

INSIDE THIS ISSUE

2024 BRIDGE DATA	3
BRIDGE OWNERSHIP	
COMMON BRIDGE TYPES	
BRIDGE DEFINITION	5
BRIDGE CATEGORIZATION: GOOD-FAIR-POOR	6
BRIDGE INSPECTION REQUIREMENTS	6
DISTRICT BRIDGES	7
OCAL PUBLIC AGENCY BRIDGES	7
STRUCTURALLY DEFICIENT / POOR	8
HEAVY LOAD PERMITS	8
NATIONAL BRIDGE INVENTORY	9
AGE OF BRIDGE INVENTORY	9
AVERAGE DAILY TRAFFIC	11
BORDER BRIDGES	11
BRIDGE POSTING	12
NATIONAL HIGHWAY SYSTEM	12
BRIDGE FUNDING	13
HWA METRIC COMPLIANCE	14
SUNDING CATEGORIES FOR BRIDGE PROJECTS IN FY 2023	15

CONTACT

Iowa Department of Transportation Bridges and Structures Bureau

Phone: 515-239-1564 Fax: 515-239-1978 iowadot.gov/bridge

800 Lincoln Way | Ames, IA 50010

SPECIAL POINTS OF INTEREST

- Poor bridges on the Primary Highway System have been reduced from 237 in 2009 to 23 in 2024.
- The average age of Primary Highway Bridges is 41 years. Half of these bridges are over 43 years old.
- The deck area of the bridges on the Primary Highway System is over 1089 acres or 1.70 square miles.

2024 BRIDGE DATA

This report is based on data provided to the Federal Highway Administration (FHWA) in March 2024. The National Bridge Inventory (NBI) data is submitted to the FHWA annually. The data submitted includes 116 data fields collected during biennial inspections. Once the data is submitted to the FHWA, they perform data analyses and determine the Good-Fair-Poor category.

The State is responsible for oversight of the statewide bridge inspection program according to federal regulations. All local bridges are inspected by the jurisdiction responsible for the roadway crossing a bridge. The State has delegated this responsibility to the local agencies through Iowa Code section 314.18.

The State's oversight of local bridge inspections is managed through the Structure Inspection and Inventory Management System (SIIMS). SIIMS is a web-based software system used to document all bridge inspections statewide. Oversight is also performed through annual field inspections of a group of counties and cities for quality assurance.

I-74 over Mississippi River

BRIDGE OWNERSHIP

Bridge ownership is based on the jurisdiction of the roadway where the bridge is located. There are three main categories of ownership in Iowa. Most bridges on public roadways are owned by the state, a county, or a city.

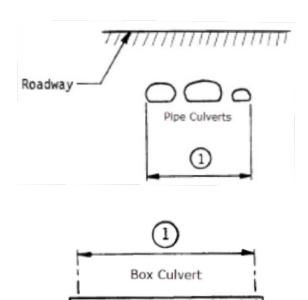
OWNERS	TOTAL	DECK AREA (FT^2)
STATE	4,205	47,441,644
COUNTIES	18,225	41,726,653
CITIES	1,254	8,647,600
TOTAL	23,684	97,815,897

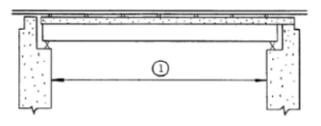
COMMON BRIDGE TYPES

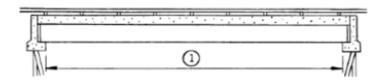
BRIDGE TYPE	STATE	COUNTY	CITY
Aluminum Culvert	0	12	1
Cable Stayed	1	0	0
Channel Beam	0	2	0
Concrete Arch	7	32	39
Concrete Box beam	0	47	2
Concrete Channel Beam	2	368	7
Concrete Culvert	836	2927	370
Concrete Frame	3	1	9
Concrete Girder	2	207	17
Concrete Slab	559	4274	305
Concrete Spread Box Beam	1	2	0
Concrete Tee Beam	6	112	5
Concrete Thru Arch	0	4	1
Encased Steel Beam	0	245	0
Inverted Tee Beam	0	0	1
Masonry Arch	0	1	2
Masonry Culvert	0	0	2
Pipe Culvert	0	2	1
Precast Arch Culvert	0	2	1
Prestressed Box Beam	2	0	0
Prestressed Girder	1885	2003	242
Prestressed Tee Beam	4	856	27
Rail Car	0	60	0
Segmental Box Beam	1	0	0
Steel Arch	0	3	1
Steel Box Beam	1	0	0
Steel Culvert	1	686	17
Steel Deck Truss	1	0	2
Steel Frame	2	0	1
Steel Girder	817	4429	158
Steel Thru Arch	10	0	1
Steel Thru Truss	9	641	13
Steel Two Girder	52	0	1
Suspension	1	0	0
Timber Arch	0	1	0
Timber Culvert	0	9	0
Timber Girder	1	1089	19
Timber Slab	1	205	9
Wrought Iron Thru Truss	0	5	0
Total	4205	18225	1254

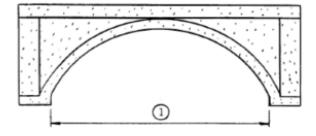
Concrete Arch

Concrete Box Culvert


Steel Truss


Prestressed Girder Construction


BRIDGE DEFINITION


The FHWA definition of a bridge is any structure including supports erected over a depression or an obstruction, such as water, highway, or railway, and having a track or passageway for carrying traffic or other moving loads, and having an opening measured along the center of the roadway of more than 20 feet between undercopings of abutments or spring-lines of arches, or extreme ends of openings for multiple boxes; it may also include multiple pipes, where the clear distance between openings is less than half of the smaller contiguous opening.

A BRIDGE IS A STRUCTURE WITH AN OPENING OF MORE THAN 20 FT.

BRIDGE CATEGORIZATION: GOOD-FAIR-POOR

The assignment of a classification of Good, Fair, or Poor is as defined by the FHWA and is based on the bridge's condition ratings for NBI Items: 58-Deck, 59-Superstructure, 60-Substructure, and 62-Culverts.

The method of assessment to determine the classification of a bridge will be the minimum condition rating. The condition rating of lowest rating of a bridge's 3 NBI Items, 58-Deck, 59-Superstructure, and 60-Substructure will determine the classification of the bridge. For culverts, the rating of its NBI Item, 62-Culverts, will determine its classification. Bridges and culverts will be classified as Good, Fair, or Poor based on the following criteria:

GOOD

When the lowest rating of any of the 3 NBI items for a bridge (Items 58-Deck, 59-Superstructure, 60-Substructure) is 7, 8 or 9, the bridge will be classified as Good. When the rating of NBI item for a culvert (Item 62-Culverts) is 7, 8, or 9, the culvert will be classified as Good.

FAIR

When the lowest rating of any of the 3 NBI items for a bridge is 5 or 6, the bridge will be classified as Fair. When the rating of NBI item for a culvert is 5 or 6, the culvert will be classified as Fair.

POOR

When the lowest rating of any of the 3 NBI items for a bridge is 4, 3, 2, 1, or 0, the bridge will be classified as Poor. When the rating of NBI item for a culvert is 4, 3, 2, 1, or 0, the culvert will be classified as Poor.

OWNERS	GOOD	FAIR	POOR	TOTAL
STATE	2,011	2,171	23	4,205
COUNTY	6,692	7,227	4,306	18,225
CITY	499	546	209	1,254
TOTAL	9,202	9,944	4,538	23,684

THE POOR CATEGORY DOES NOT
INDICATE THERE IS A SAFETY ISSUE.
POOR BRIDGES HAVE DETERIORATION
OR DAMAGE THAT MAY NEED REPAIR
OR REPLACEMENT IN THE NEAR FUTURE.
A BRIDGE WILL BE CLOSED UPON
FINDING IT IS UNSAFE.

BRIDGE INSPECTION REQUIREMENTS

The Federal Highway Administration (FHWA) requires all bridges on public roads that carry traffic be inspected according to the National Bridge Inspection Standards (NBIS).

The NBIS defines a bridge, bridge inspection types, inspector qualifications, and load rating requirements.

The NBIS requires each bridge owner to provide a specific set of data items to FHWA annually.

These data items are defined in the "Recording and Coding Guide for the Structure Inventory and Appraisal of the Nations' Bridges". There are 116 items required to be submitted annually for every bridge.

Most bridges must be inspected on a 24-month frequency at a minimum. More frequent inspections are required when a bridge meets specific criteria established by the State.

The FHWA allows a state to establish criteria to extend the inspection frequency for a given bridge to a maximum of 48 months. Iowa has approved criteria to extend the frequency to 48 months on some bridges.

I-80 and I-29 interchange construction

Under Bridge Inspection Vehicle

DISTRICT BRIDGES

District bridges are maintained by bridge repair crews. Each repair crew has three people who work together as a team or can work individually with help from other District employees.

The work they do is diverse and typically involves the following:

- 1. Epoxy injection of delamination in bridge decks.
- 2. Deck patching.
- 3. Joint repair.
- 4. Backwall repair.
- 5. Collision damage repair.

- 6. Erosion repair.
- 7. Approach pavement repair and void filling.
- 8. Substructure concrete patching.
- 9. Retrofit fatique cracks in steel girders.
- 10. Assign bridge repair work to district garage.

Annual meetings between each District and the Bridges and Structures Bureau are held to determine programming needs. Annual needs are captured in the SIIMS program by District and Bridges and Structures Bureau staff throughout the year.

STATE ONLY	TOTAL	DECK AREA (FT^2)	POOR TOTAL	POOR DECK AREA (FT^2)
DISTRICT 1	811	9,576,769	6	23,976
DISTRICT 2	642	6,080,386	1	36,901
DISTRICT 3	609	4,914,678	4	24,831
DISTRICT 4	661	8,063,211	4	14,538
DISTRICT 5	610	6,606,880	5	19,237
DISTRICT 6	872	12,199,719	3	193,991
TOTAL	4205	47,441,644	23	313,475

LOCAL PUBLIC AGENCY BRIDGES

Local Public Agencies (LPA) own the majority of the bridges in Iowa. LPA own 19,479 of the 23,684 bridges.

LPA also own most of the Poor bridges as well. These 4,515 Poor bridges account for 23.2 percent of the LPA bridge inventory and 18.6 percent of their total deck area.

These are high percentages, but the traffic volumes on most of these bridges are very low. Half of the Poor bridges on the county roadways carry fewer than 35 vehicles per day.

67.7 percent of the Poor bridges are Posted or Restricted in some way.

7.4 percent of the Poor bridges owned by LPA are closed to traffic. Closed bridges can remain in the inventory for 10 years. After 10 years, the FHWA requires they be removed from the inventory because they assume the bridge is not going to be replaced.

LPA	TOTAL	DECK AREA (FT^2)	POOR TOTAL	POOR DECK AREA (FT^2)
COUNTY	18,225	41,726,653	4,306	7,752,686
CITY	1,254	8,647,600	209	1,605,365
TOTAL	19,479	50,374,253	4,515	9,358,051

STRUCTURALLY DEFICIENT / POOR

The definitions for Structural Deficiency and Poor are the same. In January 2018 the definition of Structural Deficiency was modified by excluding two of the previous indicators—Structural Evaluation and Waterway Adequacy.

Structural Evaluation was based on the bridges load carrying capacity and/or condition ratings. The Waterway Adequacy was based on the bridge's size in relation to the waterway underneath.

Fifty percent of the Poor bridges on the Local highway system carry fewer than 35 vehicles per day. Over 74 percent carry fewer than 100 vehicles per day.

Of the 4,515 locally owned SD/Poor bridges, 336 are closed to traffic.

Restricted bridges are posted for restrictions other than load capacity. They can be restricted to one lane, one vehicle at a time, or a speed restriction.

Poor condition

ALTHOUGH IOWA HAS THE HIGHEST NUMBER OF STRUCTURALLY DEFICIENT (SD)/POOR BRIDGES IN THE COUNTRY, IOWA IS 5TH IN TOTAL SD/POOR DECK AREA.

POOR BRIDGES	OPEN	POSTED	RESTRICTED	CLOSED	OTHER	TOTAL
STATE	16	4	2	1	0	23
COUNTY	1,348	2,301	301	316	40	4,306
CITY	112	75	3	19	0	209
TOTAL	1,476	2,380	306	336	40	4,538

HEAVY LOAD PERMITS

The Bridges and Structures Bureau is responsible for the review of all heavy load permit requests, on the Primary Highway System, for gross weights over 156,000 pounds or axle weights above 24,000 pounds. These permit requests are reviewed using the IAPS/Superload program. Each permit must specify the exact route they will be traveling. Every bridge along the proposed route is checked for adequate capacity to carry that specific vehicle. The analysis takes into account the load per axle and the axle spacing of the vehicle. This detailed check ensures the adequacy of the bridges along the proposed route.

Superload Transport

The IAPS system also checks vertical and horizontal clearances along the route based on the height provided on the permit and accurate measurements of clearances stored in the DOT database.

Currently, there are an average of over 1200 heavy load permit requests made each month. The number of permits has been increasing since 1997. The total number has doubled since 2005.

NATIONAL BRIDGE INVENTORY

Bridges in the National Bridge Inventory (NBI) require inspection frequency for most bridges not to exceed 24 months according to the National Bridge Inspection Standards (NBIS).

Structures included in the NBI are highway bridges on public roads.

Bridges not part of the NBI are structures such as railroad, toll, privately owned, and pedestrian bridges.

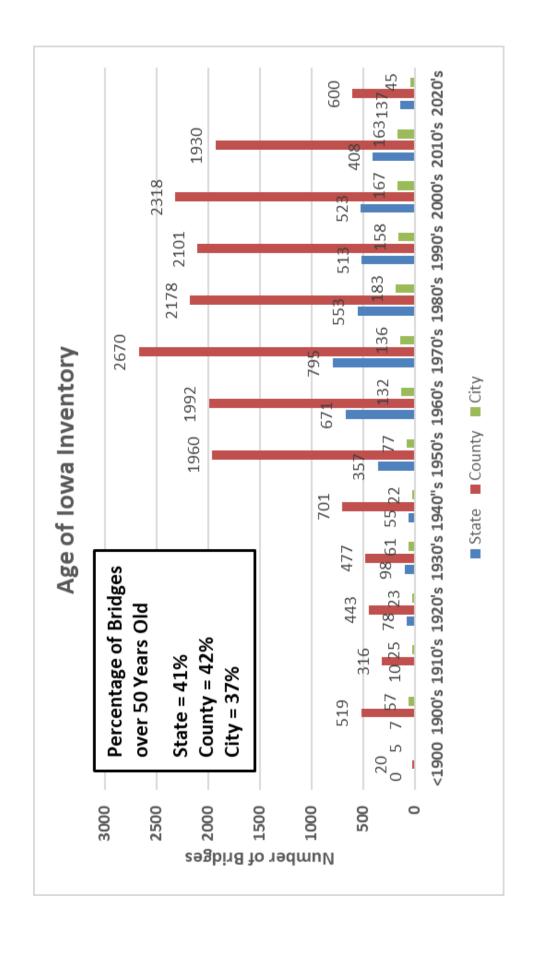
There were 618,923 bridges in the 2023 NBI nationally. 42,093 were considered to be in Poor condition.

IOWA RANKING IN THE FOLLOWING CATEGORIES					
Number of Bridges	7th				
Number of Poor Bridges	1st				
Total Deck Area (ft^2)	18th				
Poor Deck Area (ft^2)	5th				
Number of NHS Bridges	24th				
Poor NHS Deck Area (ft^2)	26th				
Poor NHS Deck Area (% of total area)	39th				
WHO HAS THE MOST IN THE FOLLOWIN	WHO HAS THE MOST IN THE FOLLOWING CATEGORIES?				
Number of Bridges	Texas				
Number of Bridges Number of Poor Bridges	Texas Iowa				
	. 67.6.6				
Number of Poor Bridges	lowa				
Number of Poor Bridges Total Deck Area	lowa Texas				
Number of Poor Bridges Total Deck Area Poor Deck Area	Iowa Texas California				
Number of Poor Bridges Total Deck Area Poor Deck Area Number of NHS Bridges	Iowa Texas California Texas				

Steel Thru Truss

I-80/I-380 Interchange

AGE OF BRIDGE INVENTORY


The average bridge age for Iowa's Primary Highway System is 42 years. Nationally the average age is 46 years. The common age used to describe how long a bridge should last has historically been 50 years. The average age of bridges replaced on the Primary Highway System is 64 years. Bridges built after the late 1970s will likely last longer than 64 years. The design of these bridges included epoxy-coated reinforcing and the use of more integral abutments. Limiting the number of deck joints is common in new designs, which improves the longevity of a bridge.

On our Local Highway System, the average age is 46 years. The national average for Locally owned bridges is 43 years. Our Local bridge inventory makes up the majority of the Poor bridge category in Iowa.

In eight years, the average age of bridges on the Primary Highway system will be 50 years. The average age of bridges on the interstate is 41 years.

Mehaffey Bridge near Solon

AVERAGE DAILY TRAFFIC

The Average Daily Traffic (ADT) crossing a bridge is a major factor for making decisions to repair or replace a bridge.

Many bridges on the Secondary Highway System (county and city routes) do not have a very high ADT. Half of the Poor bridges on the County highway system carry fewer than 35 vehicles per day. The County highway system accounts for the majority of Poor bridges in the State. An ADT of 40 vehicles is considered "Low Volume".

Counties do a good job maintaining the bridges that carry the majority of the traffic. Over half of the Poor bridges on the County highway system are posted for weight restrictions. The weight limits allow the safe use of these bridges.

It is not cost-effective for a local agency to spend a significant amount of money on their low-volume bridges. With limited funding, it is best to keep a Poor bridge in service when it is able to accommodate the traffic crossing it.

HALF OF ALL THE POORBRIDGES ON THE COUNTYHIGHWAY SYSTEM CARRY FEWER THAN 35 VEHICLES PER DAY.


		OWNER	
	STATE	COUNTY	CITY
Average ADT - all bridges	6,481	200	3,079
Median ADT - all bridges	3,500	45	1,527
Number of bridges	4,205	18,225	1,254
Average ADT - poor bridges	3,722	148	2,375
Median ADT - poor bridges	2,040	35	813
Number of poor bridges	23	4,306	209
Percent poor bridges	0.5%	23.6%	16.7%

BORDER BRIDGES

There are 39 bridges that are jointly owned by lowa and neighboring states. Many of these bridges are complex structure types such as tied arch, continuous thru truss, cable stayed suspension, or segmental post tensioned concrete.

Due to the large size and complexity of most of these bridges, they are cleaned annually and maintained at a higher level of repair. Several require painting two, three, or even four times during their life.

There are three Poor border bridges that account for 71% of the Primary highway deck area of Poor bridges.

BRIDGE POSTING

Bridge posting is needed when the capacity of a bridge no longer meets the needs of the legal loads traveling on public highways.

There are many configurations of legal trucks that must be evaluated on every bridge. If the bridge doesn't have the capacity to carry any one of the many legal truck options, a posting sign must be installed at the bridge.

In lowa, the legal limits are 80,000 pounds on the Interstate and 96,000 pounds on all other routes. These trucks must comply with the federal bridge formula that limits the gross weight on each axle group.

Bridge postings apply to any vehicle traveling on the bridge, other than fire apparatus, implements of husbandry being transported for repair, or road maintenance equipment owned by the state or local agency.

WEIGHT LIMIT 10 TONS NO TRUCKS OVER 7000 LBS EMPTY WT

POSTING SIGNS ARE AN
ECONOMICAL WAY TO PROTECT
THE PUBLIC AND KEEP A BRIDGE
IN SERVICE FOR THE MAJORITY
OF THE VEHICLES USING IT.

OWNERS	POSTED	RESTRICTED	CLOSED	OTHER	TOTAL
STATE	18	2	9	0	29
COUNTY	3,640	772	321	43	4,776
CITY	103	8	19	0	130
Total	3,761	782	349	43	4,935

NATIONAL HIGHWAY SYSTEM

The National Highway System (NHS) is a system of roadways the federal government has designated as essential for national connectivity.

There are 2,657 bridges on the NHS in Iowa. 2,609 of these bridges are on the Primary Highway System. The interstate system is included in the NHS.

There are over 3,000 lane miles of NHS pavement.

Federal requirements established in the FAST Act put limits on the percentage of deck area on the NHS that can be categorized as "Poor." Less than 10 percent of the bridge deck area on the NHS can be rated "Poor".

In 2024, the percentage of NHS bridge deck area rated "Poor" was 1.3 percent. This is well below the required limit of 10 percent.

NHS BRIDGES	GOOD	FAIR	POOR	TOTAL	% POOR DECK AREA
STATE	1,263	1,340	7	2,610	0.6%
COUNTY	0	2	0	2	0.0%
CITY	16	24	6	46	23.1%
TOTAL	1,279	1,366	13	2,658	1.3%

BRIDGE FUNDING

The Bridges and Structures Bureau is currently using an optimization and prioritization system to evaluate future funding needs. This system uses NBI data from 1992 to present to develop deterioration models for the inventory of typical bridges. Culverts and border bridges are excluded from this analysis. Culverts don't have enough NBI data to make clear decisions on maintenance or replacement. Border bridges are unique and due to their larger size are not easily modeled using NBI data.

BRIDGE PROJECTS ARE
REVIEWED BY THE BRIDGES AND
STRUCTURES BUREAU AND THE
DISTRICTS TO DETERMINE
PRIORITIES FOR THE FIVE-YEAR
STATE TRANSPORTATION
IMPROVEMENT PROGRAM.

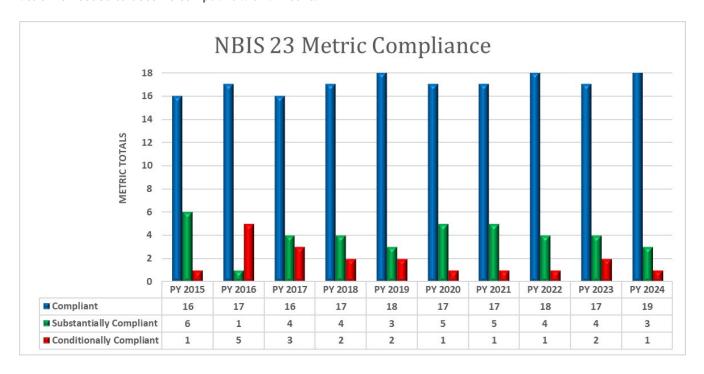
The bridge modeling software creates a 20-year program for replacement, rehabilitation, and repair based on set funding limits or condition targets. Scenarios have been created for varying budgets as well as a "Do Nothing" scenario. The varying budget show what may be needed to maintain the inventory at a specified condition target level. The "Do Nothing" budget shows what the deterioration rate of the inventory would be if no money was spent for 20 years.

The condition target levels are based on the Bridge Condition Index (BCI) developed by the Bridges and Structures Bureau. The BCI is based on similar calculations for the old Sufficiency Rating previously used by FHWA. The BCI is sensitive to changes in condition ratings for the different bridge components. This way, bridges can be compared to each other in a more detailed manner verses the Good, Fair, and Poor condition categories. This helps determine which bridges to choose for the program when the funding is limited.

Annually the Bridges and Structures Bureau assists with updating a five-year transportation plan to program expenditures in order to maintain our bridges and improve the bridge inventory. The program consists of a variety of projects to build new bridges, replace bridges, rehabilitate bridges, and preserve bridges with contract maintenance activities. The candidates for the program are determined in cooperation with the Bridges and Structures Bureau and District personnel.

The Bridges and Structures Bureau meets with each District every fall to discuss bridge needs. The bridge needs are maintained in the inspection system database. Each project is given a priority to determine the urgency of the project. The most needed projects are the first to be considered for inclusion in the upcoming five-year program.

PROJECT COUNT BY WORK TYPE	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	FY 2023
Bridge Deck Overlay	26	20	30	33	29	28	41	54	45
Bridge Replacement	22	34	22	25	17	30	44	23	26
Bridge New	11	12	24	18	9	10	16	10	8
RCB Culvert Replacement	8	11	8	13	9	8	6	7	9
RCB Culvert New	3	3	3	5	4	3	1	2	7
Bridge Rehabilitation	1	2	3	1	4	10	7	7	9
TOTAL	71	82	90	95	72	89	115	103	104


FHWA METRIC COMPLIANCE

Annually, the FHWA reviews each state's bridge inspection program against 23 metrics.

Metric #1: Bridge inspection organization	Metric #13: Inspection procedures – Load Rating
Metric #2: Qualifications of personnel – Program Manager	Metric #14: Inspection procedures – Post or Restrict
Metric #3: Qualifications of personnel – Team Leader(s)	Metric #15: Inspection procedures – Bridge Files
Metric #4: Qualifications of personnel – Load Rating Engineer	Metric #16: Inspection procedures – Non-Redundant Steel Tension Members
Metric #5: Qualifications of personnel – UW Bridge Inspection Diver	Metric #17: Inspection procedures – Underwater
Metric #6: Inspection frequency – Routine – Lower risk bridges	Metric #18: Inspection procedures – Scour
Metric #7: Inspection frequency – Routine – Higher risk bridges	Metric #19: Inspection procedures – Complex Bridges
Metric #8: Inspection frequency – Underwater – Lower risk bridges	Metric #20: Inspection procedures – QC/QA
Metric #9: Inspection frequency – Underwater – Higher risk bridges	Metric #21: Inspection procedures – Critical Findings
Metric #10: Inspection frequency – Non-Redundant Steel Tension Members	Metric #22: Inventory – Prepare and Maintain
Metric #11: Inspection frequency – Frequency criteria	Metric #23: Inventory – Timely Updating of Data
Metric #12: Inspection procedures – Quality Inspections	

There are three levels of compliance for each metric.

- 1. **COMPLIANCE:** All bridges meet the requirement
- 2. **SUBSTANTIAL COMPLIANCE**: A small percentage of bridges need corrections to comply with the metric.
- 3. **CONDITIONAL COMPLIANCE:** A plan of corrective action is needed to become compliant with a metric.

FUNDING CATEGORIES FOR BRIDGE PROJECTS IN FY 2023

Work Type/Funding Type	BRF	IM	IMN	IMX	МВ	MBIN	NHS	NHSN	NHSX	STPN
Bridge Cleaning	\$598,295.00		\$345,980.00							
Bridge Deck Overlay	\$33,491,697.10				\$135,608.00					
Bridge New-PPCB		\$6,444,992.55							\$5,936,025.40	
Bridge New-Steel Girder		\$45,621,913.17								
Bridge Painting			\$197,748.10		\$733,755.00	\$801,540.00				
Bridge Rehabilitation	\$723,572.23			\$1,518,851.88						
Bridge Repair	\$1,033,446.00			\$2,525,808.50	\$79,685.00	\$1,361,638.00		\$964,928.74		
Bridge Replacement-CCS	\$8,738,254.01									
Bridge Replacement-PPCB	\$31,051,013.51	\$23,245,314.90					\$4,801,130.69			
Bridge Replacement-Steel Girder		\$14,832,771.40								
RCB Culvert-Unspecified									\$2,556,480.71	
Bridge Deck Replacement	\$4,908,043.21								\$2,360,965.19	
Bridge Approach Repair					\$3,625,064.00	\$135,531.00				
Bridge Widening	\$2,380,443.10									
Deck Joint Repair					\$3,153,338.19	\$406,280.11				
Pier Repair								\$179,830.00		
PPCB Repair			\$263,070.00		\$578,534.60					\$911,513.50
RCB Culvert Extension		\$1,352,170.10								
RCB Culvert Replacement	\$8,720,169.75									
Slope Protection			-		\$176,741.00	\$152,852.00				
Steel Girder Repair	\$134,465.20		\$392,048.00							
Structures - Miscellaneous	\$4,851,342.30									
Total	\$96,630,741.41	\$91,497,162.12	\$1,198,846.10	\$4,044,660.38	\$8,482,725.79	\$2,857,841.11	\$4,801,130.69	\$1,144,758.74	\$10,853,471.30	\$911,513.50

Grand Total for FY2023 \$222,422,851.14