Strengthening of Steel Girder Bridges Using Fiber Reinforced Polymer (FRP)

> B. M. Phares, T. J. Wipf, F. W. Klaiber, A. Abu-Hawash, Y. S. Lee

> > Bridge Engineering Center Iowa State University

Background

Need some level of strengthening due to
 Increases in live loads

- Loss of capacity (deterioration)
- Bridges not critical enough to warrant replacement
- Need to employ structurally efficient but cost-effective means of strengthening

Primary Objectives

 Investigate the effectiveness of FRP composite materials in strengthening of deteriorated steel girder bridges

 Identify changes in structural behavior due to addition of strengthening system

Two Strengthening Schemes

 Strengthening with Carbon Fiber Reinforced Polymer (CFRP) Post-Tensioning Rods

• Strengthening with CFRP Plates

Advantages

- Corrosion resistance
- Very light (one tenth of steel)
- Can be installed with minimal crews and scaffoldings
- Load capacity may be fully restored without exceeding original weight

Strengthening with CFRP Post-Tensioning Rods

Strengthening with CFRP Post-Tensioning (P-T) Rods

- Guthrie County, IA
- Constructed in 1956
- 210 ft x 26 ft Three-span continuous steel girder bridge
- Two 64 ft End spans & 82 ft Center span
- Two WF 30x116 exterior & two WF 33x141 interior I-beams

Strengthening with CFRP Post-Tensioning (P-T) Rods

Strengthening with CFRP Post-Tensioning (P-T) Rods

Corroded abutment bearing

Corrosion on steel and

concrete deck

spalls on bottom of

Strengthening System

- Positive moment region of Exterior girders in all three spans
- Design force of 12 kips per rod, 48 kips per location (4 rods)

BRIDGE

Strengthening System

- CFRP rods
 - Outstanding mechanical characteristics and noncorrosive nature
 - 3/8 inch in diameter
 - Fiber Content : 65 % by volume
 - Tensile Strength : 300 ksi
 - Tensile Modulus : 20,000 ksi

- Anchorage assemblies
 - 5 in. x 5 in. x ³/₄ in.
 stiffened angles
 - 1 in. couplers
 - Steel tube anchors

Installation Process (anchorage assembly)

Installation Process (Placing CFRP Rod)

Placement of CFRP Rod

Top rod placed

Installation Process (Application of P-T force)

Completed CFRP P-T System

End Span (Exterior)

End Span (Interior)

Center Span

Load Testing & Classic Analysis

- To assess changes in performance due to addition of P-T system and time
- Tested before & shortly after installation, and one & two years of service
- Standard 3-axle dump trucks used in Load Testing and HS-20 Truck utilized in Classic Beam Analysis

Monitoring (During P-T)

 P-T generates strain opposite in sign to those generated by dead and secondary load

Monitoring (In service over two year period)

• Consistency in strain readings over two year period

Beam Analysis (LL Moment)

Before P-T

Beam Analysis (LL Moment)

After P-T

Conclusion

Consistency in strain readings

CFRP P-T system had negligible impact on changing stiffness of bridge

5 to 10 % of Live load moment carrying

capacity enhanced

Acknowledgement

• Project initiated by

- Iowa Department of Transportation (Iowa DOT)
- Sponsored by
 - Federal Highway Administration (FHWA) through the Innovative Bridge Research and Construction (IBRC) program

