APPENDIX A

SAMPLE CALCULATIONS FOR DETERMINING PAVEMENT THICKNESS INDEX CORING LAYOUT ILLUSTRATION FIGURE

The following is an example of the steps used to determine the thickness index for a section of pavement.

PART 1

This example is based on ten cores and a project let in English. Cores, from a metric project, measured in millimeters, would be evaluated by the same steps and in accordance with the metric pay schedule.

Given: $\quad \mathrm{T}=$ Design thickness of pavement $=7.0 \mathrm{in}$.
$\mathrm{N}=$ Number of Cores $=10$
Core lengths $=7.40,7.10,8.10,7.60,7.95,8.25,9.70,7.90,8.10,8.00$
STEP 1: $\quad \bar{x}=$ mean thickness $=\frac{\sum X}{N}$
$\Sigma X=7.40+7.10+8.10+7.60+7.95+8.25+9.70+7.90+8.10+8.00=80.1$
$\bar{x}=80.1 \div 10=8.01$
$\bar{x}=8.01$
STEP 2: $S=\frac{\sum(x-\bar{x})^{2}}{\sqrt{N-1}}$
$S=$ standard deviation of the sample

Core \# $x-\bar{x}$		
1	$7.40-8.01=-0.610$	$-0.610 \times-0.610=0.372$
2	$7.10-8.01=-0.910$	$-0.910 \times-0.910=0.828$
3	$8.10-8.01=0.090$	$0.090 \times 0.090=0.008$
4	$7.60-8.01=-0.410$	$-0.410 \times-0.410=0.168$
5	$7.95-8.01=-0.060$	$-0.060 \times-0.060=0.004$
6	$8.25-8.01=0.240$	$0.240 \times 0.240=0.058$
7	$9.70-8.01=1.690$	$1.690 \times 1.690=2.856$
8	$7.90-8.01=-0.110$	$0.110 \times-0.110=0.012$
9	$8.10-8.01=0.090$	$0.090 \times 0.090=0.008$
10	$8.00-8.01=-0.010$	$-0.010 \times-0.010=\underline{0.000}$
	$=$ Sum $=\mathbf{4 . 3 1 4}$	
$S=\sqrt{4.314 \div 9}=\sqrt{0.479}=0.69$	$S=\mathbf{0 . 6 9}$	

STEP 3: $\mathrm{TI}=$ thickness index $=(\bar{x}-\mathrm{S})-\mathrm{T}$

$$
\begin{array}{ll}
\mathrm{TI}=(8.01-0.69)-7.00 & \\
\mathrm{TI}=7.32-7.00=0.32 & \mathrm{TI}=0.32
\end{array}
$$

PART II

The following illustrates the procedures to follow when a thick core would qualify, at the contractor's option, to be removed from the analysis for thickness determination. (Based on the above example.)

Given: $\quad \mathrm{T}=7.0$
$\mathrm{N}=10-1$ removed $=9$
Contractor's Option:

$$
\text { S = } 0.69 \text { (from Part I) }
$$

Three standard deviations $=3 \times S=2.07$
Core length at which contractor can choose to remove the core from the TI (up to 10% of the total number of cores)
$\mathrm{T}+3 \mathrm{~S}=7.0+2.07=9.07$
The core that is 9.70 thick would qualify for removal.

STEP 1: $\bar{x}=\frac{\sum X}{N}$

$$
\begin{aligned}
\sum X & =7.40+7.10+8.10+7.60+7.95+8.25+7.90+8.10+8.00=70.4 \\
& =70.4 \div 9=7.82
\end{aligned}
$$

STEP 2: $\quad \mathrm{S}=\quad \sum(x-\bar{x})^{2}$
$\frac{2(x-x)^{2}}{\sqrt{N-1}}$

Core \#	$x-\bar{x}$			$(x-\bar{x})^{2}$
1	$7.40-7.82=$	-0.420	-0.420 x	$-0.420=0.176$
2	7.10-7.82 =	-0.720	-0.720 x	$-0.720=0.518$
3	8.10-7.82 =	0.280	0.280 x	$0.280=0.078$
4	$7.60-7.82=$	-0.220	-0.220 x	$-0.220=0.048$
5	$7.95-7.82=$	0.130	0.130 x	$0.130=0.017$
6	8.25-7.82 =	0.430	0.430 x	$0.430=0.185$
7	9.70-8.01 =	1.690	1.690 x	$1.690=2.856$
8	7.90-7.82 =	0.080	0.080 x	$0.080=0.006$
9	$8.10-782=$	0.280	0.280 x	$0.280=0.078$
10	8.00-7.82 =	0.180	0.180 x	$0.180=\underline{\underline{0.032}}$
				= Sum= 1.138
$\mathrm{S}=\sqrt{1.138 \div 8}=\sqrt{0.142}=0.38$				$S=0.38$
STEP 3: $\mathrm{TI}=(\bar{x}-\mathrm{S})-\mathrm{T}$				
TI- (7.82-0.38)-7.00				$\mathrm{TI}=0.44$
$\mathrm{TI}-7.44-7.00=0.44$				

Figure 1

