BRIDGE ENGINEERING INA HIGHWAY RESEARCH BOARD

Research and Technology Bureau

Workbook

LRFD Workshop on Bridge Foundations Consisting of Driven Piles in Iowa

October 30, 2012

lowa Department of Transportation

East/West Materials Conference Room, Iowa DOT, Ames Date: October 30, 2012; repeated on Oct. 31, 2012

Agenda

	Registration
8:30 am to 9:00 am	Registration
	Morning Session
9:00 am to 9:20 am	Opening Remarks: Sri Sritharan (Iowa State University) and Ken Dunker (Iowa DOT)
9:20 am to 9:50 am	PILOT Database and Field Testing of Piles: Sri Sritharan (Iowa State University)
9:50 am to 10:20 am	LRFD Calibration Process: Kam Ng (Iowa State University)
10:20 am to 10:30 am	Break
10:30 am to 11:00 am	Construction Control (Modified Iowa ENR and WEAP Analysis) Kam Ng (Iowa State University)
11:00 am to 11:30 am	Development of Design Guide: Don Green (Baker)
11:30 am to 12:30 pm	Track 2 and Example: Design and Construction Stages Kam Ng (Iowa State University)
	Afternoon Session
12:30 pm to 1:30 pm	Lunch Break
1:30 pm to 2:30 pm	Track 1 and Example: Design Stage Don Green (Baker)
2:30 pm to 2:50 pm	Track 1 and Example: Construction Stage Don Green (Baker)
2:50 pm to 3:00 pm	Comparison between Track 1 and Track 2 Kam Ng (Iowa State University)
3:00 pm to 3:15 pm	Break
3:15 pm to 3:30 pm	Track 3 and Examples Kam Ng (Iowa State University)
3:30 pm to 3:45 pm	Other Pile Types: Ken Dunker (Iowa DOT)
3:45 pm to 4:15 pm	Design using spreadsheet Michael Nop (Iowa DOT)
4:15 pm to 4:30 pm	Feedback and Discussion Sri Sritharan (Iowa State University)

Overview - 1

- Pile design has three aspects:
 - Structural
 - Geotechnical
 - Driving target
- The Bridge Design Manual has structural simplifications for typical design cases.
 - Integral abutments
 - Pile bents
 - Lateral loads
 - Scour below pier foundations

Iowa Department of Transportation Office of Bridges & Structures

Overview - 2

- ISU research focused on geotechnical and driving target aspects of design.
 - Database of Iowa DOT pile tests
 - Field testing
 - Statistical calibration
 - Design guidelines
 - Contract length related to construction control and soil classification
 - Driving target related to construction control and soil classification

Overview - 5

- Anomalies in new policy are being resolved.
- Special provision may be required (to explain larger driving targets).
- Standards may require modification until they are revised.
- Office/consultant policies are changing check with the office for specific projects.

Implementation - 1 In-house design for new bridges to be let after 1 October 2012

- Consultant and county training on 30 & 31 October 2012
- Future dates...next slide...

Implementation - 2

- Updated Bridge Design Manual and Revised Vol. IV Examples in January 2013
- Release of updated H-, J-, and RSstandards in April 2013
- Consultant design for new bridges to be let in July 2013
- Proposed sunset of Iowa DOT ENR Formulas in 2017

Acknowledgements

- 1) Iowa Highway Research Board
- 2) Research and Technology Bureau
- 3) Technical Advisory Committee: Ken Dunker; Gary Novey; Ahmad Abu-Hawash; Michael Nop; Dean Bierwagen; Bob Stanley; Steve Megivern; Kyle Frame; Curtis Monk; John Rasmussen; and Lyle Brehm
- 4) Several Contractors
- 5) GSI and Team Services
- 6) Kyle Frame, Ken Dunker, Michael Nop and Ahmad Abu-Hawash from Iowa DOT

Iowa Department of Transportation Office of Bridges & Structures

- 1) Scope and research objectives
- 2) National and local survey
- 3) PILOT database
- 4) Full-scale field testing of piles
- 5) Pile setup quantification

Research Scope

- 1) Perform literature review
- 2) Conduct national and local surveys
- 3) Develop a user-friendly electronic PIle LOad Test (PILOT) database
- 4) Conduct 10 full-scale field tests
- 5) Data collection and analysis
- 6) Calibrate LRFD resistance factors
- 7) Recommend LRFD pile design and construction procedures

Iowa Department of Transportation Office of Bridges & Structures

Research Objective-1

- 1) Examine the current pile design and construction procedures in Iowa
- 2) Recommend changes and improvements that are consistent with available pile load test data and LRFD bridge design practice
- 3) Install and load test piles in the field
- 4) Collect complete data
- 5) Improve design of piles in accordance with LRFD

Iowa Department of Transportation Office of Bridges & Structures

Research Objective-2

- 6) Develop regionally-calibrated LRFD resistance factors for bridge pile foundations in Iowa
- 7) Disseminate research outcomes

Research Reports

- Volume I PILOT Database
- Volume II Field Testing of Piles
- Volume III LRFD Calibration
- Volume IV Design Guide and Examples

of Transportation Office of Bridges & Structures		Local Surv
UM DENE DENE Sere Sere Sere Sere Sere Sere Sere Ser	Windage Work Michael Proved Streamer (1996)	
Rr (b-k2) r (b-k2) Rymuth Oraclese Matrix 10 Rymuth Oraclese Respective Rymuth Oraclese Respective	9(10-4) Page Carry (32.1.77) Page Carry (32.1.77) Carry (33.1.77) Carry (33.1.	
Vertical AL ST-000-PR No Sec Vig.00 10-00 Ubrow Center Cent	10000000000000000000000000000000000000	
war yn Ann gra	HI GAZ Sease Real Difference Bina Alfreder Data Difference Bina Alfreder	
2012 LLAS 10, 47 10-02 LLAS 10, 47 10-02 10-02, 97 12-03 12-03 10-02 10-02, 97 12-03 10-02 10-02, 97 10-02 10-02, 97 10-02 10-02, 97 10-02 10-02, 97 10-02 10-02, 10-02 10-02, 10-02, 10-02, 10-02 10-02, 1	Marce Marce COTA 21, 10,000 Marce COTA 21, 10,000 Marce COTA 21, 10,000 COTA 21, 10,000 <thcota 21,<br="">10,000 COTA 21, 10,000 <thcota 21,<br="">10,000 COTA 21, 10,000<td>1945 - 55 754 All All All All All All All All All All</td></thcota></thcota>	1945 - 55 754 All All All All All All All All All All
Among and a set	Anno Anno <th< td=""><td>WG = Wisconsin Gladial Soil Formation LG = Loamy Gladial Soil Formation</td></th<>	WG = Wisconsin Gladial Soil Formation LG = Loamy Gladial Soil Formation
Each country that provided a complete survey in 17 juical soil formation sizes Map Key) 21 A verage depth to bedrock 31 Most frequently used all to totals!	response contains the following information (if available):	PCPs Precast Concrete Piles PCPs Precast Concrete Piles PSCPs Precast/Prestressed Concrete Piles

Iowa Department of Transportation Office of Bridge & Structures				Dat	a Co	olle	ectio	on-P	ILC	Т	
	ibase fi	or Plle	L'Dad T	ests in Iowa	(PILOT) Research	arch and hology I to Force of	Bureau	BRIDGE		versit'
ID +	County •	Township .	Lab Number +	Project Number •	Design Num •	Contractor •	Pile Type	Design Load	Date Driven	Date Tested •	Test Site So
1	Black Hawk	Orange	AXP3-7	IY-520-6(8)3P-07	1983	Lunda Construx	HP 10 X 42	32	12/9/1983	12/20/1983	Mixed
2	Johnson	Clear Creek	AXP3-9	1-380-6(44)24301-52		A. M. Cohron &	HP 10 X 42	34	6/15/1973	6/20/1973	
3	Fremont		AXP3-10	FN-184-1(3)21-36	173	A. M. Cohron &	HP 10 X 42	37	7/24/1973	7/26/1973	Mixed
4	Jones		AXP3-14	FM-38-3(7)21-53	170	Grimshaw Con:	HP 10 X 42	37	8/21/1973	8/23/1973	Mixed
5	Jasper	Malaka	AXP4-2	BROS-9050(2)8J-50	383	Herberger Con	HP 10 X 42	31	5/23/1984	5/30/1984	Clay
6	Decatur	Center	AXP4-3	BRF-2-5(10)38-27	1082	Godberson - Sr	HP 10 X 42	35	6/18/1984	6/21/1984	Clay
7	Cherokee	Afton	AXP4-6	BRF-3-2(20)38-18	683	Christensen Br	HP 10 X 42	35	11/21/1984	11/27/1984	Mixed
8	Linn	Rapids	AXP4-22	1-1G-380-6(57)25904-57	1672	Schmidt Constr	HP 10 X 42	37	8/7/1974	8/15/1974	Mixed
9	Linn	Rapids	AXP4-23	1-1G-380-6(57)25904-57	1672	Schmidt Constr	HP 10 X 42	37	11/14/1974	11/19/1974	Mixed
10	Ida	Garfield	AXP5-1	BRF-175-3(15)38-47	383	Christensen Br	HP 10 X 42	36	6/18/1985	6/20/1985	Mixed
11	Hamilton	Liberty	AXP5-2	DP-F-520-4(9)39-40	1670	Christensen Br	HP 10 X 42	37	4/17/1975	4/22/1975	Clay
12	Linn	Clinton	AXP5-3	F-30-7(62)20-57	1781	Schmidt Constr	HP 10 X 42	37	9/13/1985	9/18/1985	Clay
13	Delaware	Richland	AXP6-2	SP-603-0(3)76-28	276	Grimshaw Con-	HP 10 X 42	37	3/11/1976	3/16/1976	Sand
14	Audubon	Hamlin	AXP6-3	FN-44-3(15)21-05	176	Capital Constru	HP 10 X 42	37	5/28/1976	6/3/1976	Mixed
15	Cherokee	Cedar	AXP6-3	BRF-59-7(24)-3818	1183	Christensen Br	HP 10 X 42	36	5/19/1986	5/28/1986	Clay
16	Osceola	Ocheyedon	AXP6-4	SN-720(7)51-72	176	Koolker Inc.	HP 10 X 42	30	6/10/1976	6/15/1976	Mixed
17	Fremont	Benton	AXP6-6	BRF-2-1(21)38-36	184	Godberson - Sr	HP 10 X 42	36	9/20/1986	9/25/1986	Sand
18	Muscatine	Pike	AXP6-7	8RF-22-4(30)38-70	284	United Contrac	HP 10 X 42	37	10/8/1986	10/15/1986	Sand
19	Marion	Clay	AXP6-8	BRF-592-2(12)38-63	373	Grimshaw Con-	HP 10 X 42	37	10/7/1976	10/12/1976	Sand
20	Muscatine	Pike	AXP6-8	BRF-22-4(30)38-70	284	United Contrac	HP 10 X 42	37	10/17/1986	10/22/1985	Sand
21	Harrison	Little Sioux	AXP6-9	1-29-5(8)97	463	Hobe Engineer	HP 10 X 42	32	2/9/1966	2/17/1966	Sand
22	Dallas	Boone	AXP6-15	1-80-3(15)113	1065	Al Munson	HP 10 X 42	55	3/15/1966	3/18/1966	Clay
23	Harrison	Little Sioux	AXP6-16	1-29-5(8)97	363	Jensen Constru	HP 10 X 42	37	3/14/1966	3/22/1966	Sand
24	Harrison	St. John	AXP6-22	1-1G-29-5(7)78	265	Sioux Falls Con	HP 10 X 42	37	7/18/1966	7/27/1966	Sand
25	Harrison	Taylor	AXP6-28	1-1G-29-5(7)7843-9	1065	Capital Constru	HP 10 X 42	37	10/24/1966	10/28/1966	Sand

Confidence	Anticipated Errors for R _t (%)				
Level	Construction Control Method for R _{EOD}				
(%)	CAPWAP	WEAP-Iowa Blue Book			
80	-4% to 2.8%	-12.2% to -1.8%			
00 (Pile Group)	-4.9% to 3.8%	-13.9% to -0.5%			
98 (Single Pile)	-7% to 5.3%	-17.2% to 1.9%			

- 1) LRFD calibration process
- 2) Integration of pile setup into LRFD
- 3) Construction control consideration
- 4) Resistance factors for design and construction

Over of Drives Department Other of Define of Eventsense

- Design Stage (For Contract Length):
 Iowa Blue Book [BDM 6.2.7]
- 2) Construction Stage:
 □ Iowa DOT Modified ENR Formula
 □ WEAP [Iowa Blue Book for Unit Soil Resistance]
 □ PDA/CAPWAP
 □ Static Load Test

Iowa Department of Transportation Office of Bridges & Structures	Cons	struction	n Cont	trol A	nalys
To minimiz from desig			-	ity obtai	ned
Construction Control Method	Soil Profile	Condition	Original φ for Iowa Blue Book	Revised ϕ for Iowa Blue Book	% Gain
	Clay	EOD+setup	0.63	0.63	0%
WEAP	Mixed	EOD	0.60	0.64	7%
	Sand	EOD	0.55	0.55	0%
	Clay	EOD+setup BOR	0.63	0.68 0.80	8% 27%
CADIVAD	NC 1	EOD	0.60	0.80	33%
CAPWAP	Mixed	BOR	0.60	0.71	18%
	G 1	EOD	0.55	0.69	25%
	Sand	BOR	0.55	0.58	6%
	Clay	EOD	0.63	0.63	0%
Iowa DOT	Mixed	EOD	0.60	0.70	17%
ENR Formula	Sand	EOD	0.55	0.55	0%

				Control ication)		Re	sistanc	e Facto	r (q) for	β=2.33
Theo.		iving ia Basis	PDA/	Restrike	Static		Cohesiv	/e	Mixed	Non- cohesive
Analysis	Iowa DOT ENR	WEAP	P WAP FOD LC	Pile Load Test	φ	$\phi_{\rm EOD}$	ϕ_{setup}	φ	φ	
	Yes	-	-	-	-	0.60	-	-	0.60	0.50
Iowa			-	-	-	0.65	-	-	0.65	0.55
Blue Book	No	Yes	Yes	-	-	0.70	-	-	0.70	0.60
BOOK				Yes	- Vec	0.80	-	-	0.70	0.80
			-	-	Yes	0.80	-	-	0.80	0.80

				control		Resistance Factor (φ) for β=2.33					
Theo.		iving ia Basis	PDA/	Restrike	Static		Cohesiv	e	Mixed	Non- cohesiv	
Analysis	Iowa CAP Test after LC	Pile Load Test	φ	ϕ_{EOD}	ϕ_{setup}	φ	φ				
	Yes	-	-	-	-	0.45	-	-	0.45	0.40	
Iowa			-	-	-	0.50	-	-	0.50	0.40	
Blue	No	Yes	Yes	-	-	0.55	-	-	0.55	0.45	
Book	INO	Yes	Yes	res	Yes	-	0.60	-	-	0.55	0.45
			-	-	Yes	0.80	-		0.80	0.80	

				control cation)		Resistance Factor (φ) for β=2.33				
Theo.		iving ia Basis	PDA/	Restrike	Static		Cohesiv	e	Mixed	Non- cohesive
Analysis	Iowa DOT ENR	WEAP	CAP WAP	Test after EOD	Pile Load Test	φ	$\phi_{\rm EOD}$	ϕ_{setup}	φ	φ
	Yes	-	-	-	-	0.55	-	-	0.55	0.50
Iowa	No		-	- Yes	-	- 0.70	0.65	0.20	0.65	0.55
Blue Book		Yes	Yes	- Yes	-	-	0.75	0.40	0.70	0.70
			-	-	Yes	0.80	-	-	0.80	0.80
			-	-	Yes	0.80	-	-	0.80	0.80

- A. Recognize the changes in the Modified Iowa ENR formula from Interim LRFD to LRFD.
- B. Recognize the changes in the WEAP analysis from Interim LRFD to LRFD.
- C. Learn the step by step LRFD procedure of the WEAP analysis

Iowa Department of Transportation Office of Endges & Structures	Iodified Iowa ENR
Interim LRFD	LRFD
For gravity hammer	s with concrete piles
• Bearing value (P) • $P = \frac{4.5WH}{S+0.2} \times \frac{W}{W+M}$ (English) • $P = \frac{3.7WH}{S+5.1} \times \frac{W}{W+M}$ (Metric)	• Nominal bearing resistance (R _n) • R _n = $\frac{18WH}{S+0.2} \times \frac{W}{W+M}$ (English) • R _n = $\frac{14.8WH}{S+5.1} \times \frac{W}{W+M}$ (Metric)
H = height of free	fall in feet (meters)
• • • •	s weight of cap in tons (kg) of the pile per blow for the last 5 blows

Office of Bridges & Structures	WEAP
Interim LRFD	LRFD
 Bearing capacity Bearing graph with safety factor of 2.2 Pile is accepted if the measured driving resistance ≥ the plan design bearing No driveability analysis Use SPT N-value Variable soil parameters 	 Nominal bearing resistance (R_n) Bearing graph in terms of nominal resistance Pile is accepted if the nominal measured driving resistance ≥ the target nominal driving resistance No driveability analysis except SRL-3 Use unit resistance from modified Iowa Design Charts Simple soil parameters

_
 -
 _
 _
_
_

	, 17.			0	
<u>Table 4.17. F</u>		wa pile de	sign chart used in WEA	(Ng et al. 2010) P for friction bearing Grad	
SOIL DESCRIPTION	SPT N	LRFD DRI		SISTANCE VALUES FOR FRICT FOOT (KSF)	
Alluvium or Loss	MEAN	RANGE	HP 10	HP 12	HP 14
Very soft silty clay	1	0 - 1	0.12	0.20	0.17
Soft silty clay	3	2-4	0.24	0.30	0.26
Stiff silty clay	6	4 - 8	0.36	0.40	0.43
Firm alty clay	11	7 - 15	0.60	0.60	0.60
Stiff silt	6	3 - 7	0.36	0.40	0.34
Stiff sandy silt	6	4 - 8	0.36	0.40	0.34
Stiff sandy clay	6	4 - 8	0.36	0.40	0.43
Silty sand	8	3 - 13	0.25	0.21	0.23
Clayey sand	13	6 - 20	0.33	0.34	0.40
Fine sand	15	8 - 22	0.41	0.41	0.40
Coarse sand	20	12 - 28	0.58	0.55	0.52
Gravely sand	21	11 - 31	0.58	0.55	0.52
Granular material	> 40		0.83	0.82	0.80
Glacial Clay	MEAN	RANGE	HP 10	HP 12	HP 14
Firm gitty glacial clay	11	7 - 15	0.72	0.70	0.69
Firm clay (gambotil)	12	9-15	0.72	0.70	0.69
Firm glacial clay ⁽²⁾	11	7 - 15	0.84 [0.96]	0.80 [1.00]	0.77 [0.94]
Firm sandy glacial clay ⁽¹⁾	13	9 - 15	0.84 [0.96]	0.80 [1.00]	0.77 [0.94]
Firm-very firm glacial clay ⁽³⁾	14	11 - 17	0.84 [1.20]	0.80 [1.20]	0.77 [1.20]
Very firm glacial clay ⁽³⁾	24	17 - 30	0.84 [1.20]	0.80 [1.20]	0.77 [1.20]
Very firm sandy glacial clay ⁽³⁾	25	15 - 30	0.84 [1.20]	0.80 [1.20]	0.77 [1.20]
Cohesive or glacial material ⁽¹⁾	> 35		0.84	0.80	0.77

			D Report Volume I		
Table	4.18. Rev			EAP for end bearing Grad ECHNICAL RESISTANCE CHAR	
SOIL DESCRIPTION	28T V VALUE FOR MALE FOR MALE FOR MALE BEADING BE FOR MALE FOR MAL				
DESCRIPTION	MEAN	RANGE	HP 10	HP 12	HP 14
Granular material	< 15				
ine or medium sand	15				
Coarse sand	20		Do not consider end bearing		
Gravely sand	21	-			
	25				
		25 - 50	24.8-49.6	31-62	42.8-85.6
Granular material		50-100	49.6-99.2	62-124	85.6-171.2
		100 - 300	99.2-198.4	124-248	171.2-385.2
		> 300	223.2	279	385.2
Bedrock		100 - 200	148.8	186	256.8
Dedlock		> 200	223.2	279	385.2
	12	10 - 50		Do not consider end bearing	
	20		12.4	15.5	21.4
Cohesive material	25		24.8	31	42.8
	50		49.6	62	\$5.6
	100		86.8	108.5	149.8

of Transporta Office of Bridges & Str	nent ition actures		S	oil Paramete
	LRFD Repor	t Volume II (N	ig et al. 20	10)
	Table 4.19. WEAP recomme Soil Typ (Pile Typ		lues (Pile Dyna Shaft Quake (in)	mics, Inc., 2005) Toe Quake (in)
	All soil types, soft rock (No		0.10	0.10
	Very dense or h (Displacement piles of dia		0.10	D 120
	Loose or sof (Displacement piles of dis		0.10	D/60
_RFD →	Hard rock (All p		0.10	0.04
Tab	ele 4.20. WEAP recommende Iowa Blue	d Smith's damping Book (Pile Dynami		ST, SA, Driven and
Tab				ping
Tab	Iowa Blue	Book (Pile Dynamic Smith's Shaft	s, Inc., 2005) Smith's Toe Dan	ping
Tab	Iowa Blue Soil Types	Book (Pile Dynamic Smith's Shaft Damping Factor (s'ft)	cs, Inc., 2005) Smith's Toe Dan Factor (s'ft)	ping
Tab	Iowa Blue Soil Types Non-cohenive soils Cohenive soils	Book (Pile Dynamie Smith's Shaft Damping Factor (s'ft) 0.05	cs, Inc., 2005) Smith's Tee Dan Factor (s/ft) 0.15 0.15	ping
	Iowa Blue Soil Types Non-cohenive soils Cohenive soils	Book (Pile Dynamic Smith's Shaft Damping Factor (vft) 0.05 0.20	rs, Inc., 2005) Smith's Tee Dan Factor (v/ft) 0.15 0.15 he Iowa DOT 1 Shaft Dam	ping nethod
	Iowa Blue Soll Types Non-coherive soils Coherive soils Table 4.21. Dampi	Book (Pile Dynamic Smith's Shaft Damping Factor (vft) 0.05 0.20	rs, Inc., 2005) Smith's Toe Dan Factor (vft) 0.15 0.15 he Iowa DOT 1	ping nethod
	Iowa Blue Soll Types Non-coherive soils Coherive soils Table 4.21. Dampi Soil Types	Book (Pile Dynami Smith's Shaft Damping Tactor (vft) 0.05 0.20 ng factors used in th	tes, Inc., 2005) Smith's Tee Dam Factor (vft) 0.15 0.15 he Iowa DOT 1 Shaft Dam Factor (v	pingnterms
nterim	Iowa Blue Seil Type Non-coherre sols Coherere sols Table 4.21. Dampi Seil Types Rock Bouler & Carvier or G Medun Saud er Tr	Book (Pile Dynamic Smith's Shaft Damping Factor (cft) 0.05 0.20 ng factors used in th ravel Sand	ts, Inc., 2005) Smith's Tee Dan Factor (vB) 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.05	ping ing Ter Damping 0 7 Farter (10) 0 0.05 0.10
nterim	Iowa Bine Suil Type Not-coharre soils Coharve soils Table 4.21. Dampi Suil Types Rock Bouler & Gravit of D Medun Suid of Fit	Book (Pile Dynamic Smith's Shaft Damping Factor (cft) 0.05 0.20 ng factors used in th ravel Sand	te Iova DOT 1 Simith Teo Dan Factor (vft) 0.15 0.15 ht Iova DOT 1 Shaft Dam Factor (vft) 0.05 0.10 0.10	ping
nterim	Iowa Bine Saii Type Non-cohurve soits Cohurve soits Table 4,21. Dampi Saii Types Rock Boulor: & Gorest of O Medum Said or Fit Packet Said Stit	Book (Pile Dy namin Smith's Mart Damping Factor (uft) 0.05 0.20 ng factors used in th ravel Sand as Sand	s, Inc., 2005) Smith's Teo Dam Factor (vf) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.05 0.10 0.10 0.10 0.15	Tere Damping 00 Tere Damping 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.12
Interim LRFD →	Iowa Bine Suil Type Not-coharre soils Coharve soils Table 4.21. Dampi Suil Types Rock Bouler & Gravit of D Medun Suid of Fit	Book (Pile Dy namin Smith's Mart Damping Factor (uft) 0.05 0.20 ng factors used in th ravel Sand as Sand	te Iova DOT 1 Simith Teo Dan Factor (vft) 0.15 0.15 ht Iova DOT 1 Shaft Dam Factor (vft) 0.05 0.10 0.10	ping

Seven Department Office office A wave

- 1) New LRFD procedure for bridge foundations consisting of driven piles in Iowa
- 2) Three track examples cover various pile types, soil profiles and special design considerations
- Geotechnical design of pile foundations using Iowa Blue Book
- 4) Establish pile driving criteria using WEAP, Iowa ENR formula and PDA/CAPWAP

Design S	ten
Step 1	Develop bridge situation plan (or TS&L, Type, Size, and Location) ⁽¹⁾
Step 2	Develop soils package, including soil borings and foundation recommendations ⁽¹⁾
Step 3	Determine pile arrangement, pile loads, and other design requirements (1)
Step 4	Estimate the nominal geotechnical resistance per foot of pile embedment (2)
Step 5	Select resistance factor(s) to estimate pile length based on the soil profile and construction control ⁽²⁾
Step 6	Calculate the required nominal pile resistance, R _n ⁽²⁾
Step 7	Estimate contract pile length, L (2)
Step 8	Estimate target nominal pile driving resistance, Rndr.T (2)
Step 9	Prepare CADD note for bridge plans
Step 10	Check the design (3)
Construc	tion Step
Step 11	Prepare bearing graph
Step 12	Observe construction, record driven resistance, and resolve any
oup 12	construction issues

						Construction Controls				
Track Number	Pile Type	Example Number	Substructure Type	Soil Type	Special Consider- ations	Driving Criteria Basis	Planned Retap 3 Days after EOD			
		1	Integral Abutment	Cohesive						
		2	Pier	Mixed	Scour					
	H-Pile	3	Integral Abutment	Cohesive	Downdrag	Wave Equation				
		4	Pier	Non-Cohesive	Uplift					
1		5	Integral Abutment	Cohesive	End Bearing in Bedrock					
	Pipe Pile	6	Pile Bent	Non-Cohesive	Scour					
	Prestressed Concrete Pile	7	Pile Bent	Non-Cohesive	Scour		No			
2	H-Pile	1	Integral Abutment	Cohesive		Modified Iowa				
2	Timber	2	Integral Abutment	Non-Cohesive		DOT Formula				
3	H-Pile	1	Integral Abutment	Cohesive		PDA/ CAPWAP and Wave Equation				
		2	Integral Abutment	Cohesive		Wave Equation	Yes			

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design with Modified Iowa DOT Formula construction control.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .

Soil Soil Stratum Description		Value		Estimated Nominal Resistance for Friction Pile	Cumulative Nominal Friction Resistance at Bottom of Layer	Estimated Nominal Resistance for End Bearing
	Soft to Stiff	(ft)	(blows/ft)	(kips/ft)	(kips)	(kips)
1	Silty Clay	5	4	1.4	7.0	
2	Fine Sand	20	16	2.4	55.0	
2	Medium Sand	40	20	2.8	167.0	32

	Resistance Factor (b)									
F	Co	hesive		Mixed	Non- Cohesive					
	ф	ϕ_{eod}	ϕ_{setup}	φ						
N (4	0.60	-	-	0.60	0.50					
(b (c (c	0.65	-	-	0.65	0.55					
		1	1		into:					

EXAMPLE 1 Step 6. Required Nominal Resistance States of the required nominal pile resistance is: $R_{n} = \frac{\sum \eta \gamma Q + \gamma_{DD} DD}{\varphi} = \frac{54 + 0}{0.50} = 108 \text{ kips/pile}$ where: $\sum \eta \gamma Q = \gamma Q = 54 \text{ kips} \text{ (Step 3)}$ $\gamma_{DD} DD = 0 \qquad (\text{no downdrag})$ $\varphi = 0.50 \qquad (\text{Step 5})$

$\begin{array}{|c|c|c|c|c|c|} \hline \textbf{bva Department} & \textbf{Step 7. Estimate Contract Pile Length} \\ \hline D_0 = 0 \ ft, R_{n-580} = 0 \\ D_1 = 5 \ ft, R_{n-581} = R_{n-580} + (1.4 \ \text{klf})(5') = 7.0 \ \text{kips} \\ D_2 = 5 + 20 = 25 \ ft, R_{n-582} = R_{n-581} + (2.4 \ \text{klf})(20') \\ = 7.0 + 48.0 = 55.0 \ \text{kips} \\ \hline \textbf{End bearing in Layer 3} = 32.0 \ \text{kips}, \\ R_{n-583} = R_{n-582} + 32.0 = 87.0 \ \text{kips} \\ \hline \textbf{Required additional length in Layer 3} = (108.0 - 87.0)/2.8 = 7.5', \ \text{say 8'} \\ \end{array}$

 $D_4 = 25 + 8 = 33$ feet, $R_{n,BB4} = R_{n,BB3} + (2.8 \text{ kips/ft}) (8 \text{ ft}) = 87.0 + 22.4 = 109.4 \text{ kips} > 108 \text{ kips}$ L = 33 + 2 + 1 = 36 feet Round pile length to nearest 5' increment, $\therefore L=35'$ [BDM 6.2.4.1]

Step 7. Estimate Pile Length

OK

Check resistance factor: % non-cohesive soil = [(32-5)/32] (100) = 84% > 70%

Structural service load limit = 20 tons for timber pile, and a driving limit = 40 tons [IDOT SS 2501.03, O, 2, c]

		\bigcirc		
	Minimum Edergy Requ			
Pile Length	Wood Pile	Concrete Pile		
(ft.)		12" to 14"		
	(Maximum Energy Al		
Pile Length	Wood Pile	Concrete Pile		
(ft.)		12" to 14"		
25' or less	24	32		
26' to 40'	$\rightarrow 24$	32		
41' to 50' 51' to 65'	33 (a)	32 (a)		
2000 1175				

Step 12. Construction Observation

Observe construction, record driven resistance and resolve any construction issues

• Record hammer stroke and number of blows

$$R_{ndr} = \left(\frac{12E}{S+0.1}\right) \left(\frac{W}{W+M}\right)$$

where:

- R_{ndr} = nominal pile driving resistance, in tons
- W = weight of ram, in tons (include consideration for hammer efficiency) M = weight of pile, drive cap (helmet, cushion, striker plate and pile
- inserts if used), drive anvil and follower (if applicable), in tons
- E = W x H = energy per blow, in foot-tons
- H = Hammer stroke, in feet
- S = average pile penetration, in inches per blow, for the last 10 blows 12 = conversion factor for feet to inches

Iowa Department of Transportation Office of Bridges & Structures

Track 2, Example 2

Wrap-up

- Blue Book unit nominal resistance
- Resistance factor = f (Limit State, soil category, & construction control)
- Contract pile length, L = 35 feet
- Construction Control: Modified Iowa DOT Formula
- Resistance factor at EOD = 0.35
- Target driving resistance = 77 tons at EOD

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design with Modified Iowa DOT/ENR Formula construction control.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .
- D. Determine the pile setup factor for cohesive soil.

	for a Department of Transportation Of the Mediage Assumers Track 1
WI	iere are we going?
Desi	an Step
1	Preliminary Design Engineer: Develop bridge situation plan (or TS&L, Type, Size, and Location) (1)
2	Soils Design Engineer: Develop soils package, including borings & foundation recommendations (1)
	Final Design Engineer: Determine pile arrangement, pile loads, and other design requirements (1)
4	Estimate nominal geotechnical resistance per foot of pile embedment
5	Select resistance factor & estimate pile length, based on soil profile & construction control
6	Calculate required nominal pile resistance, Rn
7	Estimate contract pile length, L
8	Estimate target nominal pile driving resistance, Rndr-T
9	Prepare CADD note for bridge plans
10	Check design (2)
Cons	struction Step
11	Prepare bearing graph
12	Observe construction, record driven resistance, and resolve any construction issues
Note	S: (1) These steps determine the basic information for geotechnical pile design and will vary depending on bridge project and office practice.
	(2) Checking will vary depending on bridge project and office practice.

Soils Design Engineer
Develop foundation recommendations• Friction pile: tip out in firm glacial clay
• Normal driving resistance• Structural Resistance Level-1, SRL-1 (driving
analysis not required by Office of Construction
during design) [BDM 6.2.6.1]

• No special site considerations for stability, settlement, or lateral movement

🗇 of Tran	Step 4 Nominal Pile Resistance								
Soil Stratum	Soi	Description	Stratum Thickness (ft)	Average SPT N Value (blows/ft)	Estimated Unit Nominal Resistance for Friction Pile (kips/ft)				
1	So	ft Silty Clay	6	4	0.8				
2	5	Silty Sand	9	6	1.2				
ЗA	Firm	within 30 feet of natural ground Firm elevation		11	2.8				
3В	Glacial Clay	more than 30 feet below natural ground elevation	65	12	3.2				

	Construct			ld verifica	5	II AMAI C	<u> </u>	· · · ·	actor (b)	Length)
l Analysis	Driving C Basi	riteria		Retap Test	Static	Co	hesive		Mixed	Non- Cohesive
0	lowa DOT ENR Formula	WEAP	PDA/CAPWAP	3-Days After EOD	Load Test	ф	φ_{eod}	φ_{setup}	ф	ф
	Yes	-	-	-	-	0.60	-	-	0.60	0.50
lowa			-	-	-	0.65	-	-	0.65	0.55
Blue		Vaa (d)	Yes	-	-	0.70 ^(e)	-	-	0.70	0.60
Book	-	Yes (d)	res	Yes	-	0.80	-	-	0.70	0.60
			-	-	Yes	0.80	-	-	0.80	0.80

	Step 5. Resistance Factor								
Re	tesistance Factors for DESIGN of Single Pile in Axial Compression (Contract Leng Resistance Factor ^(b)								
	Co	hesive	2	Mixed	Non- Cohesive				
	φ	φ_{eod}	Φ_{setup}	φ	ф				
	0.60	-	-	0.60	0.50				
	0.65	-	-	0.65	0.55				
				0 70	0.60				

Step 5 Resistance Factor Select resistance factor to estimate pile length $\varphi = 0.65$ for cohesive soil * $\varphi = 0.65$ for mixed soil * $\varphi = 0.55$ for non-cohesive soil * * average over full depth of estimated pile penetration > 70% of pile embedment in cohesive soil $\therefore \varphi = 0.65$

Iowa Depart of Transport Office of Bridges & St	tment tation Renetures	Step 5	Re	sistance Factor
Generalized Soil Category	AASHTO	Soil C USDA Textural	Classificati	ion Method BDM 6.2.7 Geotechnical Resistance Chart
Cohesive	A-4, A-5, A-6 and A-7	Clay Sitty clay Sitty clay loam Sit Clay loam Sitt loam Loam Sandy clay	Glacial Clay Loess	Very soft silty clay Soft silty clay Firm silty clay Sift silty clay Sift silt clay Firm silty class clay Firm silty classical clay Firm silty classical clay Firm sandy classical clay Firm sandy classical clay Very firm sandy classical clay Very firm sandy classical clay Cohesive or glacial material
Non-Cohesive	A-1, A-2 and A- 3	Sandy clay Ioam Sandy Ioam Loamy sand Sand	Alluvium Or Loess	Stiff sandy silt Silty sand Clayey sand Fine sand Coarse sand Gravely sand Granular material (N>40)

Step 6 Required Nominal Resistance

The required nominal pile resistance is:

$$\begin{split} \mathsf{R}_{\mathsf{n}} = & \frac{\sum \eta \gamma \mathsf{Q} + \gamma_{\mathsf{DD}} \mathsf{DD}}{\phi} = \frac{128 + 0}{0.65} = 197 \text{ kips/pile} \\ \text{where:} \quad & \sum \eta \gamma \mathsf{Q} = \gamma \mathsf{Q} = 128 \text{kips} \text{ (Step3)} \\ & \gamma_{\mathsf{DD}} \mathsf{DD} = 0 \qquad (\text{no downdrag}) \\ & \phi = 0.65 \qquad (\text{Step 5}) \end{split}$$

Step 7 Estimate pile length

$$\begin{split} \underline{\text{Estimate contract pile length, L}} \\ D_0 &= 0 \text{ ft, } R_{n-BB0} = 0 \\ D_1 &= 6 \text{ ft, } R_{n-BB1} = R_{n-BB0} + (0.8 \text{ klf})(6') = 4.8 \text{ kips} \\ D_2 &= 6 + 9 = 15 \text{ ft, } R_{n-BB2} = R_{n-BB1} + (1.2 \text{ klf})(9') \\ &= 4.8 + 10.8 = 15.6 \text{ kips} \\ D_3 &= 15 + 8 = 23 \text{ ft, } R_{n-BB3} = R_{n-BB2} + (2.8 \text{ klf})(8') \\ &= 15.6 + 22.4 = 38.0 \text{ kips} \\ D_4 &= 23 + 65 = 88 \text{ ft, } R_{n-BB4} = R_{n-BB3} + (3.2 \text{ klf})(65') \\ &= 38.0 + 208.0 = 246.0 \text{ kips} \end{split}$$

Iowa Department of Transportation Office of Bridges & Structures	Step	8. Target N	ominal Drivi	ing Resistance
 Res		ors for CONSTR sistance f	actor ^(b)	OL
C	Cohesiv	e	Mixed	Non- Cohesive
φ	φ _{eod}	Φ_{setup}	φ	φ
0.55 ^(f)	-	-	0.55 ^(f)	0.50 ^(f)
-	0.65	0.20	0.65	0.55
0.70	-	-	0.65	0.55
_	0.75	0.40		

Inva Department of Transportations Step 8 Target nominal driving resistance

Estimate target nominal pile driving resistance, R_{ndr-T}

 $\varphi_{\text{EOD}} = 0.65$ for cohesive soil * $\varphi_{\text{SETUP}} = 0.20$ for cohesive soil *

 $\varphi = 0.65$ for mixed soil *

 $\varphi = 0.55$ for non-cohesive soil *

* average over full depth of estimated pile penetration

Determine R_n at end of drive by scaling-back setup gain, and then adjust retaps to account for setup.

 $\Sigma \eta \gamma Q + g_{DD}DD \le \varphi R_n$ where $\eta = 1.0 = \text{load modifier [BDM 6.2.3.1]}$

Inva Department of Transportations Step 8 Target nominal driving resistance

```
\begin{split} \text{Let } \textbf{R}_{n} &= \textbf{R}_{T} = \text{ nominal pile resistance at time } \textbf{T} \text{ (days) after EOD.} \\ \textbf{R}_{\text{EOD}} &\geq \frac{\sum \eta \gamma \textbf{Q} + \gamma_{\text{DD}} \textbf{DD}}{\phi_{\text{EOD}} + \phi_{\text{SETUP}} \left( \textbf{F}_{\text{SETUP}} - 1 \right)} \\ \text{where: } \sum \eta \gamma \textbf{Q} &= \gamma \textbf{Q} = 128 \text{ kips, (Step 3)} \\ \gamma_{\text{DD}} \textbf{DD} &= 0 \text{ (no downdrag)} \\ \textbf{F}_{\text{SETUP}} &= \text{ Setup Ratio } = \textbf{R}_{T} / \textbf{R}_{\text{EOD}} \end{split}
```


Every Department Step 8 Target nominal driving resistance We delete A tension. Every delete A tension. Read-T = Read $\begin{aligned} & \sum_{ndr-T} = R_{EOD} \\ & \leq \frac{\sum_{n'} \gamma (2 + \gamma_{DD} DD)}{\varphi_{TAR}} \\ & = \frac{\sum_{n'} \gamma (2 + \gamma_{DD} DD)}{\varphi_{COD} + \varphi_{SETUP} (F_{SETUP} - 1)} \\ & = \frac{128 + 0}{(0.65) + (0.2)(1.61 - 1)} = \frac{128}{0.77} \\ & = 166 \text{ kips/pile = 83 tons/pile} \end{aligned}$

Was Department of Transportation Step 8 Target nominal driving resistance

Retap target nominal driving resistance:

 $R_{ndr-T (retap)} = minimum [R_{EOD} \times F_{setup} \text{ or } R_n (IBB)]$

 $\begin{array}{l} R_{ndr.T~(1\text{-}day)} = smaller \ of \ [166 \times 1.48 = 246 \ kips \ or \ 197 \ kips] = 99 \ tons \\ R_{ndr.T~(3\text{-}day)} = smaller \ of \ [166 \times 1.55 = 257 \ kips \ or \ 197 \ kips] = 99 \ tons \\ R_{ndr.T~(7\text{-}day)} = smaller \ of \ [166 \times 1.61 = 267 \ kips \ or \ 197 \ kips] = 99 \ tons \end{array}$

Thus, target nominal driving resistance = 99 tons/pile after EOD

Step 12 Construction observation

Observe construction, record driven resistance and resolve any construction issues

- Record hammer stroke and number of blows
- Use the LRFD driving graph to determine driven resistance at EOD
- If resistance at EOD is less than the target, retap pile 24 hours after EOD

Track 1, Example 1

Wrap-up

- Blue Book unit nominal resistance
- Resistance factor = f (Limit State, soil category, & construction control)
- Contract pile length, L = 75 feet
- Construction Control: WEAP analysis
- Resistance factor at EOD = 0.77
- Target driving resistance = 83 tons at EOD
- Pile retap = 99 tons at any retap after EOD

- A. Recognize the different design and construction control procedures of Track 1 and Track 2.
- B. Compare the different outcomes from Track 1 and Track 2
- C. Recognize the advantages of using WEAP as a construction control method

Example 1

Integral Abutment H-Pile & Cohesive Soil with Setup Construction Controls: WEAP versus Modified Iowa ENR

Iowa Department of Transportation Office of Bridges & Structures

Step 1 - Situation Plan

- 120 ft, single-span, prestressed concrete beam superstructure
- Zero skew
- Integral abutments
- Pile foundations, no prebored holes (because the bridge length is less than 130 ft) (BDM 6.5.1.1.1)
- Bottom of abutment footing elevation 433 ft

• No need for lateral load or special analysis

	Step 4 Nominal Pile Resistance					
s	Soil stratum	Soil Description		Stratum Thickness (ft)	Average SPT N Value (blows/ft)	Estimated Unit Nominal Resistance for Friction Pile (kips/ft)
	1	Soft Silty Clay		6	4	0.8
	2	Silty Sand		9	6	1.2
	ЗA	Firm	within 30 feet of natural ground elevation	8	11	2.8
	3B	Glacial Clay	more than 30 feet below natural ground elevation	65	12	3.2

of Transportation Office of Bridges & Structures	Step 9 CADD Notes	
Design Notes		
Track 1: WEAP	Track 2: ENR	
THE CONTRACT LENGTH OF 75 FEET FOR THE WEST ABUTMENT PILES IS BASED ON A COHESIVE SOIL CLASSIFICATION, A TOTAL FACTORED AXIAL LOAD PER PILE (P ₀) OF 128 KIPS, AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.65 . THE NOMINAL AXIAL BEARING RESISTANCE FOR CONSTRUCTION CONTROL. WAS DETERMINED FROM A COHESIVE SOIL CLASSIFICATION AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.77 .	THE CONTRACT LENGTH OF 80 FEET FOR THE WEST ABUTMENT PILES IS BASED ON A COHESIVE SOIL CLASSIFICATION, A TOTAL FACTORED AXIAL LOAD PER PILE (ρ_0) OF 128 KIPS, AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.60 . THE NOMINAL AXIAL BEARING RESISTANCE FOR CONSTRUCTION CONTROL WAS DETERMINED FROM A COHESIVE SOIL CLASSIFICATION AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.55 .	

Constant of a constant of	Step 9 CADD Notes
Driving Notes	
Track 1: WEAP	Track 2: ENR
THE REQUIRED NOMINAL AXIAL	THE REQUIRED NOMINAL AXIAL
BEARING RESISTANCE FOR WEST	BEARING RESISTANCE FOR WEST
ABUTMENT PILES IS 166 KIPS AT END	ABUTMENT PILES IS 233 KIPS AT END
OF DRIVE (EOD). IF RETAPS ARE	OF DRIVE (EOD). IF RETAPS ARE
NECESSARY TO ACHIEVE BEARING,	NECESSARY TO ACHIEVE BEARING,
THE REQUIRED NOMINAL AXIAL	THE REQUIRED NOMINAL AXIAL
BEARING RESISTANCE IS 197 KIPS.	BEARING RESISTANCE IS 233 KIPS.
THE PILE CONTRACT LENGTH SHALL	THE PILE CONTRACT LENGTH SHALL
BE DRIVEN AS PER PLAN UNLESS	BE DRIVEN AS PER PLAN UNLESS
PILES REACH REFUSAL.	PILES REACH REFUSAL.
REQUIRES A WEAP ANALYSIS AND	REQUIRES A MODIFIED IOWA DOT
BEARING GRAPH.	FORMULA.

BEGIN CONSTRUCTION PHASE		
Track 1: WEAP	Track 2: ENR	
 Perform WEAP analysis Prepare bearing graph Observe construction Record hammer blow counts Determine driving resistance from bearing graph 	 Check minimum energy requirement Observe construction Record hammer blow counts Determine driving resistance from modified Iowa ENR formula 	

	ep 12 Observe Construction
Track 1: WEAP	Track 2: ENR
At the EOD, hammer str	oke = 7.5 ft and driving resistance =
30 blo	ws/ft are recorded.
 Based on the bearing graph, R_{ndr} = 88 tons = 176 kips, which is larger than R_{ndr-T} = 166 kips. Hence, the pile performance is accepted. 	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Iowa Department of Transportation Office of Bridge & Streethers	ep 12 Observe Construction
· · · ·	Track 2: ENR ammer stroke = 8.5 ft and driving 40 blows/ft are recorded.
 Based on the bearing graph, R_{ndr} = 114 tons = 228 kips, which is higher than R_{ndr-T} = 197 kips. Again, the pile performance is accepted. 	• Using the modified ENR formula: $R_{ndr} = \frac{12E}{s + 0.1} \times \frac{W}{W + M}$ $W = 2.007 \text{ tons} \times 0.80 = 1.606 \text{ tons}$ $M = 2.28+0.375+0.6 = 3.26 \text{ tons}$ $E = WH = 13.65 \text{ ft-tons}$ $s = 12 \text{ in}40 \text{ blows} = 0.30 \text{ in}b\text{low}$ $R_{ndr} = \frac{12 \times 13.65}{0.30 + 0.1} \times \frac{1.606}{1.606 + 3.26} \times 2$ $R_{ndr} = 270 \text{ kips} \ge R_{ndr-T} = 233 \text{ kips}.$ Hence, the pile performance is now accepted.

Office of Bridges & Structures	Example 1
Summary of comparison	
Track 1: WEAP	Track 2: ENR
 9 HP 10×57 steel piles Total contract length = 675 ft R_n/pile = 197 kips R_{ndr-T} (EOD) = 166 kips R_{ndr-T} (Retap) = 197 kips Pile performance is likely to be accepted at EOD Lower chances of pile retaps 	 9 HP 10×57 steel piles Total contract length = 720 ft R_n/pile = 213 kips R_{ndr-T} (EOD) = 233 kips R_{ndr-T} (Retap) = 233 kips Relatively, pile performance is less likely to be accepted at EOD Higher chances of pile retaps

- A. Recognize the different design and construction control procedures of Track 1 and Track 2.
- B. Compare the different outcomes from Track 1 and Track 2
- C. Recognize the advantages of using WEAP as a construction control method

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .
- D. Describe what is required for planned retaps.

res of	wa Department Transportation ice of Bridges & Structures	Step	04 Nor	ninal P	ile Resis	stance
Soil Stratum	Soil Description	Stratum Thickness	Average SPT N Value	Estimated Nominal Resistance for Friction Pile	Cumulative Nominal Friction Resistance at Bottom of Layer	Estimated Nominal Resistance for End Bearing
		(ft)	(blows/ft)	(kips/ft)	(kips)	(ksi)
1	Topsoil	3 (prebore)				
2A	Firm glacial clay	7 (prebore)				
2В	Firm glacial clay	20 (below prebore)	11	2.8	56	
2	Very firm glacial clay	50	25	4.0	256	2.0

	Construct				5	n Axial C	-		Factor ^(b)	Lengen)
Analysis ⁽	Driving C Bas	Criteria		Retap Test	Static	Co	hesive		Mixed	Non- Cohesive
Theoretical Analysis ^(c)	lowa DOT ENR Formula	WEAP	PDA/CAPWAP	3-Days After EOD	Pile Load Test	φ	φ_{EOD}	φ_{setup}	φ	ф
	Yes	-	0.60			0.60	0.50			
lowa			-	-	-	0.65	-	-	0.65	0.55
Blue		Yes (d)	Yes	-	-	0.70 ^(e)	-	-	0.70	0.60
Book	-	res ···/	res	Yes	-	0.80	-	-	0.70	0.60
			-	-	Yes	0.80	-	-	0.80	0.80

🕸 of Ti	a Department ransportation (Bridge & Structures		Step	5. Resis	stance Fa	ctor
Resistance	e Factors for DI	SIGN of S	Single Pile i	n Axial Compr	ression (Contract	Length)
		Resi	stance l	Factor ^(b)		
	Co	hesive	2	Mixed	Non- Cohesive	
	φ	φ_{EOD}	ϕ_{setup}	φ	ф	
	0.60	-	-	0.60	0.50	
	0.65	-	-	0.65	0.55	
				0.70	0.00	

 $\underbrace{\text{Deperturbed Department}}_{\text{Deperturbed Nominal Resistance is:}} Step 6 Required Nominal Resistance is:$ $R_n = \frac{\sum \eta \gamma Q + \gamma_{DD} DD}{\varphi} = \frac{128.6 + 0}{0.65} = 197.8 \text{ kips/pile}$ where: $\sum \eta \gamma Q = \gamma Q = 128.6 \text{ kips (Step3)}$ $\gamma_{DD} DD = 0 \qquad (no \ downdrag)$ $\varphi = 0.65 \qquad (Step 5)$

	Re	sistance I	actor ^(b)	
0	Cohesive	e	Mixed	Non- Cohesive
φ	ϕ_{eod}	ф _{setup}	φ	φ
0.55 ^(f)	-	-	0.55 ^(f)	0.50 ^(f)
	0.65	0.20	0.65	0.55
0.70	-	-	0.05	0.55
<u> </u>	0.75	0.40	0.70	0.70

Step 8 Target nominal driving resistance

 ϕ = 0.70 for cohesive soil, with retap test 3 days after EOD

Determine the nominal geotechnical bearing resistance per pile at 3-day retap.

$$R_n = \frac{128.6}{0.70} = 183.7 \text{ kips}$$

The average SPT N-value over the estimated pile embedment length is needed to use the setup factor chart.

 $N_a = \frac{(20)(11) + (27)(25)}{(20 + 27)} = 19$

We be a Department For a property of the second state of the sec

Step 10 Check the design

• Independent check of the bridge design, when the final plans are complete.

END DESIGN PHASE

Step <u>12</u> Construction observation

Observe construction, record driven resistance and resolve any construction issues

- Record hammer stroke and number of blows
- Use the LRFD driving graph to determine driven resistance at EOD
- If resistance at EOD is less than the target resistance, retap pile at 3 days after EOD to verify its performance

Iowa Department of Transportation Office of Bridges & Structures

Track 3, Example 2

Wrap-up

- Blue Book unit nominal resistance
- Resistance factor = f (Limit State, soil category, & construction control)
- Contract pile length, L = 60 feet
- Construction Control: WEAP analysis with 3-day planned retap
- Resistance factor at 7-days after EOD = 0.70
- Target nominal driving resistance = 59 tons at EOD
- Pile setup factor = 1.52 at 3-days after EOD
- Pile retap = 89 tons at 3-days

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .
- D. Describe how planned retaps are accounted for.

	Steel H	Timber	Prestressed Concrete	Steel Pipe Concrete Fil
Integral Abutment	*	*	Do not use.	Do not use.
Stub Abutment	*			
Frame Pier				
T-pier	*			
Pile Bent	*	* Temp.	*	*

& of Tran	Pepartment Isportation idges & Structures	Structural: Steel H
	P _n	SRL-1, SRL-2, & SRL-3, BDM
Т	P _{n integral}	\leq SLR-2, BDM
	V _n	18 kips plus battered pile component, BDM
	φ	AASHTO
	Strength Lin	nit State

Iowa Dep of Transp Office of Bridge	ortation	Geotechnical: All Pile Types	5
		factor varies with soil classification control.	
	ϕ_{bearing}	BDM Table	
	ϕ_{uplift}	BDM Table	
	R _{n end}	BDM Table	
	$R_{n \; friction}$	BDM Table	
	Strength Li	nit State	

Summary Table at the Strength Limit State for Pile Types ~ K. Dunker ~ 15 October 2012

Factor	Steel H-pile	Timber pile	Prestressed concrete pile	Concrete-filled pipe pile
Structural load factors, Y	AASHTO 3.4.1	AASHTO 3.4.1	AASHTO 3.4.1	AASHTO 3.4.1
Structural load factor for	BDM 6.2.4.3	BDM 6.2.4.3	BDM 6.2.4.3	BDM 6.2.4.3
downdrag, Y _{DD}	$\Upsilon_{DD} = 1.0$	$\Upsilon_{DD} = 1.0$	$\Upsilon_{DD} = 1.0$	$\Upsilon_{DD} = 1.0$
Downdrag load, DD	BDM Table 6.2.7-2	BDM Table 6.2.7-2	BDM Table 6.2.7-2	BDM Table 6.2.7-2
Structural resistance	AASHTO 6.5.4.2	AASHTO 8.5.2.2	AASHTO 5.5.4.2.1	AASHTO 6.5.4.2
factors, φ				
Structural bearing	BDM Table 6.6.4.2.1.1,		BDM Table 6.6.4.2.1.2,	BDM Table 6.6.4.2.1.3,
resistance factor for pile bent, ø	φ = 0.70		c/.U = Ø	φ = υ.ຮυ
Structural bearing	BDM 6.2.6.1	BDM 6.2.6.3	AASHTO Section 5	AASHTO 6.9.5, 6.12.2.3
resistance, R _n	SRL-1, SRL-2, SRL-3	80 kips, 100 kips		
Structural bearing	BDM Tables 6.5.1.1.1-1	BDM 6.2.6.3		
resistance for integral	and 6.5.1.1.1-2	64 kips		
abutment, R _n				
Structural bearing	BDM Table 6.6.4.2.1.1 or		BDM Table 6.6.4.2.1.2 or	BDM Table 6.6.4.2.1.3 or
resistance for pile bent, R _n	P10L		P10L	P10L
Structural lateral	BDM 6.2.6.1	BDM 6.2.6.3		
resistance	18 kips	7 kips		
Geotechnical bearing	BDM Table 6.2.9-1	BDM Table 6.2.9-1	BDM Table 6.2.9-1	BDM Table 6.2.9-1
resistance factor, φ				
Geotechnical uplift	BDM Table 6.2.9-2	BDM Table 6.2.9-2	BDM Table 6.2.9-2	BDM Table 6.2.9-2
resistance factor, φ				
Geotechnical end	BDM Table 6.2.7-1	BDM Table 6.2.7-1	BDM Table 6.2.7-1	BDM Table 6.2.7-1
resistance, R _n				
Geotechnical friction	BDM Table 6.2.7-2 and	BDM Table 6.2.7-2 and	BDM Table 6.2.7-2 and	BDM Table 6.2.7-2 and
resistance, R _n	6.2.7 discussion	6.2.7 discussion	6.2.7 discussion	6.2.7 discussion
Driving resistance factor,	BDM Table 6.2.9-3	BDM Table 6.2.9-3	BDM Table 6.2.9-3	BDM Table 6.2.9-3
φτ _{AR}	Fig 6.2.10	0.35 or 0.40	Fig 6.2.10	Fig 6.2.10