5251	ESTIMATED BRIDGE QUANTITIES
5252	MISCELLANEOUS DETAILS 167-0 BRIDGE
5253	MISCELLANEOUS DETAILS 167-0 BRIDGE
5254	MISCELLANEOUS DETAILS 207-0 BRIDGE
5255	MISCELLANEOUS DETAILS 220-0 BRIDGE
5256	MISCELLANEOUS DETAILS 240-0 BRIDGE
5257	MISCELLANEOUS DETAILS 260-0 BRIDGE
5258	MISCELLANEOUS DETAILS 280-0 BRIDGE
5259	MISCELLANEOUS DETAILS 300-0 BRIDGE
5260	MISCELLANEOUS DETAILS 320-0 BRIDGE
5261	MISCELLANEOUS DETAILS 340-0 BRIDGE
5262	SLAB ELEVATIONS 0'-130'-0 BRIDGE
5263	SLAB ELEVATIONS SKEWED 130'-0 BRIDGE
5264	BEAM LINE LENGTH ELEVATIONS 130'-0 BRIDGE
5265	SLAB ELEVATIONS 0'-180'-0 BRIDGE
5266	SLAB ELEVATIONS SKEWED 180'-0 BRIDGE
5267	BEAM LINE LENGTH ELEVATIONS 180'-0 BRIDGE
5268	SLAB ELEVATIONS 0'-200'-0 BRIDGE
5269	SLAB ELEVATIONS SKEWED 200'-0 BRIDGE
5270	BEAM LINE LENGTH ELEVATIONS 200'-0 BRIDGE
5271	SLAB ELEVATIONS 0'-220'-0 BRIDGE
5272	SLAB ELEVATIONS SKEWED 220'-0 BRIDGE
5273	BEAM LINE LENGTH ELEVATIONS 220'-0 BRIDGE
5274	SLAB ELEVATIONS 0'-240'-0 BRIDGE
5275	SLAB ELEVATIONS SKEWED 240'-0 BRIDGE
5276	BEAM LINE LENGTH ELEVATIONS 240'-0 BRIDGE
5277	SLAB ELEVATIONS 0'-260'-0 BRIDGE
5278	SLAB ELEVATIONS SKEWED 260'-0 BRIDGE
5279	BEAM LINE LENGTH ELEVATIONS 260'-0 BRIDGE
5280	SLAB ELEVATIONS 0'-280'-0 BRIDGE
5281	SLAB ELEVATIONS SKEWED 280'-0 BRIDGE
5282	BEAM LINE LENGTH ELEVATIONS 280'-0 BRIDGE
5283	SLAB ELEVATIONS 0'-300'-0 BRIDGE
5284	SLAB ELEVATIONS SKEWED 300'-0 BRIDGE
5285	BEAM LINE LENGTH ELEVATIONS 300'-0 BRIDGE
5286	SLAB ELEVATIONS 0'-320'-0 BRIDGE
5287	SLAB ELEVATIONS SKEWED 320'-0 BRIDGE
5288	BEAM LINE LENGTH ELEVATIONS 320'-0 BRIDGE
5289	SLAB ELEVATIONS 0'-340'-0 BRIDGE
5290	SLAB ELEVATIONS SKEWED 340'-0 BRIDGE
5291	BEAM LINE LENGTH ELEVATIONS 340'-0 BRIDGE
GENERAL NOTES:
THIS BRIDGE IS DESIGNED FOR HL-93 LOADING, PLUS 20 LBS. PER SQUARE
FOOT OF ROADWAY FOR FUTURE WEARING SURFACE.

UTILITY COMPANIES WHOSE FACILITIES ARE KNOWN TO BE WITHIN THE
CONSTRUCTION LIMITS SHALL BE NOTIFIED BY THE CONTRACTOR OF THE
CONSTRUCTION STARTING DATE.

THE APPROACH FILES AS SHOWN ARE TO BE IN PLACE BEFORE ABUTMENT
FILES ARE DRIVEN. THE BRIDGE CONTRACTOR IS TO LEVEL OFF AND SHAVE THE
BEAMS TO THE ELEVATION AND DRESSING SHOWN. DRESSING OF SLOPES OUT-
SIDE THE BRIDGE AREA NOT EXCLUDED BY THE BRIDGE CONTRACTOR SHALL BE
PAID FOR AS EXTRA WORK.

APPRAISAL IS TO BE PERFORMED AND PLAINED BY CONTRACTOR.

IT SHALL BE THE BRIDGE CONTRACTOR'S RESPONSIBILITY TO PROVIDE SITES
FOR EXCESS EXCAVATED MATERIAL; NO PAYMENT FOR OVERHaul WILL BE
ALLOWED FOR MATERIAL WORKED INTO THESE SITES.

THE BRIDGE CONTRACTOR SHALL PROVIDE HOLES FOR ABUTMENT FILES.
HOLES SHALL BE LEVELLED TO ELEVATION ______ AT THE ______ ABUTMENT
AND TO ELEVATION ______ AT THE ______ ABUTMENT. FILES SHALL BE
DrivEn through the holes to at least the specified design bearing.

ALL WORKING DRAWINGS INCLUDING SHOP DRAWINGS AND FALSE WORK DRAWINGS
WILL BE CHECKED IN.

DURING CONSTRUCTION OF THIS PROJECT THE BRIDGE CONTRACTOR WILL BE REQUIRED TO
COORDINATE HIS OPERATIONS WITH THOSE OF OTHER CONTRACTORS WORKING WITHIN THE
SAME AREA. OTHER WORK IN PROGRESS DURING THE SAME PERIOD OF TIME WILL INCLUDE,
BUT IS NOT LIMITED TO, CONSTRUCTION OF THE FOLLOWING PROJECTS.

BEAMS

PIER 1

ABUTMENT STEP DIAGRAM
(LOOKING UP STATION)

PIER 2

ABUTMENT STEP DIAGRAM
(LOOKING UP STATION)

DRAIN LOCATION LAYOUT

FLANGE DEFLECTOR LAYOUT

TABLE OF ELEVATIONS AND STEPS

<table>
<thead>
<tr>
<th>EL A</th>
<th>EL B</th>
<th>EL C</th>
<th>EL D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

PIER STEP DIAGRAM
(LOOKING UP STATION)

GENERAL INFORMATION

IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION
PROJECT NUMBER
SHEET NUMBER
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
DESIGN TEAM
GENERAL INFORMATION - ROLLED STEEL 40' ROADWAY
STANDARD SHEET SIZE
SHEET NO.
COUNT
PROJECT NUMBER
FILE NO.
THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY

BEAM CAMBER
NOTE: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE

TABLE OF WING ELEVATIONS

LOCATION | ELEV. A | ELEV. B | ELEV. C

STRAIGHT LINE HAUNCH DATA DETAIL SHEET FOR ADDITIONAL ESTIMATE CONCRETE QUANTITIES. REFER TO THE BEAM DESIGNER TO SET BRIDGE SEAT ELEVATIONS AND DIAMETER. THIS HAUNCH DIAGRAM IS USED BY THE CONTRACTOR IN SETTING THE THEORETICAL CONCRETE HAUNCHDIAMETER AND DETERMINING THE DEFLECTION AND GIRDER PARAMETERS TO USE THE FIELD HAUNCHES REQUIRED FOR CONSTRUCTION, AND IS USED AS A BASIS ALONG WITH THE DEAD LOAD, END LOAD DEFLECTION AND SHEAR PARAMETERS TO DETERMINE THE SUMMARY QUANTITIES SHEET IN THE BRIDGE PLANS.

TOTAL WEIGHT (LBS.)

A
'B
'C
'D
'TOTAL WEIGHT (LBS.)

STUD HEIGHT (inches)

WEIGHT (LBS.)

TOTAL STUD HEIGHT (LBS.)

SHEAR STUD HEIGHT ZONE

A
'B
'C
'D
'TOTAL STUD HEIGHT (LBS.)

ZONE

STUD HEIGHT

A
'B
'C
'D
'TOTAL STUD HEIGHT (LBS.)

STUD HEIGHT ZONE

A
'B
'C
'D
'TOTAL STUD HEIGHT (LBS.)

MISC. DETAILS - 160'-0 BRIDGE
IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION

PROJECT NUMBER

SHEET NUMBER

DESIGN TEAM

MISCELLANEOUS DETAILS - 180'-0 BRIDGE

THIS NOTE APPLIES TO THE IOWA DOT HANDBOOK NO. 21. THE THEORETICAL CONCRETE HAUNCH DIAGRAM IS USED BY THE DESIGNER TO DETERMINE THE THEORETICAL CONCRETE HAUNCH DIMENSION NEAR THE ABUTMENT BEARINGS, AND IS USED AS A BASIS ALONG WITH THE DEAD LOAD DEFLECTION AND SPACER PARAMETERS TO DETERMINE THE THEORETICAL CONCRETE HAUNCH DIMENSION. THIS NOTE APPLIES TO THE SUMMARY QUANTITIES SHEET IN THE BRIDGE PLANS.

TABLE OF WING ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ELEV. A</th>
<th>ELEV. B</th>
<th>ELEV. C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE.

THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY

STANDARD SHEET 5253

TYP. SLAB & HAUNCH DETAIL

SEE LATERAL SECTION RS40-019 THRU RS40-028 SHEETS FOR LOCATION.

* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL HAUNCH DIMENSION NEAR THE ABUTMENT BEARINGS, AND IS USED AS A BASIS ALONG WITH THE DEAD LOAD DEFLECTION AND SPACER PARAMETERS TO DETERMINE THE THEORETICAL CONCRETE HAUNCH DIMENSION. THIS NOTE APPLIES TO THE SUMMARY QUANTITIES SHEET IN THE BRIDGE PLANS.

MISC. DETAILS - 180'-0 BRIDGE

THRU RS40-028 SHEETS FOR LOCATION.

SEE LATERAL SECTION RS40-019

TOTAL WEIGHT (LBS.)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>STUD HEIGHT (IN)</th>
<th>SHEAR STUD HEIGHT ZONE</th>
<th>TOTAL WEIGHT (LBS.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIS NOTE APPLIES TO THE IOWA DOT HANDBOOK NO. 21.

THIS NOTE APPLIES TO THE SUMMARY QUANTITIES SHEET IN THE BRIDGE PLANS.

THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY

STANDARD SHEET 5253
BEAM CAMBER

NOTE: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE.

THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY.

TYP. SLAB & HAUNCH DETAIL

LOCATION	ELEV. A	ELEV. B	ELEV. C
			"C"

TABLE OF WING ELEVATIONS

LOCATION	SHEAR STUD HEIGHT	WEIGHT	STUD HEIGHT ZONE

MISC. DETAILS - 200'-0 BRIDGE

PROJECT NUMBER
DESIGN TEAM
COUNTY
DESIGN SHEET NUMBER
FILE NUMBER
SHEET NUMBER
STANDARD SHEET SIZE
PROJECT NUMBER
DATE
NOTE: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE.

THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY.

TYP. SLAB & HAUNCH DETAIL

LOCATION	ELEV. A	ELEV. B	ELEV. C
			"C"

TABLE OF WING ELEVATIONS

LOCATION	SHEAR STUD HEIGHT	WEIGHT	STUD HEIGHT ZONE

MISC. DETAILS - 200'-0 BRIDGE

PROJECT NUMBER
DESIGN TEAM
COUNTY
DESIGN SHEET NUMBER
FILE NUMBER
SHEET NUMBER
STANDARD SHEET SIZE
PROJECT NUMBER
DATE
NOTE: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE.
THEORETICAL CONCRETE HAUNCH DIAGRAM

THE BRIDGE PLANS.
THE SUMMARY QUANTITY SHEET IN
SHEAR STUDS IS TO BE INCLUDED ON
STRUCTURAL STEEL WEIGHT FOR THE
SUMMARY QUANTITIES SHEET
RS40-14 STANDARDS. NO
THIS NOTE APPLIES TO THE

TOTAL WEIGHT (LBS.)

ZONES (inches)

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

THE BRIDGE PLANS.
THE SUMMARY QUANTITY SHEET IN
SHEAR STUDS IS TO BE INCLUDED ON
STRUCTURAL STEEL WEIGHT FOR THE
SUMMARY QUANTITIES SHEET
RS40-14 STANDARDS. NO
THIS NOTE APPLIES TO THE

TOTAL WEIGHT (LBS.)

ZONES (inches)

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

THE BRIDGE PLANS.
THE SUMMARY QUANTITY SHEET IN
SHEAR STUDS IS TO BE INCLUDED ON
STRUCTURAL STEEL WEIGHT FOR THE
SUMMARY QUANTITIES SHEET
RS40-14 STANDARDS. NO
THIS NOTE APPLIES TO THE

TOTAL WEIGHT (LBS.)

ZONES (inches)

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

THE BRIDGE PLANS.
THE SUMMARY QUANTITY SHEET IN
SHEAR STUDS IS TO BE INCLUDED ON
STRUCTURAL STEEL WEIGHT FOR THE
SUMMARY QUANTITIES SHEET
RS40-14 STANDARDS. NO
THIS NOTE APPLIES TO THE

TOTAL WEIGHT (LBS.)

ZONES (inches)

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

THE BRIDGE PLANS.
THE SUMMARY QUANTITY SHEET IN
SHEAR STUDS IS TO BE INCLUDED ON
STRUCTURAL STEEL WEIGHT FOR THE
SUMMARY QUANTITIES SHEET
RS40-14 STANDARDS. NO
THIS NOTE APPLIES TO THE

TOTAL WEIGHT (LBS.)

ZONES (inches)

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.

THEORETICAL CONCRETE HAUNCH
LOAD DEFLECTION AND GIRDER PARAMETERS TO
Determine the THEORETICAL CONCRETE HAUNCH
DIMENSION NEAR THE ABUTMENT BEARINGS,
* THE HAUNCH DIMENSION SHOWN IS THE NOMINAL
THRU RS40-028 SHEETS FOR LOCATION.
SEE LONGITUDINAL SECTION RS40-019

ZONE

A
B
C
D

STUD HEIGHT (LBS.)

WEIGHT

Above corresponds to
those identified on RS40-074.
Theoretical Concrete Haunch Diagram

(For estimating purposes only)

Table of Wing Elevations

<table>
<thead>
<tr>
<th>Location</th>
<th>ELEV. A</th>
<th>ELEV. B</th>
<th>ELEV. C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The haunch dimension shown is the nominal haunch dimension at the abutment bearings, and is used as is both along with the dead load, deflection, and shear parameters to determine the theoretical concrete haunch. The field haunch required for construction is used as a basis and is included in the summary quantities sheet. This note applies to the zone and shear stud height zone.

Typical Slab & Haunch Detail

超长L:0之L:0

Miscellaneous Details - 240'-0 Bridge

<table>
<thead>
<tr>
<th>Zone</th>
<th>Stud Height Zone</th>
<th>Stud Height (inches)</th>
<th>Weight (LBS.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The summary quantities sheet is to be included in the summary quantity sheet in the bridge plans.

Special Notes:
- The Steel Weight for the Shear Studs is to be included on the Summary Quantity Sheet on RS40-075.
- This note applies to the zone and shear stud height zone.
- The haunch dimension shown is the nominal haunch dimension at the abutment bearings, and is used as is both along with the dead load, deflection, and shear parameters to determine the theoretical concrete haunch. The field haunch required for construction is used as a basis and is included in the summary quantities sheet. This note applies to the zone and shear stud height zone.
THEORETICAL CONCRETE HAUNCH DIAGRAM

(for estimating purposes only)

TABLE OF WING ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ELEV A</th>
<th>ELEV B</th>
<th>ELEV C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 1</td>
<td>500</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>Location 2</td>
<td>500</td>
<td>550</td>
<td>600</td>
</tr>
</tbody>
</table>

TYP. SLAB & HAUNCH DETAIL

- **Location:** See longitudinal section RS40-018
- **Height Zones:** A, B, C, D
- **Total Weight:** See RS40-019
- **Shear Stud Height Zone:** See RS40-076

MISCELLANEOUS DETAILS - 260'-0 BRIDGE

- **Weight Deflection:** Due to weight of steel or concrete (Note: Does not include the deflection due to weight of steel or concrete).
- **Theoretical Concrete Haunch Diagram:**
 - This note applies to the RS40-10 standards. No summary quantities sheet is required for the RS40-10 standards.
 - The summary quantity sheet is to be included on the summary quantity sheet in the bridge plans.
 - The summary quantities include the structural steel weight and the shear stud height.
 - The structural steel weight is to be included on the summary quantity sheet in the bridge plans.
 - The summary quantity sheet is to be included on the summary quantity sheet in the bridge plans.

Design Team:
- **Welding:** STANDARDS 260'-0 BRIDGE - REVISION
- **Standard Sheet:** STANDARDS 260'-0 BRIDGE - REVISION
- **Count:** STANDARDS 260'-0 BRIDGE - REVISION
- **Sheet Number:** STANDARDS 260'-0 BRIDGE - REVISION

Iowa Department of Transportation - Highway Division
- **Design Sheet No.:** STANDARDS 260'-0 BRIDGE - REVISION
- **File No.:** STANDARDS 260'-0 BRIDGE - REVISION
- **Project Number:** STANDARDS 260'-0 BRIDGE - REVISION
- **Sheet Name:** STANDARDS 260'-0 BRIDGE - REVISION
THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY

TYP. SLAB & HAUNCH DETAIL

STRAIGHT LINE DATA DETAIL SHEET FOR ADDITIONAL INFORMATION TO THE CONTRACTOR IN SETTING THE FIELD HAUNCHES REQUIRED FOR CONSTRUCTION.

TABLE OF WING ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>L</th>
<th>ELEV. A</th>
<th>ELEV. B</th>
<th>ELEV. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>L</td>
<td>ELEV. A</td>
<td>ELEV. B</td>
<td>ELEV. C</td>
</tr>
</tbody>
</table>

SEE LATERAL SECTION RS40-018 THRU RS40-028 SHEETS FOR LOCATION.
THEORETICAL CONCRETE HAUNCH DIAGRAM

STRAIGHT LINE BETWEEN HAUNCHES

THE BRIDGE PLANS.

THE SUMMARY QUANTITY SHEET IN

RS40-079, 73'-6

TOTAL WEIGHT (LBS.)

STUD HEIGHT (LBS.)

ZONE

STUD HEIGHT

ZONE

STUD HEIGHT

TOTAL STUD HEIGHT ZONE

ADJACENT TO

THOSE IDENTIFIED ON RS40-079.

A.

B.

C.

D.

10'-4

8 SPA. @ 9'-2' = 73'-6

8 SPA. @ 9'-2' = 73'-6

8 SPA. @ 10'-4' = 83'-0

8 SPA. @ 9'-2' = 73'-6

8 SPA. @ 7'-6

8 SPA. @ 7'-6

8 SPA. @ 7'-6

BEAM CAMBER

NOTES: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE

NOTE: DOES NOT INCLUDE THE DEFLECTION FOR ESTIMATING PURPOSES ONLY

DUE TO WEIGHT OF STEEL OR CONCRETE

STANDARD SHEET 5260 - THIS SHEET ISSUED 06-10.

THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY

BEAM CAMBER

NOTES: DOES NOT INCLUDE THE DEFLECTION DUE TO WEIGHT OF STEEL OR CONCRETE

NOTE: DOES NOT INCLUDE THE DEFLECTION FOR ESTIMATING PURPOSES ONLY

DUE TO WEIGHT OF STEEL OR CONCRETE

STANDARD SHEET 5260 - THIS SHEET ISSUED 06-10.
THEORETICAL CONCRETE HAUNCH DIAGRAM

FOR ESTIMATING PURPOSES ONLY

MISC. DETAILS - 340'-0 BRIDGE

THE BRIDGE PLANS.
THE SUMMARY QUANTITIES SHEET IN RS40-10 STANDARDS.
IS REQUIRED FOR THE SUMMARY QUANTITY SHEET
IN THE SHEAR STUDS.
TOTAL WEIGHT (LBS.)
A. IF APPLICABLE

TABLE OF WING ELEVATIONS
LOCATION | LOCATION | LOCATION | LOCATION | LOCATION
ZONE | STUD HEIGHT | STUD HEIGHT | STUD HEIGHT | STUD HEIGHT
A | B | C | D | TOTAL WEIGHT (LBS.)

STUD HEIGHT ZONE
ABOVE CORRESPONDING TO THOSE IDENTIFIED ON RS40-080.

THE BRIDGE Plans.
THE SUMMARY QUANTITIES SHEET IN RS40-10 STANDARDS.
IS REQUIRED FOR THE SUMMARY QUANTITY SHEET
IN THE SHEAR STUDS.
TOTAL WEIGHT (LBS.)
A. IF APPLICABLE

TABLE OF WING ELEVATIONS
LOCATION | LOCATION | LOCATION | LOCATION | LOCATION
ZONE | STUD HEIGHT | STUD HEIGHT | STUD HEIGHT | STUD HEIGHT | STUD HEIGHT
A | B | C | D | TOTAL WEIGHT (LBS.)

STUD HEIGHT ZONE
ABOVE CORRESPONDING TO THOSE IDENTIFIED ON RS40-080.
Top of Slab Elevations

<table>
<thead>
<tr>
<th>Location</th>
<th>Beam 1</th>
<th>Beam 2</th>
<th>Beam 3</th>
<th>Beam 4</th>
<th>Beam 5</th>
<th>Beam 6</th>
<th>Slab 1</th>
<th>Slab 2</th>
<th>Slab 3</th>
</tr>
</thead>
</table>

Bench Mark:

Top of Slab Elevations Diagram:

- Slab elevations for beams 1 to 6.
- Detail of bench mark location.

Location of Top of Slab Elevations:

- Beam layout from 1 to 6 with slab heights indicated.

Slab Elevations Section:

- Iowa Department of Transportation - Highway Division.
TOP OF SLAB ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ABUT 1</th>
<th>ABUT 2</th>
<th>PIER 1</th>
<th>PIER 2</th>
<th>BOLTED SPlice</th>
<th>BOLTED SPlice</th>
<th>PIER 2</th>
<th>ABUT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUTTER LINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAM 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAM 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAM 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAM 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAM 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAM 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

160'-0" E - E ABUTMENT BEARINGS

<table>
<thead>
<tr>
<th>ABUT, 1000</th>
<th>E ABUT, 1000</th>
<th>E PIER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
<td>48'-0"</td>
</tr>
</tbody>
</table>

LOCATION OF TOP OF SLAB ELEVATIONS

(ROUGHT AHEAD SHEAR SHOWN, LEFT AHEAD SHEAR SIMILARLY)
TABLE OF BEAM LINE HAUNCH ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>(%) ADJUST. 1</th>
<th>(%) ADJUST. 2</th>
<th>(%) ADJUST. 3</th>
<th>(%) ADJUST. 4</th>
<th>(%) ADJUST. 5</th>
<th>(%) ADJUST. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAM 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MISCELLANEOUS DATA TABLE

<table>
<thead>
<tr>
<th>BEAM LINE</th>
<th>(%) ADJUST. 1</th>
<th>(%) ADJUST. 2</th>
<th>(%) ADJUST. 3</th>
<th>(%) ADJUST. 4</th>
<th>(%) ADJUST. 5</th>
<th>(%) ADJUST. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE:
HAUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE INCIRCLED LETTERS AND NUMBERS SHOWN ON SLAB ELEVATIONS SHEET.

BEAM LINE HAUNCH DATA

NOTE 1:
HAUNCH REQUIRED AT EACH LOCATION SURVEY THE BEAM TOPS CONSISTENT WITH THE SPACINGS SHOWN ON THE TOP OF SLAB ELEVATIONS. SUBTRACT THE SURVEYED BEAM ELEVATIONS FROM THE THEORETICAL HAUNCH ELEVATION SHOWN IN INCHES AND DECIMALS. ADJUSTMENTS TO THE HAUNCH REQUIRED AT EACH LOCATION, SURVEY THE BEAM TOPS AND THE CONTRACTOR IN DETERMINING ACTUAL FIELD HAUNCH ELEVATION SHEET.

NOTE 2:
HAUNCH REQUIRED AT EACH LOCATION SURVEY THE BEAM TOPS AND THE CONTRACTOR IN DETERMINING ACTUAL FIELD HAUNCH ELEVATION SHEET.
TOP OF SLAB ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUTTER LINE</td>
<td></td>
</tr>
<tr>
<td>BEAM 1</td>
<td></td>
</tr>
<tr>
<td>BEAM 2</td>
<td></td>
</tr>
<tr>
<td>BEAM 3</td>
<td></td>
</tr>
<tr>
<td>BEAM 4</td>
<td></td>
</tr>
<tr>
<td>BEAM 5</td>
<td></td>
</tr>
<tr>
<td>BEAM 6</td>
<td></td>
</tr>
<tr>
<td>GUTTER LINE</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION OF TOP OF SLAB ELEVATIONS

(RIGHT AHEAD SHOWN; LEFT AHEAD SHOWN SIMILARLY)

SLAB ELEVATIONS

IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION

DESIGN SHEET: _____ FILE NO. _____ SHEET NO. _____

DESIGNER: _____ DATE: 5-20-10

BEETLE ENGINEER: _____
TABLE OF BEAM LINE HAUNCH ELEVATIONS

| LOCATION | BRG. | PIER 1 | SPLICE | BOLTED | SPLE
Top of Slab Elevations

<table>
<thead>
<tr>
<th>Location</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abut 1</td>
<td></td>
</tr>
<tr>
<td>Beam 1</td>
<td></td>
</tr>
<tr>
<td>Beam 2</td>
<td></td>
</tr>
<tr>
<td>Beam 3</td>
<td></td>
</tr>
<tr>
<td>Beam 4</td>
<td></td>
</tr>
<tr>
<td>Beam 5</td>
<td></td>
</tr>
<tr>
<td>Beam 6</td>
<td></td>
</tr>
</tbody>
</table>

Location of Top of Slab Elevations

(Most Ahead Shear Shown, Left Ahead Shear Similar)

Slab Elevations

Iowa Department of Transportation - Highway Division

Design Team

Sheet Number

Sheet Size: 8.5" x 11"
TABLE OF BEAM LINE HAUNCH ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>BEAM 1</th>
<th>BEAM 2</th>
<th>BEAM 3</th>
<th>BEAM 4</th>
<th>BEAM 5</th>
<th>BEAM 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

MISCELLANEOUS DATA TABLE

<table>
<thead>
<tr>
<th>BEAM LINE</th>
<th>% ADJUST.</th>
<th>% SPACED</th>
<th>% SPACED</th>
<th>% SPACED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE:

- Haunch locations are at the same location as the encircled letters and numbers shown on slab elevations sheet.

HAUNCH DETAIL

- Bridge deck elevations are set based on theoretical camber and beam deflecting these bridge seats will provide a theoretical beam. Bridge seats within design parameters.
- Actual haunches are determined using surveyed top of beam elevations and beam line haunch elevations. Allowable field haunch elevations show in inches and decimal feet are given in the "BEAM LINE HAUNCH ELEVATIONS" data. Allowable field haunch elevations show in inches and decimal feet are given in the "BEAM LINE HAUNCH ELEVATIONS" data. Allowable field haunch elevations show in inches and decimal feet are given in the "BEAM LINE HAUNCH ELEVATIONS" data. Allowable field haunch elevations show in inches and decimal feet are given in the "BEAM LINE HAUNCH ELEVATIONS" data.

BEAM LINE HAUNCH DATA

- To calculate field haunch required at each location, survey the beam tops. Consistent with the spacings shown on the top of slab elevations layout on slab elevations sheet. Subtract the surveyed beam tops from the "BEAM LINE HAUNCH ELEVATIONS" values. This value will be the minor need the joint height in haunch detail. The "BEAM LINE HAUNCH ELEVATIONS" data includes adjustments for slab thicknesses and anticipated deflections. No additional calculations are required. If the field haunch exceeds the maximums and minimums shown in inches and decimal feet in the miscellaneous data table, adjustments to the slab or additional haunch reinforcement will be required.
TABLE OF BEAM LINE HAUNCH ELEVATIONS

| LOCATION | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BEAM 1 | | | | | | | | | | | | | | | | | | | | | | |
| BEAM 2 | | | | | | | | | | | | | | | | | | | | | | |
| BEAM 3 | | | | | | | | | | | | | | | | | | | | | | |
| BEAM 4 | | | | | | | | | | | | | | | | | | | | | | |
| BEAM 5 | | | | | | | | | | | | | | | | | | | | | | |
| BEAM 6 | | | | | | | | | | | | | | | | | | | | | | |

MISCELLANEOUS DATA TABLE

| BEAM LINE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|-----------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ALL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | |
| ALL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | |

NOTE:

HAUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE ENCIRCLED LETTERS AND NUMBERS SHOWN ON SLAB ELEVATIONS SHEET.

HAUNCH DETAIL

NOTE:

Bridge HAUNCH elevations are set based on theoretical camber and BEAM DEFLECTIONS. These bridge seats will provide a theoretical BEAM HAUNCH within design parameters. Actual haunches are determined using surveyed top of beam elevations and beam line HAUNCH ELEVATIONS. Allowable field haunch values shown in inches and decimals feet are given in the BEAM LINE HAUNCH data. The beam line haunch values are based on the encircled letters in the HAUNCH DETAIL and the contractor in determining actual formed haunch dimensions at the bases of the top flange.

NOTE II:

To calculate field haunch required at each location, survey the beam tops consistent with the spacings shown on the top of slab elevations layout on slab elevations sheet. Subtract the surveyed beam shot from the beam line haunch elevation. This value will be the minor needed to form haunch in beam detail. The beam line haunch elevation includes adjustments for slab thicknesses and anticipated deflections. No additional calculations are required. If the field haunch exceeds the maximum and minimum shown in INCHES and DECIMALS FEET, the MISCELLANEOUS DATA TABLE, adjustments to the sheet or additional haunch reinforcement will be required.
TABLE OF BEAM LINE HAUNCH ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAM 1</td>
<td></td>
</tr>
<tr>
<td>BEAM 2</td>
<td></td>
</tr>
<tr>
<td>BEAM 3</td>
<td></td>
</tr>
<tr>
<td>BEAM 4</td>
<td></td>
</tr>
<tr>
<td>BEAM 5</td>
<td></td>
</tr>
<tr>
<td>BEAM 6</td>
<td></td>
</tr>
</tbody>
</table>

MISCELLANEOUS DATA TABLE

<table>
<thead>
<tr>
<th>Beam Line</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated Deflection Due to Slab Deflection</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cross Slope Adjustments (In.)</td>
<td></td>
</tr>
<tr>
<td>Allowable Field Haunch Thickness (In.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

Haunch locations are at the same location as the encircled letters and numbers shown on slab elevations sheet.

HAUNCH DETAIL

NOTE:

Bridge slab elevations are set based on theoretical camber and beam deflection. These bridge seats will provide a theoretical beam seat at design camber. Actual haunches are determined using surveyed top of slab elevations and beam line haunch elevations. Allowable field haunch shown in inches and decimals are given in the table above. Cross slope adjustments are given in the table above. Theoretical field haunches will aid the contractor in determining actual field haunch dimensions at the edges of the top flange.

NOTE:

To calculate field haunch required at each location, survey the beam tops and survey the beam tops consistently with the spacing shown on the top of slab elevations layout on slab elevations sheet. Substract the surveyed beam top from the design beam top. The beam line haunch elevation shown in inches and decimals is given in the table above. The theoretical beam seat elevation includes adjustments for slab thicknesses and anticipated deflections. No additional calculations are required. If the field haunch exceeds the maximum and minimum shown in inches and decimals feet in the miscellaneous data table, adjustments to sheet or additional haunch reinforcement will be required.

BEAM LINE HAUNCH DATA

Iowa Department of Transportation - Highway Division

Sheet No. __________ Project No. __________ Sheet No. __________

3/28/2012 12:26:22 AM Templates: \\newenvelopes\ep_env\templates\

Design Team: __________ Sheet size: __________

Count: __________ Project Number: __________
TABLE OF BEAM LINE HAUNCH ELEVATIONS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAM 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>BEAM 2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>BEAM 3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>BEAM 4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM 6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MISCELLANEOUS DATA TABLE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

NOTE:

Haunch locations are at the same location as the encircled letters and numbers shown on slab elevations sheet.

HAUNCH DETAIL

NOTE:

Bridge deck elevations are set based on theoretical camber and beam deflections. These bridge seats will provide a theoretical haunch within design parameters, actual haunches are determined using surveying top of beam elevations and beam line haunch elevations. Adjustments to the beam line haunch elevation may be necessary due to theoretical camber and anticipated deflections. These bridge seats will provide a theoretical haunch at the edges of the top flange.

BEAM LINE HAUNCH DATA

IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION

<table>
<thead>
<tr>
<th>DESIGN TEAM</th>
<th>BEAM LINE HAUNCH ELEVATIONS</th>
<th>DESIGNER</th>
<th>REVISED</th>
<th>SHEET NO.</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Sheet 5279</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>Project No.</td>
<td>Sheet Name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

To calculate field haunch required at each location, survey the beam tops consistent with the spacing shown on the top of slab elevations layout on slab elevations sheet. Subtract the surveyed beam shot from the beam line haunch elevation. This value will be the minor field haunch. In haunch detail, the beam line haunch elevation includes adjustments for slab thicknesses and anticipated deflections; no additional calculations are required. If the field haunch exceeds the maximum and minimum shown in inches and decimals feet in the miscellaneous data table, adjustments to the deck or additional haunch reinforcement will be required.
Table of Beam Line Haunch Elevations (See Note 0)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>BEAM 1</th>
<th>BEAM 2</th>
<th>BEAM 3</th>
<th>BEAM 4</th>
<th>BEAM 5</th>
<th>BEAM 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location Notes:
- Haunch locations are at the same location as the encircled letters and numbers shown on slab elevations sheet.
- All beam line haunch data is shown in inches and decimals feet in the miscellaneous data table.

Miscellaneous Data Table

<table>
<thead>
<tr>
<th>BEAM LINE</th>
<th>% ADJUST</th>
<th>% PRIE</th>
<th>% SOLITE</th>
<th>% BOLTED</th>
<th>% PRIE</th>
<th>% BOLTED</th>
<th>% ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- To calculate field haunch required at each location, survey the beam tops consistent with the spacings shown on the top of slab elevations layout on slab elevations sheet, subtract the surveyed beam shot from the beam line haunch elevation, this value will be the minor needed field haunch. In beam entry, the beam line haunch includes adjustments for slab thicknesses and anticipated deflections. No additional calculations are required if the field haunch exceeds the maximum and minimum shown in inches and decimals feet in the miscellaneous data table. Adjustments to the space or additional reinforcement will be specified.
- Maximum and minimum tolerances shall be specified for the field haunch. No additional calculations are required if the field haunch exceeds the maximum and minimum shown in inches and decimals feet in the miscellaneous data table. Adjustments to the space or additional reinforcement will be specified.
TABLE OF BEAM LINE HAUNCH ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>BEAM 1</th>
<th>BEAM 2</th>
<th>BEAM 3</th>
<th>BEAM 4</th>
<th>BEAM 5</th>
<th>BEAM 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>E LEVEL</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
</tbody>
</table>

MISCELLANEOUS DATA TABLE

<table>
<thead>
<tr>
<th>BEAM LINE</th>
<th>ALL</th>
<th>ALL</th>
<th>ALL</th>
<th>ALL</th>
<th>ALL</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>E LEVEL</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>E SHAFT</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
</tbody>
</table>

NOTE:
HAUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE ENCIRCLED LETTERS AND NUMBERS SHOWN ON SLAB ELEVATIONS SHEET.

NOTE 1:
TO CALCULATE FIELD HAUNCH REQUIRED AT EACH LOCATION, SURVEY THE BEAM TOPS CONSISTENTLY WITH THE SPACINGS SHOWN ON THE TOP OF BEAM ELEVATIONS LAYOUT ON SLAB ELEVATIONS SHEET. SUBSTITUTE THE SURVEYED TOP OF BEAM FROM THE BEAM LINE HAUNCH ELEVATION. THIS VALUE WILL BE THE MINIMUM REQUIRED FIELD HAUNCH IN HAUNCH DETAIL. THE BEAM LINE HAUNCH ELEVATION INCLUDES ADJUSTMENTS FOR SLAB TOLERANCES AND ALLOCATED DEFLECTIONS. NO ADDITIONAL REINFORCEMENT IS REQUIRED. IF THE FIELD HAUNCH EXCEEDS THE MAXIMUM AND MINIMUMS SHOWN IN INCHES AND DECIMALS FEET IN THE MISCELLANEOUS DATA TABLE, ADJUSTMENTS TO THE SLAB OR ADDITIONAL REINFORCEMENT WILL BE REQUIRED.

HAUNCH DETAIL

NOTE:
BRIDGE BEAM ELEVATIONS ARE SET BASED ON THEORETICAL CAMBER AND BEAM DEFORMATION. THESE BEAM ELEVATIONS ARE DETERMINED USING MEASURED TOP OF BEAM ELEVATIONS AND BEAM LINE HAUNCH ELEVATION. ALLOWABLE HAUNCH ELEVATIONS ARE SHOWN IN INCHES AND DECIMALS FEET AND REMAINUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE ENCIRCLED LETTERS AND NUMBERS SHOWN ON SLAB ELEVATIONS SHEET. ALLOWABLE MAXIMUM AND MINIMUM HAUNCH ELEVATION SHEET. ADJUSTMENTS TO THE BEAM TOPS DURING THE CAMBER PROCESS MAY RESULT IN DIFFERENT HAUNCH LOCATIONS TO THE DRAWING SHEET SHOWN. NO ADDITIONAL REINFORCEMENT IS REQUIRED.
TABLE OF BEAM LINE HAUNCH ELEVATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>E. ADM.</th>
<th>S. ADM.</th>
<th>E. HEAD</th>
<th>S. HEAD</th>
<th>E. GROLLED</th>
<th>S. GROLLED</th>
<th>E. MORMER</th>
<th>S. MORMER</th>
<th>E. OOSTER</th>
<th>S. OOSTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Beam 2</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Beam 3</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Beam 4</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

NOTE:

HAUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE ENCIRCLED LETTERS AND NUMBERS SHOWN ON SLAB ELEVATIONS SHEET.

HAUNCH DETAIL

NOTE:

BRIDGE LINE ELEVATIONS ARE SET BASED ON THEORETICAL CAMBER AND BEAM DEFLECTIONS. THESE BRIDGE SEATS WILL PROVIDE A THEORETICAL BRIDGE SEAT WITHOUT DESIGN MODIFICATION. ACTUAL BRIDGE SEAT DETERMINATION IS BASED ON DUE TO SLAB DEFLECTIONS AND BEAM LINE HAUNCH ELEVATIONS. ALLOWABLE MAXIMUM AND MINIMUM FIELD HAUNCH VALUES SHOWN IN INCHES AND DECIMAL FEET WITHIN DESIGN PARAMETERS. ACTUAL HAUNCHES ARE DETERMINED USING SURVEYED TOP OF BEAM ELEVATIONS AND BEAM LINE HAUNCH ELEVATIONS SHEET. SUBTRACT THE SURVEYED BEAM TOP FROM THE "BEAM LINE HAUNCH ELEVATION" IN INCHES AND DECIMAL FEET WITHIN DESIGN PARAMETERS. THE THEORETICAL CAMBER AND ACTUAL FORMED HAUNCH MAXIMUM AND MINIMUM "FIELD HAUNCH" VALUES SHOWN IN INCHES AND DECIMALS FEET IN THE MISCELLANEOUS DATA TABLE, ADJUSTMENTS TO THE HAUNCH NEEDED (SEE "FIELD HAUNCH" IN ELEVATION). THIS VALUE WILL BE THE MINIMUM FIELD HAUNCH AS DETERMINED, THE THEORETICAL CAMBER AND ACTUAL FORMED HAUNCH Dimensions AT THE EDGES OF THE THEORETICAL CAMBER AND ACTUAL FORMED HAUNCH.

NOTE 1:

TO CALCULATE FIELD HAUNCH REQUIRED AT EACH LOCATION, SURVEY THE BEAM TOPS CONSISTENT WITH THE SPACINGS SHOWN ON THE TOP OF SLAB ELEVATIONS SHEET. SUBTRACT THE SURVEYED BEAM TOP FROM THE "BEAM LINE HAUNCH ELEVATION" SHEET. TO CALCULATE FIELD HAUNCH REQUIRED AT EACH LOCATION, SURVEY THE BEAM TOPS CONSISTENT WITH THE SPACINGS SHOWN ON THE TOP OF SLAB ELEVATIONS SHEET. SUBTRACT THE SURVEYED BEAM TOP FROM THE "BEAM LINE HAUNCH ELEVATION" SHEET. THE "BEAM LINE HAUNCH ELEVATION" INCLUDES ADJUSTMENTS FOR SLAB THICKNESSES AND ANTICIPATED DEFLECTIONS. NO ADDITIONAL CALCULATIONS ARE REQUIRED. IF THE FIELD HAUNCH EXCEEDS THE MAXIMUMS AND MINIMUMS SHOWN IN INCHES AND DECIMALS FEET IN THE MISCELLANEOUS DATA TABLE, ADJUSTMENTS TO THE MAXIMUM FIELD HAUNCH REQUIREMENTS WILL BE REQUIRED.
TOP OF SLAB ELEVATIONS

| LOCATION | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |

- **Gutter Line**
- **Beam 1**
- **Beam 2**
- **Beam 3**
- **Pier 1**
- **Beam 4**
- **Beam 5**
- **Beam 6**
- **Gutter Line**

340'-0" E - E ABUTMENT BEARINGS

<table>
<thead>
<tr>
<th>Bearing</th>
<th>102'-0"</th>
<th>135'-0"</th>
<th>168'-0"</th>
<th>201'-0"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abut. Wdg.</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
</tr>
<tr>
<td>Pier 1</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
</tr>
<tr>
<td>Pier 2</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
<td>E BOLTED SPLICE</td>
</tr>
</tbody>
</table>

LOCATION OF TOP OF SLAB ELEVATIONS

Right hand side shown, left hand side similar

SLAB ELEVATIONS

Design Team: Iowa Department of Transportation - Highway Division

Standard Sheet No.: 42

Project Number:

Sheet Number:

95-MAY-2010 12:08

Signature
TOP OF SLAB ELEVATIONS

LOCATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
GUTTER LINE
BEAM 1
BEAM 2
BEAM 3
FG1
BEAM 4
BEAM 5
GUTTER LINE

340'-0" E - E ABUTMENT BEARINGS

ABUT. BGR. 102'-0" ABUT. BGR. - E PIER E PIER 1 130'-0" PIER - E PIER 1 130'-0" PIER - E PIER 2 102'-0" PIER - E ABUT. BGR.

GUTTER LINE
BEAM 1
BEAM 2
END OF PARABOLIC CROWN
BEAM 3
BEAM 4
BEAM 5
BEAM 6
GUTTER LINE

GOOGLES CALLED BRIDGE DESIGN TEAM SHEET NUMBER 56 DESIGN SHEET NO. 07 FILE NO. 7-77

LOCATION OF TOP OF SLAB ELEVATIONS

(RIGHT AHEAD SKEN SHOWN, LEFT AHEAD SKEN SHOWN)
TABLE OF BEAM LINE HAUNCH ELEVATIONS

| LOCATION | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
|----------|---|---|---|---|---|---|---|---|---|----|
| TEAM 1 | | | | | | | | | | |
| TEAM 2 | | | | | | | | | | |
| TEAM 3 | | | | | | | | | | |
| TEAM 4 | | | | | | | | | | |
| TEAM 5 | | | | | | | | | | |
| TEAM 6 | | | | | | | | | | |

MISCELLANEOUS DATA TABLE

| LOCATION | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
|----------|---|---|---|---|---|---|---|---|---|----|
| TEAM 1 | | | | | | | | | | |
| TEAM 2 | | | | | | | | | | |
| TEAM 3 | | | | | | | | | | |
| TEAM 4 | | | | | | | | | | |
| TEAM 5 | | | | | | | | | | |
| TEAM 6 | | | | | | | | | | |

NOTE:

HAUNCH LOCATIONS ARE AT THE SAME LOCATION AS THE ENCRACLED LETTERS AND NUMBERS SHOWN ON SLAB ELEVATIONS SHEET.

HAUNCH DETAIL

NOTE:

BRIDGE LINE ELEVATIONS ARE SET BASED ON THEORETICAL CAMBER AND BEAM DEFLECTIONS. THESE BRIDGE SEATS WILL PROVIDE A THEORETICAL BEAM SEAT WITHIN DESIGN PARAMETER. ACTUAL HAUNCHES THEN DETERMINED USING SURVEY TO TOP OF BEAM ELEVATIONS AND BEAM LINE HAUNCH ELEVATION. ALLOWABLE MAXIMUM AND MINIMUM HAUNCH ELEVATION SHOWN IN INCHES AND DECIMAL FEET ARE GIVEN IN THE "HAUNCH ELEVATION" COLUMN. LAYOUT THEORETICAL CAMBER AT BEAM TOP AND THE CONTRACTOR IN DETERMINING ACTUAL FORMED HAUNCH DIMENSIONS AT THE EDGES OF THE TOP PLANE.

NOTE 1:

FIELD HAUNCH REQUIRED AT EACH LOCATION, SURVEY THE BEAM TOPOLOGY. SUBTRACT THE SURVEYED BEAM TOP FROM THE THEORETICAL CAMBER AND BEAM LINE HAUNCH ELEVATION. THIS VALUE WILL BE THE MINIMUM REQUIRED FIELD HAUNCH IN HAUNCH DETAIL. THE BEAM LINE HAUNCH ELEVATION INCLUDES ADJUSTMENTS FOR SLAB THICKNESSES AND ANTICIPATED DEFLECTIONS. NO ADDITIONAL CALCULATIONS ARE REQUIRED. IF THE FIELD HAUNCH EXCEEDS THE MAXIMUMS AND MINIMUMS SHOWN IN INCHES AND DECIMALS FEET IN THE MISCELLANEOUS DATA TABLE, ADJUSTMENTS TO THE SLAB ON ADDITIONAL HAUNCH REINFORCEMENT WILL BE REQUIRED.