s}}-2 d_{c} \\
& \gamma_{e}=1.00 \\
& d_{c}=12^{\prime \prime}+1^{\prime \prime}+\frac{1.128^{\prime \prime}}{2}=13.564^{\prime \prime} \\
& \beta_{s}=1+\frac{d_{c}}{0.7\left(h-d_{c}\right)}=1+\frac{13.564^{\prime \prime}}{(0.7)\left(42^{\prime \prime}-13.56^{4 \prime}\right)}=1.6314
\end{aligned}
$$

$f_{s s}$ is tensile stress in the RII at service limit state

$$
k=\sqrt{(2 e n)^{2}+4 e n}-2 \rho n=0.236053
$$

$$
\begin{aligned}
& \longleftarrow \text { Mox scruice pile raction w/o footing a fillugt } \\
& M_{\max }=(113.61 \mathrm{k} / \text { pile })(2 \text { pilss })\left(3^{1}-1.108^{1}\right)=429.90^{\mathrm{k}-1} \\
& A_{s}=(76 i 85)\left(1.0 \mathrm{in}^{2}\right)=7.0 \mathrm{in}^{2} \\
& d_{s}=42^{\prime \prime}-13^{\prime \prime}-\frac{1.128^{\prime \prime}}{2}=28.436^{4} \\
& E_{c}=(150)^{1.5}(33) \sqrt{3500 p s i} / 1000^{1 / 5} \\
& Q=\frac{A s}{b d_{s}}=\frac{7 \mathrm{in}^{2}}{\left(9^{\prime} \times 129\right)\left(28.436^{\prime \prime}\right)}=0.002279 \\
& =3586.6 \mathrm{ksi} \\
& 2 p n=0.036469 \\
& E_{5}=29,000 \mathrm{ksi} \\
& n=\frac{E_{s}}{E_{c}}=8.086 \rightarrow 8
\end{aligned}
$$

$$
\begin{aligned}
& R_{n}=\frac{M_{u}}{\phi b d^{2}}=\frac{\left(525.8^{k-1}\right)(12 \%)}{(0.9)\left(q^{2} \times 12 m\right)\left(28.4366^{2}\right)^{2}}=0.08028 \mathrm{ksi} \\
& \rho=\frac{0.85 f_{c}^{\prime}}{f_{y}}\left(1-\sqrt{1-\frac{2 R_{n}}{0.85 f_{i}}}\right)=\frac{(0.85)\left(3.5 k s_{i}\right)}{60 \mathrm{ksi}}\left(1-\sqrt{\left.1-\frac{(2)(0.08828 k-i)}{(0.85)(3.9 k i)}\right)}\right. \\
& =0.0013565 \\
& \text { Asregd }=\theta^{b d s}=(0.0013565)\left(q^{2} \times 124\right)\left(28.436^{\prime \prime}\right)=4.166 \mathrm{in}^{2} \\
& \frac{4}{3} \text { As regd }=(4 / 3)\left(4.166 \mathrm{~m}^{2}\right)=5.555 \mathrm{in}^{2} \text { - Matther RC-Piep } \\
& I_{g}=\frac{1}{12} b h^{3}=\left(\frac{1}{12}\right)\left(9^{\prime} \times 12^{\prime \prime}\right)\left(42^{\prime \prime}\right)^{3}=666,972 \mathrm{in}^{4} \\
& f_{1}=0.37 \sqrt{f_{c}^{\prime}}=(0.37) \sqrt{3.5 \mathrm{ksi}}=0.6922 \mathrm{kri} \\
& M_{c r}=\frac{f_{r} I}{c}=\frac{(0.6922 \mathrm{ksi})\left(666,927 \mathrm{in}^{4}\right)}{(421 / 2)}=21,979^{\mathrm{k}-11}=1831.6^{\mathrm{k}-1} \\
& 1.2 \mathrm{Mer}=(1.2)\left(1831.6^{k-1}\right)=2197.9^{k-1}>\frac{4}{3} M U=\left(\frac{4}{3}\right)\left(525.8^{k-1}\right)=701.1^{k-1} \\
& \text { So As riyd }=5.555 \mathrm{in}^{2}<\text { Asprou }=7 \mathrm{in}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& j=1-\frac{k}{3}=1-\frac{0.236053}{3}=0.9213 \\
& f_{s s}=\frac{M}{A_{s j} d_{s}}=\frac{\left(429.90^{k-1}\right)(12 \%)}{\left(7.0 \mathrm{in}^{2}\right)(0.9213)\left(28.436^{4 \prime}\right)}=28.130 \mathrm{ksi} \quad \therefore \text { Close fo } \\
& \text { RC-picr } \\
& s \leqslant \frac{(700)(1.00)}{(1.6814)(28.130 \mathrm{ksi})}-(2)\left(13.564^{\prime \prime}\right)=-12.328^{\prime \prime} \quad \therefore \text { Negative } \\
& \text { spacing }
\end{aligned}
$$

One way shear Aoshtolifd 5.13.3.6申5.8.1.4 $\ddagger 5.8 .3 .2$
$x-d i r^{n}$

$$
\begin{aligned}
& d_{v}=\max \text { of }\left\{\begin{aligned}
0.72 h & = \\
0.9 d_{s} & = \\
d_{s}-9 / 2 & = \\
\text { Critical section } & =1.108^{\prime}+\frac{30.24^{\prime \prime}}{12^{\prime \prime} 6} \\
& =3.628^{\prime}
\end{aligned}\right.
\end{aligned}
$$

\therefore All piles ar s made critical section. shear design is not required.

$$
V_{c}=0.0316 \mathrm{~B} \sqrt{f_{c}^{\prime}} b_{v} d_{v} \leq 0.25 f_{c}^{\prime} b_{v} d_{v}
$$

Lot $B=2.0$

$$
\begin{aligned}
& V_{c}=(0.0316)(2.0)(\sqrt{3.5 \mathrm{ksi}})(8 \times 12 \%)(30.241) \\
& =386.15^{\mathrm{K}}<(0.25)(3.5 \mathrm{ksi})(9 \times 12 \%)\left(30.24^{1}\right)=2857.68^{\mathrm{k}} \\
& \phi V_{c}=(0.9)\left(396.15^{*}\right)=347.54^{k} \leftarrow \text { Matches Rl-Pier }
\end{aligned}
$$

\therefore The piles in the z-din will also be inside the critical section

Two Way Shear Aoshto Lrfd 5.13.3.6

$$
\begin{aligned}
& d_{v}=30.24^{\prime \prime} \quad \text { (based on } 0.72 \mathrm{~h} \text {) } \\
& \text { critical section }=1.108^{\prime}+\frac{30.24^{\prime \prime}}{(2)\left(12^{\prime \prime}\right)} \\
& =2.368^{\prime} \\
& (6 \text { piles })(138.95 \mathrm{k} / \text { piss })=833.7^{\mathrm{k}} \\
& V_{n}=\left(0.063+\frac{0.126}{B_{c}}\right) \sqrt{F_{c}} b_{0} d v \leq \\
& 0,126 \sqrt{f_{c}^{\prime}} b_{0} d v \\
& B_{c}=\frac{(2)\left(2,368^{\prime}\right)}{(2)\left(2.368^{\prime}\right)}=1 \text { square } \\
& b_{0}=(8)\left(2.368^{\circ}\right)=18.944^{1}=227.33^{\prime \prime} \\
& V_{n}=\left(0.063+\frac{0.126}{1}\right)(\sqrt{3.515 i})\left(227.33^{\prime \prime}\right)\left(30.24^{\prime \prime}\right)=2430.7^{k}> \\
& \phi V_{n}-\phi V_{c}=(0.9)(1620.5 k)=1458.4^{k} \\
& (0.126)(\sqrt{3.5 k s})\left(227.33^{\prime \prime}\right)\left(30.24^{\prime \prime}\right) \\
& =1620.5^{\mathrm{k}}
\end{aligned}
$$

$\frac{\text { Not Used }}{\text { by RC-Pir }} \rightarrow$ $\wedge_{\text {controls }}$

Column \sim RC-Picts method

$$
\begin{aligned}
& d v=30.24^{\prime \prime} \\
& \text { critical section }=\frac{2.51}{2}+\frac{30.24 \%}{(2)(12 \%)}=2.51 \\
& (6 \text { piss })(138.95 \mathrm{k} / \mathrm{pik})=833.7 \mathrm{~K} \\
& B_{c}=1 \text { circular } \\
& b_{0}=2 \pi R=(2)(\pi)\left(2.510^{\prime}\right)=15.771^{\prime} \\
& =189.25^{\prime \prime} \\
& V_{n}=\left(0.063+\frac{0.126}{1}\right)(\sqrt{3.5 k s i})\left(189.25^{4}\right)\left(30.24^{\prime \prime}\right) \\
& =2023.5^{k}>(0.126)(\sqrt{3.5 k 5 i})\left(189.25^{1}\right)\left(30.24^{1}\right)=1349.03 \mathrm{~K} \\
& \phi V_{n}=\phi V_{c}=(0.9)\left(1349.03^{k}\right)=1214.1 k \geqslant 833.7 k \quad \therefore 0 k
\end{aligned}
$$

Interior Pile

$$
\begin{aligned}
d v & =30.24^{\prime \prime} \\
b_{0} & =(2)\left(40.23^{\prime \prime}+40.46^{\prime \prime}\right) \\
& =161.38^{\prime \prime} \\
& =13.448^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
B_{c} & =\frac{40.46^{\prime \prime}}{40.23^{\prime \prime}}=1.006 \\
V_{n} & =\left(0.063+\frac{0.126}{1.006}\right)(\sqrt{3.5 k s i})\left(161.38^{\prime \prime}\right)\left(30.24^{\prime \prime}\right) \\
& =1719.01^{k} \quad(0.126)(\sqrt{3.5 k s i})\left(161.38^{\prime \prime}\right)\left(30.24^{\prime \prime}\right)=1150.32^{k}
\end{aligned}
$$

$\phi V_{n}=\phi V_{c}=(0.9)(1150.37 \mathrm{k})=1035.33 \mathrm{k} \longleftarrow$ Closcto RC-Picr. RC-Picr may be using $10^{\prime \prime}$ for both sides of the pile

Corner pile

$$
\begin{aligned}
d_{v} & =30.24^{\prime \prime} \\
b_{0} & =(2)\left(18^{\prime \prime}\right)+\frac{40.46^{\prime \prime}}{2}+\frac{40.23^{\prime \prime}}{2} \\
& =76.345^{\prime \prime}=6.362^{\prime} \\
V_{c} & =0.126 \sqrt{f_{c}^{\prime}} b_{0} d_{v} \\
& =(0.126)(\sqrt{3.3 k 5 i})\left(76.345^{\prime \prime}\right)\left(30.24^{\prime \prime}\right) \\
& =544.2 k^{k}
\end{aligned}
$$

$\varnothing V_{c}=(0.9)(544.21 \mathrm{k})=489.8^{\mathrm{K}} \leftarrow$ clos. to RC-Pirr

Appendix H

Hand calculations for
Pile Footing Design Spreadsheet

$$
\begin{aligned}
& R_{r}=\varnothing R_{n}=145.8^{k} \\
& P_{u_{m}}=153.586^{\mathrm{k}} \\
& P_{v_{a}}=131.374 \mathrm{k}
\end{aligned}
$$

\therefore Factored Pile Resistance used to design for one -way beam shear.
\therefore Maximum factored pile load used to design flexure RII.
\therefore Maximum factored a usage pile load used to design for two-way punching shear.

Note: Normally Fum should be less than Rr. Howrvers the point of these calculations is to simply demonstrate the procedure.

The footing wright will not be deducted for the design of the floxural rintoremont and shear capacity of the footing.

Equiv. Square. Column

$$
\begin{aligned}
& \omega=\sqrt{\pi\left(\frac{2.5}{2}\right)^{2}}=2.216^{\prime} \\
& \frac{\omega}{2}=1.108^{\prime}
\end{aligned}
$$

Fexure
$x-\operatorname{Di}{ }^{n}$

$$
\begin{aligned}
& d s=42^{\prime \prime}-13^{\prime \prime}-\frac{1.128^{\prime \prime}}{2}=28.436^{\prime \prime} \\
& A_{5}=(7)\left(1.00 \mathrm{in}^{2}\right)=7.0 \mathrm{in}^{2} \sim 7-\# 95 \\
& M_{V_{z}}=\left(153.586^{k}\right)(2 \text { pilks })\left(3^{\prime}-1.108\right)=581.2^{k-1} \\
& a=\frac{A_{s} f_{y}}{0.85 f_{c b}}=\frac{\left(7 \mathrm{in}^{2}\right)(60 \mathrm{ksi})}{(0.85)(3.5 \mathrm{ksi})\left(9^{\prime} \times 12^{\prime \prime} /\right)}=1.307^{\prime \prime} \\
& M_{r}=\varnothing A_{s} f_{y}\left(d s-\frac{a}{2}\right)=(0.9)\left(7 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(28.436^{\prime \prime}-\frac{1.307^{\prime \prime}}{2}\right)=10,501.8 \mathrm{k} \cdot \mathrm{in} \\
& =875.1 \mathrm{k} \cdot \mathrm{ft} \text {. }
\end{aligned}
$$

check if tension-controlled

$$
\begin{aligned}
& \beta_{1}=0.83 \\
& c=a / B_{1}=1.307 \% / 0.85=1.538^{\prime \prime} \\
& \varepsilon_{5}-\frac{\left(28_{0}{ }^{\circ} 330^{\prime \prime}-1.530^{n \prime \prime}\right)}{1.538^{\prime \prime}}(0.003) \\
& =0.0525>0.005 \therefore \text { It is } \text { Pinsion-controlled }
\end{aligned}
$$

Check minimum rinforecment
Well assume we cin use $h=d s+2^{\prime \prime}=28.436^{\prime \prime}+2^{\prime \prime}=30.436^{\prime \prime}$
1.2 Mcr

$$
\begin{aligned}
& f_{r}=0.37 \sqrt{f_{c}^{\prime}}=(0.37) \sqrt{3.5 \mathrm{ksi}}=0.692 \mathrm{ksi} \\
& I_{g}=\frac{1}{12} b h^{3}=\left(\frac{1}{12}\right)\left(9^{1} \times 12^{\prime \prime} / 1\right)\left(30.436^{\prime \prime}\right)^{3}=253,749.5 \mathrm{in}^{4} \\
& M_{c r}=\frac{f_{r} I}{c}=\frac{(0.6922 \mathrm{ksi})\left(253,749.5 \mathrm{ir} \mathrm{~m}^{4}\right)}{\left(30.036 \frac{1}{2}\right)}=11,542.06^{\mathrm{k-11}}=961.8^{\mathrm{k-1}} \\
& 1.2 M_{c r}=1154.2^{\mathrm{k}-1}>\mathrm{Mr}_{r} \quad \text { Note: } 1.2 \mathrm{Mcr}>\frac{4}{3} \mathrm{Mu} \\
& \mathrm{Mr}>\frac{4}{3} \mathrm{Mi} \\
& R_{n}=\frac{M_{\psi}}{\varnothing b d_{s}^{2}}=\frac{\left(581.2^{k-1}\right)(12 \%)}{(0.9)\left(9^{\prime} \times 12 \%\right)\left(28.436^{\prime \prime}\right)^{2}}=0.08874 \mathrm{ksi} \\
& \rho=\frac{0.85 f_{i}^{\prime}}{5 y}\left(1-\sqrt{\left.1-\frac{2 R_{n}}{0.85 f^{\prime}}\right)}\right)=\frac{(0.85)(3.5 \mathrm{ksi})}{60 \mathrm{KSi}}\left(1-\sqrt{\left.1-\frac{(2)(0.0887 \mathrm{kgi}}{(0.85)(3.5 \mathrm{Ksi} i}\right)}\right) \\
& =0.00150169
\end{aligned}
$$

As reqd $=$ pibd $=(0.00150169)\left(9^{\prime} \times 12^{\prime \prime} / 2\right)\left(28.436^{\prime \prime}\right)=4.612 \mathrm{in}^{2}$ $4 / 3$ Asrogd $=(4 / 3)\left(4.612 \mathrm{in}^{2}\right)=6.149 \mathrm{in}^{2}>$ Asprov $=7 \mathrm{in}^{2}$

Cracking

$$
\begin{aligned}
& s \leq \frac{700 \gamma_{e}}{B_{s} f_{s s}}-2 d_{c} \\
& \gamma_{e}=1.00
\end{aligned}
$$

$$
\therefore \text { look at bars in } x \text {-dir }
$$

Assume $d_{e}=2^{\prime \prime}$ and let $h=d s+2^{\prime \prime}=28.436^{\prime \prime}+2^{\prime \prime}=30.436^{\prime \prime}$

$$
B_{s}=1+\frac{d_{c}}{(0.7)\left(h-d_{0}\right)}=1+\frac{2^{\prime \prime}}{(0.7)\left(30.436^{\prime \prime}-2^{\prime \prime}\right)}=1.1005
$$

frs is tensile stress in the RIF at sarviur Limit state

$$
\begin{aligned}
& M_{\text {max }}=(124.9 \mathrm{k} \text { pile })(2 \text { piles })\left(3^{\prime}-1.108^{i}\right)=472.6^{k-1} \\
& A_{s}=7 \text { in }^{2} \\
& d s=28.436^{\prime \prime} \\
& \begin{aligned}
E_{c} & =(150)^{1.9}(33) \sqrt{3500 p 5 i} / 1000 \frac{10}{\mathrm{k}} \\
& =3586.6 \mathrm{ki}
\end{aligned} \\
& 0=\frac{A s}{b d}=\frac{7 m^{2}}{\left(9^{1} \times 12^{1 /}\right)\left(28.436^{1}\right)}=0.002279 \\
& E_{s}=29,000 \mathrm{ksi} \\
& p n=0.0182346 \\
& n=\frac{E_{s}}{E_{c}}=0.086 \rightarrow 8 \\
& k=\sqrt{(p n)^{2}+2 \rho n}-\rho n=0.1736 \\
& j=1-\frac{K}{3}=1-\frac{0.1736}{3}=0.9421 \\
& f_{s s}=\frac{M}{A_{s j d s}}=\frac{\left(472.6^{k-1}\right)(12 \%)}{\left(7.0 \mathrm{~m}^{2}\right)(0.9421)(28.436 \%}=30.24 \mathrm{ksi} \\
& s \leq \frac{(700)(1.00)}{(1.1005)(30.24 k i)}-(2)\left(2^{i}\right)=17.034^{i 1}
\end{aligned}
$$

Use Min. is for both axis $d_{s}=\min$ of $d s_{x}$ and d_{s}

One Way Shear

$$
\begin{aligned}
& d_{s}=42^{\prime \prime}-12^{\prime \prime}-1^{\prime \prime}-1.128^{\prime \prime}-\frac{1.128^{\prime \prime}}{2}=27.308^{\prime \prime} \\
& a=1.867^{\prime \prime}
\end{aligned}
$$

$x-\operatorname{dir} n$

$$
\begin{aligned}
& \begin{array}{l}
d_{v}=\max \text { of }\left\{\begin{array}{l}
0.72 h=10.72 \\
0.9 d_{s}=10.9 \\
d s-a / 2= \\
\text { critical section }=1.108^{\prime}+\frac{26.374^{\prime \prime}}{12911}
\end{array}\right.
\end{array} \\
& =3.306^{\circ} \\
& \therefore \text { The } 2 \text { piles haul a small } \\
& \text { portion outside the critical } \\
& \text { section. We may linconly interpolate } \\
& \text { to determine the shear load. } \\
& \frac{\left(3.4167^{\prime}-3.306^{\prime}\right)(12 \%)}{10^{\prime \prime} \text { pile }}=0.133 \\
& =13.3 \% \\
& V u=\left(145.8^{k}\right)(2 \text { pori })(0.133)=38.70^{k} \\
& V_{c}=0.0316 B \sqrt{f_{c}^{\prime}} b_{v} d_{v}<0.25 f_{c}^{\prime} b_{v} d_{v} \\
& =(0.0316)(2.0)(\sqrt{3.5 \mathrm{kii}})\left(9^{1} \times 124\right)(26.3741 \mathrm{i})=336.8^{\mathrm{K}} \mathrm{~L} \\
& (0.25)(3.5 k s i)(9 \times 12 \%)(26.374 n) \\
& \phi V_{c}=(0.9)\left(336.8^{k}\right)=303.1^{k}>V_{v} \quad \therefore 0 k \\
& =2492.3 \mathrm{~K}
\end{aligned}
$$

\therefore To use $\beta=2$ the point of O shear to the Equiv. column face must be less than $3 d v$

$$
\begin{gathered}
3.4167^{\prime}-\frac{2.216^{\prime}}{2}=2.309^{\prime}<3 d_{v}=(3)\left(\frac{26.374^{\prime \prime}}{12 \%}\right)=6.594^{\prime} \\
\therefore 0 k
\end{gathered}
$$

Two Way Shear

$$
\begin{aligned}
& d v=26.374^{\prime \prime} \\
& \text { Critical suction }=1.108^{\prime}+\frac{26.374^{\prime \prime}}{(2)\left(12^{\prime \prime}\right)} \\
& =2.207^{\prime} \\
& (6 \text { pills })(131.374 \mathrm{k})=788.2 \mathrm{k} \\
& V_{c}=\left(0.063+\frac{0.126}{B_{c}}\right) \sqrt{f_{c}} b_{o d v} \leq \\
& 0.126 \sqrt{\text { sc }} b_{0} d v \\
& B_{c}=\frac{(2)\left(2.207^{\prime}\right)}{(2)\left(2.207^{\prime}\right)}=1 \\
& b_{0}=(8)\left(2.207^{\prime}\right)=17.656^{1}=211.872^{\prime \prime} \\
& V_{c}=\left(0.063+\frac{0.126}{1}\right) \sqrt{3.5 k_{s i}}\left(211.872^{\prime \prime}\right)\left(26.374^{\prime \prime}\right)=1975.8^{\mathrm{K}} \mathrm{\lambda} \\
& (0.126)(\sqrt{3.5 k s i})\left(211.872^{2}\right)\left(26.374^{n}\right) \\
& \phi V_{c}=(0.9)(1317.2 k)=1185.5 k>V_{u} \\
& =1317.21^{\mathrm{K}}
\end{aligned}
$$

Appendix I

Pier Loads - CE

CE - Vehicular Centrifugal Force

- CE is applied 6.0 feet above the deck surface to piers with horizontally curved roadways.
- Design speed for the appropriate highway classification shall be taken from the Office of Design's Design Manual.
- Number of lanes loaded for CE shall be consistent with number of lanes loaded for vertical LL. Multiple presence factors apply to CE.
- Each pier shall resist the total CE force individually - it is not distributed among the bents.

Pier Loads - CE

CE - Vehicular Centrifugal Force (continued)

- The commentary of AASHTO LRFD 3.6 .3 speaks of including and excluding CE in order to determine the worst case scenario for pier design. Our manual says CE should always be included when LL is included.
- CE is based on a percentage of total truck (72 kips) or tandem (50 kips) axle weight, not a LL pier reaction of said weight. [The Iowa DOT does not consider 90% of two design trucks.]

$$
\mathrm{CE}=\mathrm{C} * \mathrm{LL}_{\text {truck or tandem }} \quad C=f \frac{v^{2}}{g R} \quad \text { where } f=4 / 3
$$

Pier Loads - CE

Consider: 3 span PPC bridge ($70.75^{\prime}-91.5^{\prime}-60.75^{\prime}$)
-- This is not 305 Wapello 32 degree LA skew. 6 beam lines at 7.401' (8.727' skewed spacing). Upstation Coordinate System.

Auto Load Generation: Vehicular Centrifugal Forces (CE)

Live Load
 (- Select Live Load

Available:
Selected:

Design Truck
Design Truck + Lane Load
Design Tandem + Lane Loac
Two Design Trucks + Lane L
Two Design Tandem + Lane
Fatigue Truck
P-5 Truck
P-7 Truck
P-9 Truck

C Manual input: Total Live Load
Truck load:

Radius of Curve
Design speed:
Number of Lanes Loaded: Direction of centrifugal force (X) :

Pier Loads - CE

Height of CE Above Cap $=6$ ' $+\left[8^{\prime \prime}\right.$ Slab Thk $+54^{\prime \prime}$ Beam Hgt] $/(12 \mathrm{in} / \mathrm{ft})=11.167$ '
$C=f^{*} v^{2} /\left(g^{*} R\right)=(4 / 3) *(102.67 \mathrm{ft} / \mathrm{s})^{2} /\left[\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right) *\left(500^{\prime}\right)\right]=0.8730$
Design Truck Axle Weight $=32 \mathrm{k}+32 \mathrm{k}+8 \mathrm{k}=72 \mathrm{k}$
$\mathrm{CE}=\mathrm{Fx}{ }^{\prime}=(72 \mathrm{k})^{*}(0.8730){ }^{*}(3 \text { lanes })^{*}(0.85)=160.283 \mathrm{k} \quad[\mathrm{MPF}=0.85]$
$F x=-(160.283 \mathrm{k})^{*}(\cos (32 \mathrm{deg}))=-135.928 \mathrm{k}$
$F z=(160.283 \mathrm{k})^{\star}(\sin (32 \mathrm{deg}))=84.937 \mathrm{k}$
Fx per beam $=(-135.928 \mathrm{k}) /(6$ beams $)=-22.655 \mathrm{k}$
Fz per beam $=(84.937 \mathrm{k}) /(6$ beams $)=14.156 \mathrm{k}$
Overturning Mom., $\mathrm{Mz}=(135.928 \mathrm{k})^{\star}\left(11.167^{\prime}\right)=1517.908 \mathrm{k}^{\star} \mathrm{ft}$
Fy for beam $1=-\left(1517.908 k^{*} \mathrm{ft}\right) /\left[\left(5\right.\right.$ beam spa)* $\left(8.727^{\prime}\right.$ skewed $\left.)\right]=-34.786 \mathrm{k}$
Fy for beam $6=\left(1517.908 \mathrm{k}^{*} \mathrm{ft}\right) /\left[(5 \text { beam spa) })^{*}(8.727\right.$ ' skewed $\left.)\right]=34.786 \mathrm{k}$
Overturning Mom., $\mathrm{Mx}=(84.937 \mathrm{k})^{*}\left(11.167^{\prime}\right)=948.491 \mathrm{k}^{*} \mathrm{ft}$
Office policy is to delete Mx since we assume the connection between the pier and slab cannot transmit a moment in that direction.

Pier Loads - CE

