

Concrete Mixtures

Infinite number of combinations of:

- Aggregate type & quantity
- Type & amount of cement
- SCM use
- Admixtures

Model for Hydration Built From:

- E_a Trends From 116x5 Isothermal tests
- Validation performed using data from Schidler (2005), Ghe Li (2006), and field sites – 58 Semi-Adiabatic Tests
- Variability of test methods is quantified 63 Semi-Adiabatic Tests.
- A brief overview of the trends seen in the study is shown next.

Variable	Range of Tests	Effect on τ	Effect on β	Effect on α_u
Fly Ash (%Replacement)	15-55%		5	F
Fly Ash (CaO%)	0.7-28.9% CaO		K	Varies
GGBF slag	30-70%	Large	Small	Varies
Silica Fume	5-10%	None	None	Small f
	'	I.		

Variable	Range of Tests	Effect on τ	Effect on \(\beta \)	Effect on α_u
LRWR	0.22-0.29%	Varies	Small	Varies
WRRET	0.18-0.53%	Large	Large	Large
MRWR	0.34-0.74%	Large	Small	Varies
HRWR	0.78-1.25%	None	Small	Large
PCHRWR	0.27-0.68%	None	Small	Large
ACCL	0.74-2.23%	Small	None	Varies
AEA	0.04-0.09%	None	None	None

Variable	Range of Tests	Effect on τ	Effect on \(\beta \)	Effect on α_u
Increasing w/c	0.32-0.68	None	None	Large
Placement Temp	15-38 °C (50-100 °F)	None	None	None
Increase Cement Fineness	350-540 m ² /kg	Small	Small	Varies
rmeness			201	

Foundation Thermal Properties

		Thermal	Specific	
Subbase	Density	Conductivity	Heat	
Material	(kg/m3)	(W/m/K)	(J/kg/K)	Reference
Clay	1460	1.3	880	
Granite	2630	2.79	775	
Limestone	2320	2.15	810	
Marble	2680	2.8	830	
Quartzite	2640	5.38	1105	
Sandstone	2150	2.9	745	
Sand	1515	0.27	800	Incropera and
Top Soil	2050	0.52	1840	Dewitt, 2002
Concrete*	-	-	-	

*Concrete is assumed to have the same thermal properties of the concrete used on the footing, with a degree of hydration equal to 0.6.

E Communication Region IDON Mass Consents Worldshop

Problems to Work Out After Lunch

- Design a concrete control plan for a 8 ft by 10 ft column placed in Ames in August 2020 to meet IDOT standards.
- Next, determine any changes that would be needed to place the same column in January, 2021 in Ames.

*Pay attention to the difference it makes where the temperature sensor is placed

Problems to Work Out After Lunch

- Design a control plan for concrete footing that is 20 ft by 30 ft by 8 ft thick in Des Moines in March. Use limestone subbase. What difference do you get between 1D and 2D analysis?
- What about with a 10 ft wide footing what difference do you get between a 1D and 2D analysis?

Problems to Work Out After Lunch

You want to place a concrete footing that is 30 ft by 20 ft by 6 ft thick. It is August in Des Moines, and you expect a storm after 2 days to lower the high temperature to 60° F and the low temperature on day 2 to 45° F. Design a system that will still meet IDOT standards.