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EXECUTIVE SUMMARY 

Problem Statement 

Drilled shafts have been used in the US for more than 100 years in bridges and buildings as a 

deep foundation alternative. For many of these applications, the drilled shafts were designed 

using the Working Stress Design (WSD) approach. Even though WSD has been used 

successfully in the past, a move toward Load Resistance Factor Design (LRFD) for foundation 

applications began when the Federal Highway Administration (FHWA) issued a policy 

memorandum in 2000 requiring all new bridges initiated after October 1, 2007 to be designed 

using the LRFD approach.  

The American Association of State Highway and Transportation Officials (AASHTO) 

recommends resistance factors based on general soil classification, which results in an overly 

conservative and less cost-effective drilled shaft design. Because bridge foundation systems 

generally account for as much as 30 percent of the entire bridge cost, a regional calibration of 

resistance factors is permitted by AASHTO to improve the economy of foundations and to make 

the drilled shaft option competitive with the driven pile foundation. 

The goal of this project was to develop a quality assured, electronic Database for Drilled SHAft 

Foundation Testing (DSHAFT), which is intended to establish LRFD resistance factors for the 

design of drilled shafts in the Midwest region. To achieve this goal, available static load test 

information was collected, reviewed, and integrated into DSHAFT using Microsoft Office 

Access™. In doing so, an efficient, easy-to-use filtering and capability was provided to 

DSHAFT, along with easy access to original field records in an electronic format. 

Background 

Drilled shaft foundations are large diameter, cast-in-place piles that support axial loads though a 

combination of shaft and end bearing resistances. They are referred to as bored piles, caissons, 

cast-in-drilled-hole piles (CIDH), continuous-flight-auger piles (CFA), displacement auger-cast 

piles, and drilled piers. Since the 1900s several cities in the US have used caissons or shafts to 

support buildings and transportation structures.  

Originally, the construction of shafts was done by hand, and it was not until the 1920s that 

machine-drilled shafts were being developed. Today’s drilling techniques range from small 

truck-mounted equipment to modern machines capable of drilling large, deep holes suitable for 

drilled shafts through very hard subsurface materials. 
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Project Objectives 

 Provide a means of electronic storage for all past, present, and future Iowa Department of 

Transportation (DOT) drilled shaft load test data for subsequent reference and analysis 

 Collect, review, and integrate data from available static load tests in Iowa and other states on 

drilled shafts into a quality assured, electronic database, using Microsoft Office Access™ 

 Make filtering, sorting, and querying procedures more efficient by using a collective dataset 

designed in the display form 

 Be housed on a website so that the information can be shared with designers and researchers 

Research Description 

Thirty-two drilled shaft load tests were performed and provided by the Iowa, Illinois, Minnesota, 

and Missouri DOTs and Nebraska Department of Roads (DOR). In addition, the load test 

performed in Tennessee was located in a report titled Load Testing of Drilled Shaft Foundation 

in Limestone, Nashville, TN (Brown 2008).  

The detailed information provided in most of the reports includes location, construction details, 

subsurface conditions, drilled shaft geometry, load testing methods and results, and concrete 

quality. Because the available information was stored in several different locations and formats, 

the process to calibrate the LRFD resistance factors would have proved inefficient. 

After the available information was implemented into the database, a preliminary calibration of 

LRFD resistance factors was performed to find if a sufficient amount of information is available 

for a regional calibration. The preliminary analysis was completed using the 13 datasets collected 

in Iowa. 

From this analysis, it was concluded that more load tests must be included into the database for 

accurate calibration of suitable resistant factors. As a result, load test information was included 

from surrounding states. 

Key Features of DSHAFT 

 Because the resistance factors will be calibrated using the information included in the 

database, it is vital to have a strict acceptance criteria for reports being entered into DSHAFT 

to make the LRFD regional calibration of superior quality and consistency. 

 Not all load test reports found and input into the database contain complete information. This 

data was included even though some of the information was missing, such as a detailed bore 

log. The rationale is that each one has the potential to be qualified once the information has 

been made available. To notify the user when this occurs, the usable data sets are identified 

by a yes/no category titled usable data. 

 Only two axial load test methods, the Osterberg and Statnamic, are included in the database 

because, they are not only the most prevalent load tests in the region, but they are also 

preferred by most DOTs. 
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 The distinctions between Osterberg and Statnamic load tests are critical because the data 

contained in each of the reports is different. The data from either report can be used to 

determine the capacity of the drilled shaft by using a different technique. 

 A major aspect when analyzing the results of axial load tests on drilled shafts is the soil 

profile classification, as each category behaves differently and affects the capacity of the 

drilled shaft accordingly. The soil profile classification system devised for DSHAFT is a 

series of guidelines to be used on soil information provided in the load test report. 

 The performance of a drilled shaft dramatically changes when a portion of the shaft is 

embedded into rock, known as a rock socket. In DSHAFT, rock sockets are identified by a 

Rock Socketed? yes/no category to account for the potential increase in end bearing and shaft 

resistance. 

 A quality control measure incorporated into the DSHAFT database is to include the Cross-

Hole Sonic Logging (CSL) report, when available. 

Implementation Readiness 

The construction method and quality control of construction still have a large impact on the 

drilled shaft and should be taken into consideration when calibrating the regional resistance 

factors. A set of acceptable guidelines for tolerances during construction should be included with 

the new resistance factors. 

Additional load tests, along with detailed analyses, are needed to provide an accurate statistical 

calibration of the resistance factors for the final calibration. 

Implementation Benefits 

 DSHAFT embodies a model for effective, regional LRFD calibration procedures consistent 

with the PIle LOad Test (PILOT) database available at http://srg.cce.iastate.edu/lrfd/, which 

currently contains driven pile load tests accumulated from the state of Iowa. 

 DSHAFT allows for collecting, reviewing, and integrating data from available static load 

tests on drilled shafts into an electronic database. In doing so, efficient, easy-to-use filtering 

and storage capabilities are available to provide a basis for analytical procedures on the 

datasets. 

 DSHAFT is housed on a website so that the information can be easily shared with designers 

and researchers. The value of DSHAFT comes with the use of this website by Iowa State 

University and can be found at http://srg.cce.iastate.edu/dshaft. 

 The easy-to-query interface for DSHAFT allows researchers and designers to further filter 

the data to fit their needs. 

 To ensure the superior quality of DSHAFT, strict acceptance criteria for the available test 

information was used. The quality assurance of the data is the driving factor when adding 

each new dataset to the database. 

 



 



1 

1. INTRODUCTION 

Most bridges in Iowa are supported on deep foundations, with driven steel H-piles being the 

preferred option. A survey of 298 state highway officials, Transportation Research Board (TRB) 

representatives and state and Federal Highway Administration (FHWA) geotechnical engineers, 

was conducted by the FHWA on the use of various foundation alternatives and found that of 

those who responded, 64 percent prefer driven piles, compared to only 5 percent preferring 

drilled shafts (Paikowsky 2004). Even though H-piles are almost always used, it does not imply 

that they are always the most cost-effective substructure solution under all soil and construction 

conditions.  

Drilled shafts have the potential to become an economical alternative when considering a deep 

foundation due to many advantages associated with this type of foundation. The shafts are 

relatively easy to construct in firm cohesive soils, and can be constructed in caving or karstic 

soils through the use of casing or slurry. Some of the biggest advantages of drilled shafts are that 

they a) can be built directly on rock, b) normally have a higher load-carrying capacity, and c) 

generally do not have large settlements (NCHRP Report 360 2006). Drilled shafts also do not 

require pile cap and associated connections. In many cases, a single drilled shaft can replace a 

pile group (Paikowsky 2006). Several state departments of transportation (DOTs) are 

increasingly using drilled shafts in substructure design. In Iowa, drilled shafts are not used often 

even though the soil conditions in many of Iowa’s regions are ideal for using this type of 

foundation.  

The FHWA mandated the use of Load and Resistance Factor Design (LRFD) approach for 

designing foundation elements on October 1, 2007. The American Association of State Highway 

and Transportation Officials (AASHTO) recommends resistance factors based on general soil 

classification, which results in an overly conservative and less cost-effective drilled shaft design. 

Since bridge foundation systems generally account for as much as 30 percent of the entire bridge 

cost, a regional calibration of resistance factors is permitted by AASHTO to improve the 

economy of foundations and to make the drilled shaft option competitive with the driven pile 

foundation.  

New resistance factors for driven piles have been developed for Iowa’s different soil types 

(AbdelSalam et al. 2011, AbdelSalam et al. 2012), using the PIle LOad Test (PILOT) Database 

(Roling et al. 2010) and a set of new field tests (Ng et al. 2011). This effort was undertaken to 

improve the design of driven pile foundations through the use of significantly higher resistance 

factors than those currently recommended in the AASHTO LRFD Bridge Design Specifications 

(2007).This effort will make the design of drilled shafts less cost competitive unless a similar 

effort is undertaken for this foundation option. The current resistance factors recommended by 

AASHTO LRFD specifications for drilled shaft design were derived from the Working Stress 

Design (WSD) factors of safety to maintain a consistent level of reliability of previous design. 

These resistance factors are very conservative because they provide resistance factors for general 

soil types found in the US.  
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Allen (2005) compared the resistance factors calibrated for drilled shafts with those obtained 

from fitting to Allowable Stress Design (ASD) and those determined using the Reliability 

Theory from various studies. When calibrated from local test data, the regional resistance factors 

for drilled shafts will produce a more efficient foundation design, with the possibility of 

significantly reducing the cost of construction. Consequently, regional calibration of resistance 

factors will make drilled shafts a competitive foundation option when compared to driven piles.  

When calibrating resistance factors for drilled shafts, a few challenges need to be taken into 

consideration to assure the performance of the substructure. Construction practice is a major 

issue when it comes to the performance of the drilled shaft because the drilling technique 

influences the disturbance of the bottom of the excavated hole (Osterberg 1999). In addition, 

high variability between soil types is a major challenge when predicting the capacity of the 

drilled shaft. It was found that in harder shale bedrock formations, the shaft and end bearing 

capacities measured from an Osterberg test were well above the predicted capacity of Colorado 

Standard Penetration Test (SPT) based design method (Abu-Hejleh 2005), as may be the case in 

other locations. Finally, lower redundancy than traditional steel H-piles leaves little room for 

error in design and construction. In order to improve the design of drilled shafts, it is vital to 

calibrate regional resistance factors with a strict set of criteria and guidelines. 

The purpose of this report is to introduce the Database for Drilled SHAft Foundation Testing 

(DSHAFT), which is intended to establish LRFD resistance factors for the design of drilled 

shafts in the Midwest region. As illustrated in Figure 1.1. Distribution of drilled shaft load tests 

reported in DSHAFT by location , a total of thirty-two drilled shaft load tests have been 

performed and provided by the Iowa, Illinois, Minnesota, and Missouri DOTs and Nebraska 

Department of Roads (DOR). Additionally, the load test performed in Tennessee was located in a 

report titled “Load Testing of Drilled Shaft Foundation in Limestone, Nashville, TN” (Brown 

2008). The detailed information provided in most of the reports included location, construction 

details, subsurface conditions, drilled shaft geometry, load testing methods and results, and 

concrete quality. Because the available information was stored in several different locations and 

formats, the process to calibrate the LRFD resistance factors would have proved inefficient. The 

goal when creating DSHAFT was to collect, review, and integrate data from available static load 

tests on drilled shafts into a quality assured, electronic database, using Microsoft Office 

Access
TM

. In doing so, an efficient, easy-to-use filtering and storage location was completed to 

provide a basis for analytical procedures on the available datasets. 

After the available information was implemented into the database, a preliminary calibration of 

LRFD resistance factors was performed to find if sufficient amount of information is available 

for a regional calibration. The preliminary analysis was completed using the 13 datasets collected 

in Iowa. Table 1 provides a brief summary of the information used to complete this calibration. 

From this analysis, it was concluded that more load tests must be included into the database for 

calibration. As a result, load test information was included from surrounding states. 

In the following chapters of this report, a detailed description of the importance of creating 

DSHAFT, the structure and key parameters used in the development of this database, and the 

preliminary analysis will be given. A description of the available dataset upon which the 



3 

database was originally fashioned will also be provided, followed by a comprehensive review of 

all fields contained within the database. 

 

Figure 1.1. Distribution of drilled shaft load tests reported in DSHAFT by location  

Table 1.1. Summary of 13 drilled shaft datasets collected in Iowa 

ID 

Number 

Diameter 

(ft) 

Embedded 

Length (ft) 

Brief Soil Description  Rock 

Socketed 

Construction 

Method 

Load Test 

Method Shaft Toe 

1 4 67.9 Silty G.C. Shale Yes Wet O-cell 

2 3 12.7 
Weathered 

Dolomite 

Weathered 

Dolomite 
Yes Wet O-cell 

3 4 65.8 Silty G.C. Clay Shale Yes Wet O-cell 

4 3.5 72.7 
Sandy G.C. and 

Medium Sand 
Clay Shale Yes Casing O-cell 

5 4 79.3 
Sandy Lean Clay 

and Clay Shale 
Clay Shale Yes Wet O-cell 

6 2.5 64 Silty Clay Sandy G.C. No Casing O-cell 

7 3 34 
Lean Clay and 

Limestone 
Limestone Yes Wet O-cell 

8 5.5 105.2 Silty Clay and Sand Limestone Yes Casing O-cell 

9 5 66.25 Silty Clay and Sand Coarse Sand No Wet Statnamic 

10 5 55.42 
Silty Clay and Fine 

Sand 
Coarse Sand No Wet Statnamic 

11 5 54.78 
Silty Clay and Fine 

Sand 
Coarse Sand No Wet Statnamic 

26 5 75.17 
Lean clay and Fine 

Sand 
Fine Sand No Wet O-cell 

27 5 75 
Lean clay and Fine 

Sand 
Fine Sand No Wet O-cell 

G.C. – glacial clay  
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2. BACKGROUND 

Drilled shaft foundations are large diameter, cast-in-place piles that support axial loads though a 

combination of shaft and end bearing resistances. They are referred to as bored piles, caissons, 

cast-in-drilled-hole piles (CIDH), continuous-flight-auger piles (CFA), displacement auger-cast 

piles, and drilled piers. Since the 1900s, several cities in the US have used caissons or shafts to 

support buildings and some transportation structures. Originally these shafts were excavated by 

hand; it was not until the 1920s that machine-drilled shafts were being developed. Today’s 

drilling techniques range from small truck mounted equipment to modern machines capable of 

drilling large, deep shafts through very hard materials. 

Using the different construction techniques, drilled shafts can be installed in a variety of soil and 

rock profiles. The methods for construction of drilled shafts can be grouped into three broad 

categories of dry method, casing method, and wet method. For firm clays, intermediate 

geomaterial (IGM), and rock profiles, the dry method can generally be used for construction. The 

advantages of using this method are it is the least expensive of the construction methods and it 

allows the borehole to be visually inspected. The process for constructing a drilled shaft using 

the dry method is depicted in Figure 2.1. Dry method of construction: (a) drill the hole, (b) clean 

the base, (c) place reinforcement, and (d) place concrete (FHWA 2010). 

 

Figure 2.1. Dry method of construction: (a) drill the hole, (b) clean the base, (c) place 

reinforcement, and (d) place concrete (FHWA 2010) 

If the possibility of having caving soils, excessive soil, or rock deformation exists while 

excavating the drilled shaft is present, the casing method is used. In addition, casing can be used 

in karstic soils where caves are present below grade and in excavations through water. There are 

three commonly used methods for installing the casing (FHWA 2010): (1) begin excavation 

using the dry method and then install the casing into the hole, (2) begin excavation using a starter 

(a) (b) (c) (d) 
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hole filled with slurry and install the casing to the bearing stratum as shown in Figure 2., and (3) 

install casing before excavation, depicted in Figure 2.. 

 

Figure 2.2. Construction using casing through slurry-filled starter hole: (a) drill with 

slurry; (b) set casing and bail slurry; (c) complete and clean excavation, set reinforcing; (d) 

place concrete to head greater than external water pressure; (e) pull casing while adding 

concrete (FHWA 2010) 

 

Figure 2.3. Construction using casing advanced ahead of excavation: (a) drive casing into 

bearing stratum; (b) drill through casing; (c) complete and clean hole, set reinforcing; (d) 

place concrete to head greater than external water pressure; (e) pull casing while adding 

concrete (FHWA 2010) 

For soil conditions that prohibit the dewatering of the shaft excavation, the wet method for 

construction is used. The wet method uses a mineral or polymer slurry to provide stability and 

prevent inflow of groundwater (FHWA 2010). The wet method is normally preferred over 

permanent casing due to the lower cost. Figure 2. shows the process of constructing a drilled 

shaft using the wet method. 

 (a) (b) (c) (d) (e) 

 (a) (b)  (c) (d) (e) 
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Figure 2.4. Slurry drilling process: (a) set starter casing; (b) fill with slurry; (c) complete 

and clean excavation, set reinforcing; (d) place concrete through tremie; and (e) pull tremie 

while adding concrete (FHWA 2010) 

The most efficient design for a drilled shaft is when a hard bearing layer is present to allow for 

large axial resistance by means of end bearing with a small footprint. Many times, one single 

drilled shaft can take the place of a pile group, eliminating the need for a pile cap and pile-to-cap 

connections. In addition, when the casing method is employed to construct the drilled shaft in 

water, the permanent casing eliminates the need for a cofferdam. Drilled shafts reduce noise and 

vibrations that are caused when piles are driven, which is an important consideration in urban 

settings. 

In many cases, drilled shafts are socketed into rock. The Iowa DOT almost routinely requires a 

drilled shaft to be socketed into rock a minimum distance of 1½ times the shaft diameter (Iowa 

DOT 2011). Rock sockets are used because they increase the end bearing capacity, significantly 

enhancing the efficiency of the drilled shaft due to the large end bearing area when compared to 

that of a driven pile. For example, a typical steel H-pile would be a HP 10x57 with an area of 

16.8 in.
2
, while a diameter of a drilled shaft typically ranges from 3 to 12 ft. A 3-ft diameter 

drilled shaft would have an area of 1,018 in.
2
, which is 60 times more than that of HP 10x57. 

Drilled shafts that are not socketed into rock are known as floating shafts (FHWA 2010). They 

still have an end bearing resistance, but it is greatly reduced. 

The current design philosophy for drilled shafts used by the Iowa DOT is LRFD, but regional 

resistance factors for drilled shafts have not been calibrated. The Iowa LRFD Bridge Design 

Manual (Iowa DOT 2011) references AASHTO LRFD Bridge Design Specifications (2007) and 

Drilled Shafts: Construction Procedures and LRFD Design Methods (Brown et al. 2010) for 

general drilled shaft design, unless otherwise specified in the manual. The goal of LRFD 

foundation design is to ensure compatibility between superstructure and substructure designs and 

to facilitate uniformity to reduce errors when passing information, such as loads, to the 

foundation designer. In order to incorporate accurate sources of uncertainty into each load and 

resistance component, regional calibration of resistance factors must be completed.  

 (a) (b) (c) (d) (e) 
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3. SIGNIFICANCE OF DSHAFT 

AASHTO has developed resistance factors for general soil profiles to provide a means to start 

moving forward in the process of LRFD design of drilled shafts. These resistance factors were 

calibrated using the WSD factors of safety to maintain consistent results while still ensuring the 

same level of safety. AASHTO supports the research for calibrating regional resistance factors in 

accordance with the desired reliability for design, as a means to improve the reliability, 

economy, and competitiveness of drilled shafts. In order to accomplish regional calibration, 

historical drilled shaft load tests must be compiled in order to analyze past experience. Through 

the use of axial load tests, resistance factors can be developed that will produce a more reliable 

and economic design. 

The PILOT database (Roling et al. 2011), comprising driven pile load tests located in Iowa, 

provided a template for the design of DSHAFT with the intent for it to embody a model for 

effective regional LRFD calibration procedures consistent with driven piles. From this database, 

resistance factors for Iowa were calibrated and are being implemented into the Iowa LRFD 

Bridge Design Manual (Iowa DOT 2010). 

Other state DOTs, such as Florida (McVay et al. 2003), Kansas (Yang et al. 2010), Louisiana 

(Abu-Farsakh et al. 2010), and Ohio (Nusairat et al. 2011), have calibrated regional resistance 

factors for drilled shafts, but no database information has been made available for the public to 

use. In addition, NCHRP 507 (Paikowsky 2004) outlines the calibration of resistance factors 

using a database developed by University of Florida, but has limited information with regards to 

the actual load tests. Without the data, it is difficult to determine the quality of the information 

used to calibrate the resistance factors. DSHAFT is housed on a website so that the information 

can be shared with designers and researchers. The value of DSHAFT comes with the use of this 

website by Iowa State University and can be found at http://srg.cce.iastate.edu/dshaft. 

Because the resistance factors will be calibrated using the information included in the database, it 

is vital to have a strict acceptance criteria for reports being entered into DSHAFT to make the 

LRFD regional calibration of superior quality and consistency. The quality of the database due to 

the acceptance criteria will allow other users to have confidence in the database and know the 

acceptance criteria for load test reports. The easy-to-query interface for DSHAFT will allow 

researchers and designers to further filter the data to fit their needs. 
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4. KEY TERMINOLOGY USED FOR DATA QUALITY ASSURANCE 

To ensure the superior quality of DSHAFT, strict acceptance criteria for the available test 

information was used. The quality assurance of the data is the driving factor when adding each 

new dataset to the database. The level of quality criteria for each load test, deeming the datasets 

as usable and complete, were defined by the types of load tests, the soil and rock classification, 

cross-hole sonic logging (CSL), and the information on where the report was obtained.  

It is important to note that not all load test reports found and put into the database meet the 

expected quality. This data was included even though some the information was missing, such as 

a detailed bore log. The rationale is that each one has the potential to be qualified once the 

information has been made available. To notify the user when this occurs, the usable data sets are 

identified by a yes/no category titled “Usable Data.” This field can easily be sorted to hide the 

unusable data.  

Another notification along with the “Usable Data” notification mentioned above is the “All 

Record Data Entered?” warning. The notification informs the user when a complete dataset has 

been added. An additional benefit of the “Usable Data” notification is that it creates a check for 

those maintaining the database to help eliminate missing information. 

Early in the project, it was decided at this time to exclude any lateral load tests from DSHAFT, 

but allow for the expansion of the database to include lateral load tests in the future. The reason 

behind this decision is to simplify the database. Only two axial load test methods, the Osterberg 

and Statnamic, are included in the database because they are not only the most prevalent load 

tests in the region, but they are also preferred by most DOTs. 

Of the two axial load test methods included in DSHAFT, the Osterberg is the most common 

axial load test method used in the US. It uses a sacrificial load cell that hydraulically applies a 

static load at or near the bottom of the drilled shaft (Osterberg 1995). The idea behind the test 

setup is the shaft above the load cell will move upward and measure the shaft resistance from 

skin friction, while the shaft below will measure toe resistance. The advantage of performing the 

Osterberg test is that the two components, shaft and toe resistances, are quantified separately. It 

is essential to note that once the cell is pressurized internally, the upward force is equal but 

opposite to the downward force, and that the shaft is assumed rigid. The compression of the shaft 

is considered negligible and therefore ignored. 

The Statnamic load test is a dynamic axial load test method that uses fuel burned in a pressure 

chamber to exert an upward force on a set of reaction masses while an equal but opposite force 

pushes down on the top of the drilled shaft (NCHRP Report 360 2006). The advantages with 

using this type of dynamic testing are that it provides a less costly alternative to static load tests, 

allows for more drilled shafts to be tested because it requires less time than a static load test, and 

allows for the testing of existing foundations (Mullins 2002). It does not require load reaction 

piles, reaction beam, hydraulic jack, and sacrificial load cell. The disadvantage of using a 

Statnamic load test is that the data is regressed to determine the static load derived capacity 

(Paikowsky 2006). 
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A major aspect when analyzing the results of axial load tests on drilled shafts is the soil profile 

classification, as each category behaves differently and affects the capacity of the drilled shaft 

accordingly. Thus, it is important to use a dependable classification for the soil profile of the 

drilled shafts. The soil profile classification system devised for DSHAFT is a series of guidelines 

to be used on soil information provided in the load test report. The three main categories used 

when classifying the soil profile are clay, sand, and mixed. To maintain consistency with PILOT 

soil profile classification (Roling et al. 2011) and due to a rational verification of that soil 

classification (AbdelSalam et al. 2011), the 30 percent rule based was used. The rule is based on 

the Unified Soil Classification System (USCS) as well as Iowa DOT soil descriptions. Therefore, 

if less than 30 percent of the competent soil along a shaft is classified as cohesive materials, the 

soil profile of that shaft is categorized as sand. Similarly, if 30 percent or less of the competent 

soil profile along the shaft is made of cohesionless materials, the soil of that shaft is classified 

clay. In all other intermediate cases, the soil profile is categorized as mixed.  

The performance of a drilled shaft dramatically changes when a portion of the shaft is embedded 

into rock, known as a rock socket. To classify the material as rock, the unconfined compressive 

strength (qu) must be greater than 100 ksf. In between rock and soil is a large variation of 

material known as intermediate geomaterial (IGM). According to Brown et al. (2010), cohesive 

IGM is defined as material that exhibits qu in the range of 10 ksf to 100 ksf. Anything below 5 

ksf is classified as soil. In DSHAFT, rock sockets are identified by a “Rock Socketed?” yes/no 

category to account for the potential increase in end bearing and shaft resistance.  

A quality control measure incorporated into the DSHAFT database is to include the CSL report 

when available. The purpose of this test is to use the information to assess the quality of a drilled 

shaft concrete (Hussein et al. 2005) by showing the location and size of flaws and defects. Due to 

the large capacities of drilled shafts, there is less redundancy in the bridge foundation when 

compared to other types of foundations such as H-piles. The reduced redundancy can increase 

probabilities of flaws within the foundation, but with advancements in technology such as self-

consolidating concrete (SCC) these defects are reduced (NCHRP Report 360 2006). To help 

ensure a safe and effective product, many DOTs require CSL tests in accordance with ASTM D-

6760-08 on all drilled shafts.  
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5. DESCRIPTIVE SUMMARY OF DSHAFT DATA SUBSET 

A descriptive summary of the thirty-two drilled shaft load tests completed and submitted by the 

Iowa, Illinois, Minnesota, and Missouri DOTs and the Nebraska DOR is provided in the 

following sections. Details of tests including soil types, construction method, and testing method 

are presented. 

Of the dataset information included in DSHAFT, most of the drilled shaft load tests were 

performed in clay soils overlaying rock, as illustrated by Figure 5.1(a). Seventy-two percent of 

all datasets included in DSHAFT are rock socketed. When comparing data sets based on 

construction method, Figure 5.1(b) shows that 28 percent of the drilled shafts in DSHAFT were 

constructed using the dry method. Between the wet method and casing method, the wet method 

was used 78 percent of the time out of 23 load test cases. Overall, out of all 32 data sets, the wet 

and casing method combined were used 72 percent of the time, as compared to the dry method.  

 

Figure 5.1. Distribution of historical drilled shaft data 
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The distinctions between Osterberg and Statnamic load tests are critical because the data 

contained in each of the reports is different. The data from either report can be used to determine 

the capacity of the drilled shaft by using a different technique. For example, the Osterberg test 

gives the static load versus shaft displacement and toe displacement, while the Statnamic test 

gives a Statnamic load versus Statnamic displacement that has to be regressed to static loads and 

corresponding displacements. Figure 5.1(c) indicates that the most utilized load test is the 

Osterberg load test. All three Statnamic tests available in DSHAFT were performed on the same 

project site in Council Bluffs, Iowa, by Applied Foundation Testing.  

In order to see the grouping of drilled shaft load tests by location, a map is included in Figure 

5.2. The significance of the figure is to illustrate natural breaks in the regional grouping of 

information included in the database for resistance factor calibration. The natural breaks indicate 

where more load tests may need to be performed. At some of the locations identified by stars in 

Figure 5.2, multiple load tests were performed, but the purpose of the map is to show where 

more drilled shaft load tests need to be performed in order to obtain a true regional calibration. 

 

Figure 5.2. Location of drilled shaft test sites  
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6. DSHAFT USER MANUAL 

DSHAFT was developed to provide a means of electronic storage for all past, present, and future 

Iowa DOT drilled shaft load test data for subsequent reference and analysis. The purpose of the 

following user manual is to provide a comprehensive explanation of the features incorporated 

into DSHAFT, the details of how the quality of data was assured, information on how to add new 

load test data, and the minimum required extent of details for new data. 

6.1  Accessing DSHAFT 

To download and save a copy of the most recent version of DSHAFT, follow the steps listed 

below: 

1. Set Internet Explorer as your default web browser to access PDF files, which contain 

project information and load test data, via hyperlinks in DSHAFT. 

a) Open Internet Options by clicking the “Start” button, clicking “Control Panel”, 

clicking “Network and Internet”, and then clicking Internet “Options.” 

b) Click the “Programs” tab, and then “Default Programs.” 

c) Click “Set Default Programs”, select “Internet Explorer”, and then click “Set this 

program as default.” 

d) Click “OK”, and then close the window. 

2. Open Internet Explorer and go to srg.cce.iastate.edu/dshaft. The home page of the 

website is shown in Figure 6.1. Click on the “Download D-Shaft” tab. 

 

Figure 6.1. DSHAFT website home page (srg.cce.iastate.edu/dshaft) 
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3. Complete DSHAFT request form as shown in Figure 6.2. 

 

Figure 6.2. DSHAFT request form 

4. A link to download DSHAFT will be emailed to you. 

5. Click the link to download a copy of DSHAFT. Click Open. 

6.2  Description of DSHAFT Database Fields 

DSHAFT was developed using Microsoft Office Access
TM 

2007 with the intent of creating an 

archive of drilled shaft testing information. The design of the database is to make filtering, 

sorting, and querying procedures more efficient by using a collective dataset. The database 

consists of two main forms: DSHAFT Display Form and Drilled Shaft Load Test Record Form. 

The first of the two main forms, DSHAFT Display Form, is shown in Figure 6.3. It contains a 

datasheet view of all available records and two quick access buttons for the insertion of new 

drilled shaft load test records. The acquisition of additional details concerning DSHAFT, along 

with a drop-down menu featuring a variety of filtering options are also made available on this 

form. The DSHAFT Display Form is the home screen guiding the user to the desired information 

contained in the available dataset. 
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Figure 6.3. DSHAFT Display Form (Microsoft Office Access
TM

 2007) 

A unique hyperlinked identification number is created for each available load test to provide a 

porthole to the second of the two forms, the Drilled Shaft Load Test Record Form (DSLTRF). 

Here, six descriptive categories are displayed to organize the detailed information contained in 

the load test report to provide an easy-to-use interface. The DSLTRF consists of general 

information and five tabbed subforms, as shown in Figure 6.4. The database fields included in 

this form are explicitly described below.  

6.2.1  General Drilled Shaft Load Test Record Form Information 

Described in this section are the various fields included in the general DSLTRF, with reference 

to labels included in Figure 6.4. 
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Figure 6.4. Drilled Shaft Load Test Record Form (DSLTRF) 

A. ID: A unique cataloging number automatically assigned by Microsoft Office Access ™ 

to each record within DSHAFT. 

B. State: The initials of the state in which the load test was performed is input into this text 

database field. 

C. County: The name of the county corresponding to the location of the specified load test 

is input into this text database field. 

D. Township: The name of the township corresponding to the location of the specified load 

test is input into this text database field. 
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E. Section: The section number of the location of the specified load test is input into this 

numerical database field. 

F. Bridge Contractor: The name of the contracting company responsible for the 

construction of the specified bridge project is input into this text database field. 

G. Project Number: The unique DOT cataloging number assigned to each construction 

project is input into this text database field. 

H. Design Number: For every construction project in each state, all bridge projects are 

assigned a unique design number. The bridge design number corresponding to a specified 

drilled shaft load test is entered into this text database field.  

I. Drilled Shaft Location: This text database field allows the user to enter a short 

description of the drilled shaft location in relation to the features of the bridge under 

construction. For instance, a typical description will specify if the drilled shaft was 

located near an abutment or a pier. Either the drilled shaft number or a detailed narrative 

identifying the exact position of the pile within the abutment or pier is usually provided. 

J. Construction Method of Drilled Shaft: The method used to construct the drilled shaft is 

chosen from a drop down menu in this text database field. The options available are: 

Casing, Dry, or Wet. 

K. Installed By: The name of the construction company responsible for installing the drilled 

shaft is input into this text database field. 

L. Project Number: The unique project number for the load test is entered in this text 

database field.  

M. Date of Installation: The date that the drilled shaft was constructed is recorded in this 

date/time database field. The format to accept dated entries is month/day/year (e.g., 

3/8/1984). 

N. Tested By: The names of the people who were responsible for carrying out the drilled 

shaft load test on the specified drilled shaft is input into this text database field. 

O. Date Tested: The date when the drilled shaft load test was performed is recorded in this 

date/time database field. The format to accept dated entries is month/day/year (e.g., 

3/8/1984). 

P. Date Reported: The date on which the drilled shaft load test results were reported is 

input into this date/time database field. The format to accept dated entries is 

month/day/year (e.g., 3/8/1984). 

Q. Nominal Shaft Diameter (in.): The nominal shaft diameter. The options available for 

selection in this database field are as follows: 24”, 30”, 36”, 42”, 46”, 48”, 54”, 60”, 62”, 

66”, 72”, 78”, and 96”. 
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R. Total Length of Drilled Shaft (ft): The total length of the drilled shaft is recorded in this 

numerical database field. This is measured from the top of the concrete to the toe of the 

shaft. 

S. Depth to Toe of Shaft (ft): The embedded depth of the drilled shaft is input in this 

numerical database field. This is measured from the ground surface elevation to the toe of 

the shaft. 

T. Unconfined Compressive Concrete Strength (psi): The measured 28-day unconfined 

compressive concrete strength of the drilled shaft is input into this numerical database 

field. 

U. ReBar Cage Diameter (in.): The diameter of the ReBar cage used to reinforce the 

drilled shaft is input into this numerical database field. 

V. Number of Longitudinal Reinforcing Bars: The number of longitudinal reinforcing 

bars used in the construction of the drilled shaft is input into this numerical database 

field. 

W. Bar Size: A bar size chosen from a drop down menu specifying the size of the 

longitudinal reinforcement used in the construction of the drilled shaft in this numerical 

database field. The available options for selection are as follows: #3, #4, #5, #6, #7, #8, 

#9, #10, #11, #14, and #18. 

X. Tensile Yield Strength (ksi): The tensile yield strength of the longitudinal reinforcing 

bars used in the construction of the drilled shaft is specified in this text database field. 

Y. Spacing of Transverse Reinforcing Bars (in.): The spacing of the transverse 

reinforcement along the drill shaft is input in this numerical database field. 

Z. Bar Size: The bar size is selected from a drop down menu to define the size of the 

transverse reinforcement used in the construction of the drilled shaft in this numerical 

database field. The available options for selection are as follows: #3, #4, #5, #6, #7, #8, 

#9, #10, #11, #14, and #18. 

AA. Tensile Yield Strength (ksi): The tensile yield strength of the transverse reinforcing bars 

used in the construction of the drilled shaft is specified detailed in this text database field. 

BB. Elevation of Ground Surface (ft): The measured ground elevation at the site of the 

tested drilled shaft is input in this numerical database field. 

CC. Elevation of Water Table (ft): When applicable, the water table elevation at the location 

of the tested drilled shaft is inserted in this numerical database field. 

DD. Elevation of Top of Shaft Concrete (ft): The measured elevation of the top of shaft 

concrete is entered into this numerical database field. 

EE. Elevation of Shaft Toe (ft): The measured elevation of the shaft toe is input into this 
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numerical database field. 

FF. Load Test Method: The method used to perform the load test on the drilled shaft is 

chosen from the drop down menu in this text database field. The options available for 

selection are as follows: Osterberg Test and Statnamic Test. Based on what the user 

selects the corresponding tab “Osterberg Load Test Details Tab” or the “Statnamic Load 

Test Tab” should be completed by the user. 

GG. Record Comments: Any important information regarding the records is included in this 

text database field. 

HH.-MM.  Attachments (1) - (6): These six hyperlink database fields were created so that important 

information related to each drilled shaft load test could easily be accessed from DSLTRF. 

The hyperlink text descriptions found within these database fields maintain a direct path 

to the file of interest. 

To add a new hyperlink to the DSLTRF, follow the steps outlined below: 

1. Open the desired DSLTRF to which a new hyperlink will be added. 

2. Position the cursor over the preferred location, attachments (1) through (6), for the 

new hyperlink. 

3. Right click with the mouse and select Hyperlink. Then click Edit Hyperlink. 

4. Locate the file to which the hyperlink will be tied and provide a concise, but 

meaningful description of the files in the “Text to Display:” option. 

NN. All Record Data Entered?: This yes/no database field was created for the one(s) 

responsible for the data entry procedures, so that an easy distinction could be made 

between those records still requiring data to be entered and those that had been termed 

complete. When all available information has been entered for a specific record, this field 

receives a check mark. 

OO.  Usable Data?: This yes/no database field was created for the user, so that an easy 

identification could be made between usable and unusable datasets. When the available 

information is deemed complete and acceptable for calibration of resistance factors, this 

field receives a check mark.  

6.2.2  Soil and Rock Information 

As illustrated in Figure 6.5, the first tab found on the DSLTRF (i.e., Soil and Rock Information) 

contains all of the information regarding the soil and rock testing. From this information, a graph 

of the soil profile is created. The fields listed below are found on this tab. 
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Figure 6.5. Soil and rock information tab of DSLTRF 

A. Is the Drilled Shaft Rock-Socketed?: The information regarding if the drilled shaft is 

rock-socketed is specified in the drop down menu for this yes/no database field. 

B. Test Site Soil Classification: The soil at the test site is classified in the drop down menu 

for this text database field. The options available are clay, sand, and mixed. 

C. Soil and Rock Information Profile: This bar graph is generated from the data that has 

been input into the Soil and Rock Information Table. It uses the Material Description as 

well as the thickness of the layer to generate the soil profile. 

D. Soil and Rock Information Table: The table allows the user to input information about 

the soil and rock. The available categories are:  

 Layer: The layer number is input by the user for the main purpose of keeping the soil 

and rock layers in order. Layer “1” should be the layer closest to the ground surface.  

 Material Description: The material description serves the purpose of describing the 

soil or rock layer. (i.e., Firm Glacial Clay or Moderately Weathered Dolomite). This 

information can be found in the “Soil Boring Log” in the load test report provided. 

 USCS Designation: This designation allows the user to input the soil type using the 

USCS for each layer specified in the Soil Boring Log Report. 
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 Thickness (ft): This category is a measure from the top to the bottom of each soil 

layer. This is useful when classifying the overall soil type. 

 Cohesion (psf): The measurement of the shear strength of the soil can be recorded by 

the user into this category. 

 Internal Friction Angle (degrees): In this category, the measurement of the soil to 

withstand a shear stress can be entered by the user. 

 Unit Weight (pcf): The measure of the soil’s weight versus volume can be input into 

this field.  

 Moisture Content (%): The measurement representing the amount of water present 

in the soil can be input into the Moisture Content category as a percentage. 

 Relative Density (%): In this category the void ratio of sands and gravels is 

represented as a percentage. 

 SPT N-Value: The Standard Penetration Test (SPT) N value is the sum of the blow 

counts for 12 inches of SPT hammer penetration is included into this category. 

 Unconfined Compressive Strength (psi): The strength of the soil or rock tested 

uniaxially without lateral restraint is input into this category. 

 Elastic Modulus (psi): The elastic modulus of the soil can be input into this category. 

 Core Recovery (%): The length of the core recovered from a borehole, compared 

with the depth of the hole cored can be recorded in this category as a percentage. 

 Modified Core Recovery (%): The modified core recovery can be represented in this 

category as a percentage. 

 Rock Quality Designation (%): The rock quality designation can be input into this 

category as a percentage. 

a. Source of Cohesion Values: This field allows the user to identify how the 

cohesion of the soil was tested by marking the appropriate circle. The methods 

available are SPT, cone penetration test (CPT), and laboratory testing. 

b. Source of Internal Friction Angle Values: This field allows the user to identify 

how the internal friction angle was calculated by marking the appropriate circle. 

The methods available are SPT, CPT, and laboratory testing. 

6.2.3  Osterberg Load Test Details 

The second tab found on the DSLTRF (i.e., Osterberg Load Test Details) will only be filled out 

if an Osterberg Test was performed. Otherwise, it will be left blank. Illustrated in Figure 6.6, this 

tab contains the fields listed below. 
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A. O-Cell Diameter (in.): The diameter of the O-cell is input into this numerical database 

field. 

B. Depth of O-Cell Base (ft): The location of the O-cell with respect to the ground surface 

is defined in this numerical database field. 

C. Load vs. Shaft Displacement Graph: The load vs. shaft displacement graph is 

automatically created when the user enters the appropriate information into the table 

described below in subsection E. It depicts the shaft displacement corresponding to the 

applied O-cell load.  

D. Load vs. Toe Displacement Graph: The load vs. toe displacement graph is 

automatically created when the user inputs the information into the table described in 

subsection E. It illustrates the toe displacement of the drilled shaft corresponding to the 

applied O-cell load. 

 

Figure 6.6. Osterberg load test details tab of DSLTRF Load and Displacement table: This 

table allows the user to input the shaft and toe displacement corresponding to an applied 

O-cell load. This table includes the following columns: 

 Applied Cell Load (kips): This column consists of the measured applied cell load 

reported in the testing information. 

 Shaft Displacement (in.): This column contains the shaft displacement corresponding to 

the applied cell load that was reported in the testing information. 

 Toe Displacement (in.): This column specifies the toe displacement of the drilled shaft 

E D 

B 

A 
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corresponding to the applied cell load that was reported in the testing information. 

6.2.4  Statnamic Load Test Details 

The third tab found on the DSLTRF (i.e., Statnamic Load Test Details) will only be filled out if a 

Statnamic test was performed. If not, it will be left blank. Illustrated in Figure 6.7, this tab 

contains the fields listed below. 

 

Figure 6.7. Illustration of Statnamic load test details tab of DSLTRF 

A. Displacement vs. Statnamic Load Graph: This displacement vs. Statnamic load graph 

is automatically created when the user records information into the table specified in C. It 

depicts the displacement of the drilled shaft corresponding to the applied Statnamic load. 

B. Displacement vs. Static Load Graph: This displacement vs. static load graph is 

automatically created when the user enters information into the table specified in C. It 

portrays the displacement of the drilled shaft corresponding to the applied static load. 

C. Displacement and Load Table: This table allows the user to input the loads with the 

corresponding displacement. This table includes the following columns:  

 Statnamic Displacement (in.): This column represents the displacement 

corresponding to the Statnamic load. 

 Statnamic Load (kips): This column represents the load applied to the drilled shaft 

A 

B C 
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during Statnamic testing. 

 Static Displacement (in.): This column details the displacement corresponding to the 

static load. 

 Static Load (kips): This column denotes the load applied to the drilled shaft during 

the static testing. 

6.2.5  Load Transfer Details 

The fourth tab found on the DSLTRF (i.e., Load Transfer Details) is illustrated in  

Figure 6.8. It contains the fields listed below. 

A. Load vs. Depth Graph: This load vs. depth graph is automatically created when the user 

inputs information into the table specified in subsection B. It depicts the load increment 

versus the depth of the drilled shaft. 

B. Depth and Load Increments Table: This table allows the user to define the loads for 

each of the gauges and O-cell, as well as record the corresponding depth of each of the 

gauges. This table includes Depth(ft) and Load at Increment #1 through Load at 

Increment #10. 

 Depth (ft): This column represents the depth of the strain gages, including the O-cell, 

with respect to the ground surface. 

 Load Increment #1 – Load Increment #10 (kips): These columns signify the 

average load at each load increment. 
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Figure 6.8. Load transfer details tab of DSLTRF 

6.2.6 Cross-Hole Sonic Log (CSL) Test Details 

The fifth tab found on the DSLTRF (i.e., CSL Test Details) is illustrated in Figure 6.9. It 

contains the fields listed below. 

A. Acceptable Quality of Concrete: Based on the results from the CSL test, the concrete 

will be determined to be acceptable or not acceptable by marking the check box for this 

yes/no database field. Likins (2004) found that the interpretation of CSL results can lead 

to different conclusions depending on the person interpreting the data. The criteria shown 

in Table 6.1 will be used to quantify the quality of concrete. Flaws are considered 

between the 20 percent to 30 percent velocity reduction and should be addressed if they 

are found in more than 50 percent of the CSL profiles. Anything greater than a 31 percent 

velocity reduction is considered a defect and should be addressed if found in more than 

one profile (Likins et al. 2007) 

B. Date of Test: The date on which the CSL test was performed is recorded in this date/time 

field. The format to accept dated entries is month/day/year (e.g., 3/8/1984). 

C. Number of Tubes: The number of tubes used to perform the CSL test is input into this 

numerical database field. 

D. Comments: Any important information regarding the CSL test is included in this text 

B A 
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database field. 

E. Percent Increase in Arrival Time Graph: This bar graph is automatically created when 

the user enters information into the table specified in subsection F. It depicts the percent 

increase in arrival time along the drilled shaft. 

F. Percent Increase in Arrival Time Table: This table allows the user to detail the velocity 

reduction for a given section of the drilled shaft. This table includes:  

 Section Number: The section number is input by the user for the main purpose of 

keeping the section numbers in order along the length of the drilled shaft. Section “1” 

should be the layer at the top of the drilled shaft. 

 Thickness (ft): The thickness is the length of the drilled shaft corresponding with the 

range of increase in arrival time specified in the CSL Test report. 

 Increase in Arrival Time (%): The time it takes for the signal produced by the 

sound source to travel to the receiver is measured as the devices are lowered through 

access tubes along the drilled shaft. The time at one point is compared with the 

average time it takes the signal to travel as a percentage. 

Table 6.1. Concrete condition rating criteria (MoDOT 2012) 

Concrete 

Condition Rating 
Rating 

Symbol 
Velocity 

Reduction 
Indicative Results 

Good G 0 to 10% Acceptable concrete 

Questionable Q 10 to 25% 
Minor concrete contamination or 

intrusion. Questionable quality 

concrete. 

Poor/Defect P/D >25% 
Defects exist, possible water or 

slurry contamination, soil intrusion 

and/or poor quality concrete. 

Water W 
Velocity = 4760 

to 5005 ft/sec 
Water intrusion, of water filled 

gravel with few or no fines present. 

No Signal NS 
No Signal 

Received 

Soil intrusion or other severe defect 

absorbed the signal, tube debonding 

if near shaft top. 
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Figure 6.9. An illustration of CSL test details tab of DSLTRF 

6.3  Disclaimer Notice 

DSHAFT was established as part of a research project funded by the Iowa DOT and has 

compiled data from different DOTs. The Iowa DOT, other DOTs, or the authors of this report do 

not make any warranty, expressed or implied, or assume any legal liability or responsibility for 

the accuracy, completeness, or usefulness of any information contained in DSHAFT. If a 

problem arises during the usage of DSHAFT or more knowledge is required, contact the Iowa 

DOT or those currently maintaining the database via http://srg.cce.iastate.edu/dshaft/. 
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7. PRELIMINARY ANALYSIS 

The preliminary analysis began with estimating the nominal axial geotechnical resistance of a 

drilled shaft in accordance with the AASHTO LRFD Bridge Design Specifications (2010). A 

nominal total resistance estimated for each drilled shaft is listed in Table 7.1. It was determined 

by adding nominal shaft resistances (Rs) acting along the embedded length to a nominal toe 

resistance (Rp) acting at the base of the drilled shaft. The estimation process of Rs, Rp, and 

nominal total resistance are described in the following subsections. 

7.1 Shaft Resistance 

The nominal shaft side resistance at each soil layer can be estimated using 

        (7.1) 

where 

 As = area of shaft side surface (ft
2
); and 

 qs = unit side resistance (ksf). 

For drilled shafts in cohesive soils, the unit side resistance can be estimated using α-method 

(O'Neill and Reese 1999) based on an adhesion factor (α) and undrained shear strength (Su) given 

as 

        (7.2) 

where 

 α = 0.55 for 
  

  
 ≤ 1.5; 

 α =         (
  

  
    ) for 1.5 ≤ 

  

  
 ≤ 2.5; and 

 Pa = atmospheric pressure (2.12 ksf). 

When the ratio (
  

  
) exceeds 2.5, the material will not be considered as a cohesive soil and 

equation 7.2 shall not be used to estimate the unit side resistance. This material could be 

classified as IGM or rock, depending on the magnitude of the unconfined compressive strength 

and the geology of the material. The undrained shear strength (Su) for low permeability cohesive 

soils can be approximated by total stress cohesion (c). In addition, in-situ testing, such as SPT, 

can be used to estimate Su based on the correlation established by Bjerrum (1972) given as 

   
       

   
 (7.3) 
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where 

 f1 = empirical factor (4.5 for PI = 50; 5.5 for PI = 15); 

 PI = plasticity index; 

 N60 = corrected SPT N-value; and 

 Pa = atmospheric pressure (2.12 ksf). 

However, the side resistance between cohesive materials and a drilled shaft is not completely 

effective over the entire embedded length. Due to the effects of seasonal moisture changes, 

construction disturbance, cyclic lateral loading, and low lateral pressure from freshly placed 

concrete, the side resistance at the upper 5 ft of a drilled shaft is routinely ignored in accordance 

with the AASHTO LRFD Bridge Design Specifications (2010). In addition, due to the 

development of tensile cracks induced by the change in lateral concrete pressure on the soil 

before and after the hardening of concrete, the side resistance at one diameter length (B) above 

the shaft base is also ignored. 

As identified by O’Neill et al. (1996), cohesive IGM includes the following materials: 1) 

argillaceous geomaterials such as heavily overconsolidated clays, clay shale, saprolites, and 

mudstones that are prone to smearing during drilling; and 2) calcareous rocks such as limestone 

and limerock and argillaceous geomaterials that are not prone to smearing when during drilling. 

Similar to cohesive materials, the unit side resistance for cohesive IGM can be estimated using a 

modified α-method given as estimated in equation 7.4. 

          (7.4) 

where 

 qu = compressive strength of intact rock (ksf); 

 φ = a correction factor to account for the degree of jointing (see Table 7.1); and 

 α = empirical factor determined in Figure 7.1. 
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Figure 7.1. Factor α for cohesive IGM (adapted after O’Neill et al. 1996) 

Note that the α value determined in Figure 7.1 is based on an assumed value of interface friction 

angle (φrc) of 30 degrees. If a different φrc value is known, the α value can be adjusted by 

              
      

       (7.5) 

Table 7.1. Side resistance reduction factor for cohesive IGM 

Rock Quality 

Designation, RQD (%) 

Joint Correction Factor, φ 

Closed Joints Open or Gouge-Filled Joints 

100 1.00 0.85 

70 0.85 0.55 

50 0.60 0.55 

30 0.50 0.50 

20 0.45 0.45 

 

In addition, Figure 7.1 is only applicable if the ratio of modulus of rock mass (Em) to qu is 

between 115 and 500. It is assumed that the side resistance can be mobilized if the total vertical 

displacement (wt) of a drilled shaft is 1 in. Figure 7.1 shows that the α value is dependent on the 

ratio of freshly placed concrete pressure at the middle of an IGM layer (σn) to atmospheric 

pressure (Pa). The concrete pressure (σn) at the depth below cutoff elevation (  
 ) can be 

estimated using equation 7.6 if the concrete has a slump of 7 in. or greater and placed in the 

borehole at a rate of 40 ft per hour or greater. 

           
  (7.6) 

0               20.9           41.8            62.7           83.5           104.4

qu (ksf)

α

0.5

0.4

0.3

0.2

0.1

0.0

σn/Pa =
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where 

 γc = concrete unit weight (kcf); and 

   
  = depth below cutoff elevation to the middle of a material layer i, which will be 

limited to 40 ft. 

For drilled shafts in cohesionless soils, the unit side resistance can be estimated using β-method 

(O'Neill and Reese 1999) in terms of a load transfer coefficient (β) given as 

       
      (7.7) 

where 

 β =          √   for N60 ≥ 15; 

 β =         ( )     for gravelly sands and gravels and N60 ≥ 15; 

 β = 
   

  
(         √ ) for N60 < 15; 

   
  = vertical geostatic effective stress at soil layer mid-depth (ksf); 

 z = depth below ground at soil layer mid depth (ft); and 

 N60 = average SPT blow count in the design zone under consideration and corrected  

   for hammer efficiency. 

For drilled shafts socketed into rock, the unit side resistance can be estimated based on the 

recommendation suggested by Horvath and Kenney (1979) as such 

           (
  

  
)
   

      (
  
 

  
)
   

 (7.8) 

where 

 qu = uniaxial compressive strength of rock (ksf); 

 Pa = atmospheric pressure (2.12 ksf); 

 αE = reduction factor to account for joining in rock as provided in Table 7.2; 

   
  = concrete compressive strength (ksi); 

 Em = elastic modulus of the rock mass (ksf) determined from Table 7.3; and 

 Ei = elastic modulus of intact rock from tests (ksf). 

Table 7.2. Estimation of αE for equation 7.8 (O’Neill and Reese 1999) 

Em/Ei αE 

1.0 1.0 

0.5 0.8 

0.3 0.7 

0.1 0.55 

0.05 0.45 
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Table 7.3. Estimation of Em based on RQD (adapted after O’Neill and Reese 1999) 

Rock Quality 

Designation, RQD (%) 
Em/Ei 

Closed Joints Open Joints 

100 1.00 0.60 

70 0.70 0.10 

50 0.15 0.10 

20 0.05 0.05 

 

7.2 Toe Resistance 

The nominal toe resistance (Rp) can be estimated as 

        (7.9) 

where 

 Ap = area of shaft toe surface (ft
2
); and 

 qp = unit toe resistance (ksf). 

For drilled shafts resting on cohesive soils, the unit toe resistance can be estimated in terms of 

undrained shear strength (Su) provided in O'Neill and Reese (1999) 

             (7.10) 

where 

 Nc =  [     (
 

 
)]   ; 

 Z = penetration of shaft (ft); and 

 D = diameter of drilled shaft (ft). 

For drilled shafts in cohesionless soils with corrected SPT N-value (N60) smaller than 50, the unit 

toe resistance can be estimated using the method suggested by O'Neill and Reese (1999): 

                (7.11) 

However, according to AASHTO LRFD Bridge Design Specifications (2010), cohesionless soils 

with N60 greater than 50 are treated as IGM, and the unit toe resistance is estimated as from 

equation 7.12 

       [   (
  

  
 )]

   

  
  (7.12) 
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where 

   
  = vertical geostatic effective stress at the toe elevation of the shaft (ksf); and 

 N60 = corrected average SPT N-value, limited to 100. 

The unit toe resistance for drilled shafts in rock can be estimated using equation 7.13 if the 

following criteria are met: 1) the rock from below the base of the drilled shaft to a depth of two 

times the shaft diameter (B) is either intact or tightly jointed, and 2) the depth of the socket is 

greater than 1.5B (O'Neill and Reese 1999). If the rock at the same region is jointed and has 

random joint orientation, the unit toe resistance can be estimated using equation 7.14 

          (7.13) 

   [√  √( √   )]     (7.14) 

where 

 qu = uniaxial compressive strength of rock (ksf); 

 s,m = fractured rock mass parameters (refer to Table 7.4); and 

 RMR = rock-mass rating determined by summing all the relative ratings obtained in 

Table 7.5. 
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Table 7.4. Approximate relationship between rock-mass quality and fractured rock-mass 

parameters used in defining nonlinear strength (Hoek and Brown 1988) 

Rock Quality 

P
a

ra
m

et
er

s 

Rock Type 

A = Carbonate rocks with well-developed crystal 

cleavage: dolomite, limestone and marble 

B = Lithified argillaceous rocks: mudstone, siltstone, 

shale and slate (normal to cleavage) 

C = Arenaceous rocks with strong crystals and 

poorly developed crystal cleavage: sandstone 

and quartzite 

D = Fine grained polyminerallic igneous crystalline 

rocks: andesite, dolerite, diabase and rhyolite 

E = Coarse grained polyminerallic igneous & 

metamorphic crystalline rocks: amphibolite, 

gabbro gneiss, granite, norite, quartz-diorite 

A B C D E 

INTACT ROCK SAMPLES 

Laboratory size specimens free from 

discontinuities. RMR = 100 

m 

s 

7.00 

1.00 

10.00 

1.00 

15.00 

1.00 

17.00 

1.00 

25.00 

1.00 

VERY GOOD QUALITY ROCK MASS 

Tightly interlocking undisturbed rock with 

unweathered joint at 3 to 10 ft. RMR = 85 

m 

s 

2.40 

0.082 

3.43 

0.082 

5.14 

0.082 

5.82 

0.082 

8.567 

0.082 

GOOD QUALITY ROCK MASS 

Fresh to slightly weathered rock, slightly 

disturbed with joints at 3 to 10 ft. RMR = 65 

m 

s 

0.575 

0.00293 

0.821 

0.00293 

1.231 

0.00293 

1.395 

0.00293 

2.052 

0.00293 

FAIR QUALITY ROCK MASS 

Several sets of moderately weathered joints 

spaced at 1 to 3 ft. RMR = 44 

m 

s 

0.128 

0.00009 

0.183 

0.00009 

0.275 

0.00009 

0.311 

0.00009 

0.458 

0.00009 

POOR QUALITY ROCK MASS 

Numerous weathered joints at 2 to 12 in.; 

some gouge. Clean compacted waste rock. 

RMR = 23 

m 

s 

0.029 

3 × 10
-6

 

0.041 

3 × 10
-6

 

0.061 

3 × 10
-6

 

0.069 

3 × 10
-6

 

0.102 

3 × 10
-6

 

VERY POOR QUALITY ROCK MASS 

Numerous heavily weathered joints spaced < 

2 in. with gouge. Waste rock with fines. 

RMR = 3 

m 

s 

0.007 

1 × 10
-7

 

0.010 

1 × 10
-7

 

0.015 

1 × 10
-7

 

0.017 

1 × 10
-7

 

0.025 

1 × 10
-7
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Table 7.5. Geomechanics classification of rock-masses 

Parameter Ranges of Values 

1 

Strength 

of intact 

rock 

material 

Point load 

strength 

index 

> 175 

ksf 

85 – 

175 ksf 

45 – 85 

ksf 

20 – 45 

ksf 

For this low range, uniaxial 

compressive test is preferred 

Uniaxial 

compressive 

strength, qu 

> 4320 

ksf 

2160 – 

4320 

ksf 

1080 – 

2160 

ksf 

520 – 

1080 

ksf 

215 – 

520 ksf 

70 – 215 

ksf 
20 – 70 ksf 

Relative Rating 15 12 7 4 2 1 0 

2 
Drill core quality RQD 

90% to 

100% 
75% to 90% 50% to 75% 25% to 50% < 25% 

Relative Rating 20 17 13 8 3 

3 
Spacing of joints > 10 ft 3 – 10 ft 1 – 3 ft 2 in – 1 ft < 2 in 

Relative Rating 30 25 20 10 5 

4 
Condition of joints 

 Very 

rough 

surface 

 Not 

continuous 

 No 

separation 

 Hard joint 

wall rock 

 Slightly 

rough 

surfaces 

 Separation 

< 0.05 in 

 Hard joint 

wall rock 

 Slightly 

rough 

surface 

 Separation 

< 0.05 in 

 Soft joint 

wall rock 

 Slicken-

sided surface 

or 

 Gouge < 0.2 

in thick or 

 Joints open 

0.05 – 0.2 in 

 Continuous 

joints 

 Soft gouge 

> 0.2 in 

thick or 

 Joints open 

> 0.2 in 

 Continuous 

joints 

Relative Rating 25 20 12 6 0 

5 

Ground 

water 

conditions 

(use one of 

the three) 

evaluation 

criteria as 

appropriate 

to the 

method of 

exploration 

Inflow per 

30 ft 

tunnel 

length 

None < 400 gal./hr 400 – 2000 gal./hr > 2000 gal./hr 

Ratio = 

joint water 

pressure/

major 

principal 

stress 

0 0.0 – 0.2 0.2 – 0.5 > 0.5 

General 

conditions 
Completely Dry 

Moist only 

(interstitial 

water) 

Water under 

moderate pressure 

Severe water 

problems 

Relative Rating 10 7 4 0 

 

7.3 Results 

The estimation of nominal axial geotechnical resistances using the aforementioned methods 

requires quantification of surrounding soil parameters through in-situ subsurface investigations 

and/or laboratory material testing. The measured material parameters, such as cohesion (c) for 

cohesive materials and unconfined compressive strength of rock (qu), were included in DSHAFT 

at different soil layers for each drilled shaft data set. Other material parameters that were not 

available from the DSHAFT database were either estimated or assumed based on the 

recommendations as described previously. The measured and estimated material parameters for 

each data set are given in Appendix B. 
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Using the material parameters presented in Appendix B, the nominal axial geotechnical 

resistances for the 13 Iowa data sets were estimated, as shown in Table 7.6. The measured 

nominal total resistances obtained from the load test methods (see Table 1) were also included in 

this table. 

Table 7.6. Summary of total estimated and measured nominal drilled shaft resistances 

DSHAFT  

ID 

Number 

Estimated Nominal Total 

Resistance, Rn (kips) 

Measured Nominal 

Total Resistance, Rm 

(kips) 

Percent 

Difference, % 

1 No soil Information 2039 - 

2 7985 9549 16.4 

3 3190 2794 -14.2 

4 6846 12921 47.0 

5 5181 4786 -8.3 

6 546 519 -5.2 

7 18730 20604 9.1 

8 27040 26468 -2.2 

9 2336 2657 12.1 

10 2239 2445 8.4 

11 2229 1948 -14.4 

26 2025 2771 26.9 

27 2356 2971 20.7 

 

Using the 13 load test data from Iowa, Figure 7.2(a) compares the measured and estimated total 

nominal resistances, and illustrates that the ratio between the measured (Rm) and nominal (Rn) 

resistance has a mean of 1.137 and a standard deviation of 0.283. Furthermore, a preliminary 

analysis using the First Order Second Moment (FOSM) method for a reliability index (β) of 3.00, 

representing a non-redundant pile group, yields a resistance factor of 0.66 (see Table 7.7). The 

resistance factor is based on a total resistance (i.e., shaft resistance and toe resistance), which is 

higher than those recommended in AASHTO, which range from 0.4 to 0.6 for each individual 

resistance component.  

Table 7.7. Summary of AASHTO and regionally calibrated resistance factors 

Soil Type 
Shaft/Toe 

Resistance 

Resistance Factor (φ) for βT =3.00 

AASHTO DSHAFT (Iowa) 

Clay 
Shaft 0.45 

0.66 (based on total 

resistance) 

Toe 0.40 

Sand 
Shaft 0.55 

Toe 0.50 

Rock 
Shaft 0.50-0.55 

Toe 0.50 

Intermediate Geotechnical 

Materials (IGMs) 

Shaft 0.60 

Toe 0.55 
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Figure 7.2. Comparison of measured and estimated total resistances 

When looking at the data in Figure 7.2(b), it shows that the estimated total factored resistance, 

using the regionally calibrated preliminary resistance factor of 0.66, has a closer match with the 

measured total factored resistance, demonstrated with a mean of 1.253 and a standard deviation 

of 0.350. These values, when compared to those obtained per AASHTO’s recommendations 

(mean = 1.588 and standard deviation= 0.397), reveal that a regional study can lead to a cost-

effective LRFD procedure for drilled shafts in Iowa. 
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8. IMPLEMENTATION BENEFITS AND READINESS 

The benefits of using drilled shafts make drilled shafts an attractive option for practice. Most 

drilled shafts in Iowa are rock-socketed, providing significantly enhanced capacities, and 

allowing, in many cases, for a single drilled shaft to replace an entire pile group. 

With today’s technology (e.g., SCC and CSL testing), defects in the drilled shaft concrete are 

less common and can be detected. The construction method and quality control of construction 

still have a large impact on the drilled shaft and should be taken into consideration when 

calibrating the regional resistance factors. A set of acceptable guidelines for tolerances during 

construction should be included with the new resistance factors. 

This report provides the basis for the newly-developed DSHAFT database, which was created to 

compile quality-assured drilled shaft load test information in an easy-to-use format, with the 

intent of calibrating dependable regional resistance factors. 

To increase the knowledge about drilled shafts, DSHAFT is stored on a website 

(http://srg.cce.iastate.edu/dshaft) and is open to the public for use. As more drilled shaft load test 

information becomes available, it will be incorporated into the database. 

The calibration for regional resistance factors for drilled shafts is necessary to provide a 

competitive alternative to driven piles by improving the efficiency of design. From a preliminary 

analysis of Iowa drilled shaft load tests, it was found that a regional calibration of the LRFD 

resistance factors could lead to substantial cost savings and, more importantly, a safer and 

reliable design of drilled shafts. 

More load tests, along with detailed analyses, are needed to provide an accurate statistical 

calibration of the resistance factors for the final calibration. This scope can be achieved 

successfully in the future for Iowa and the Midwest with the addition of more quality drilled 

shaft test data to enhance the database. 
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APPENDIX A. SUMMARY OF AVAILABLE DSHAFT DATASETS 
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Table A.1. Columns 1 through 8 of DSHAFT Display Form 

ID 

State 

 

(1) 

County 

 

(2) 

Township 

 

(3) 

Section 

 

(4) 

Bridge Project 

Number 

(4) 

Excavated and Installed By 

 

(5) 

Construction 

Method 

(6) 

Project 

Number 

(7) 

1 IA Polk Walnut (T-78N R-25W) 1 & 6  N/A Longfellow Drilling, Inc. Slurry LT-8756-1 

2 IA Jackson Bellevue (T-86N R-5E) 19 N/A  Longfellow Drilling, Inc. Slurry LT-9466 

3 IA Polk 
Des Moines (T-79N R-

24W) 
5 N/A  Longfellow Drilling, Inc. Slurry LT-8756-2 

4 IA Polk 
Des Moines (T-78N R-

24W) 
3  N/A 

Jensen Construction 

Company 
Casing LT-8854 

5 IA Polk 
Des Moines (T-78N R-

24W) 
36  N/A Longfellow Drilling, Inc. Slurry LT-8998 

6 IA Polk 
Des Moines (T-78N R-24 

W) 
9  N/A Longfellow Drilling, Inc. Casing LT-9149 

7 IA Van Buren 
Van Buren (T-69N R-

10W) 
36  N/A 

Longfellow Drilling 

Company 
Slurry LT-9183 

8 IA Pottawattamie Kane (T-74N R-44W) 29  N/A 
Jensen Construction 

Company 
Casing LT-9433 

9 IA Pottawattamie Kane (T-75N R-44W) 27 
NHS-080-1(318)0-11-

78 
Longfellow Drilling, Inc. Slurry 108026 

10 IA Pottawattamie Kane (T-75N R-44W) 27 
NHS-080-1(318)0-11-

78 
Longfellow Drilling, Inc. Slurry 108026 
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Table A.1. Columns 1 through 8 of DSHAFT Display Form (continued) 

ID 
State 

 

(1) 

County 

 

(2) 

Township 

 

(3) 

Section 

 

(4) 

Bridge Project 

Number 

(5) 

Excavated and Installed By 

 

(6) 

Construction 

Method 

(7) 

Project 

Number 

(8) 

11 IA Pottawattamie Kane (T-75N R-44W) 27 
NHS-080-1(318)0-11-

78 
Longfellow Drilling, Inc. Slurry 108026 

12 MN Hennepin Minneapolis N/A  N/A  Case Foundation Slurry LT-9401 

13 KS Republic Scandia 8 & 17 N/A  Midwest Foundations Co. Dry LT-8718-2 

14 MO Jackson  N/A  N/A  N/A Hayes Drilling, Inc. Dry LT-8843 

15 KS Ellsworth Ellsworth 28  N/A Midwest Foundations Co. Slurry LT-8790 

16 KS Shawnee Williamsport 24 75-89 K 7317-01 King Construction Dry LT-8733 

17 KY Daviess  N/A  N/A  N/A Taylor Brothers Slurry LT-8415-2 

18 MO Lafayette  N/A N/A   N/A Jensen Construction Slurry LT-8785 

19 KS Republic Scandia 8 & 17  N/A Midwest Foundations Co. Dry LT-8718-1 

20 MN Hennepin  N/A N/A  N/A  Atlas Foundation Co. Casing LT-9193-2 
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Table A.1. Columns 1 through 8 of DSHAFT Display Form (continued) 

ID 
State 

 

(1) 

County 

 

(2) 

Township 

 

(3) 

Section 

 

(4) 

Bridge Project 

Number 

(5) 

Excavated and Installed By 

 

(6) 

Construction 

Method 

(7) 

Project 

Number 

(8) 

21 KS Atchison Atchison N/A   N/A Midwest Foundations Dry LT-9136 

22 MO Lafayette Lexington N/A   N/A Massman Construction Slurry LT-8516-2 

23 MN Washington Stillwater  N/A 56327 Case Foundation, Inc. Casing N/A  

24 IL LaSalle N/A  N/A  N/A  Case Foundation Company Dry LT-8276 

25 IL Rock Island  N/A  N/A  N/A Civil Constructors Inc. Dry LT-9405 

26 IA Pottawattamie Kane (T-75N R-44W) 27  N/A Longfellow Drilling Slurry LT-9640-2 

27 IA Pottawattamie Kane (T-75N R-44W) 27  N/A Longfellow Drilling Slurry LT-9640-1 

28 TN Davidson N/A  N/A   N/A Long Foundation Company Dry LT-9507 

29 TN Davidson  N/A  N/A  N/A Long Foundation Company Dry LT-9507-2 

30 NV Clark  N/A  N/A  N/A Anderson Drilling Slurry LT-9289 
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Table A.1. Columns 1 through 8 of DSHAFT Display Form (continued) 

ID 
State 

 

(1) 

County 

 

(2) 

Township 

 

(3) 

Section 

 

(4) 

Bridge Project 

Number 

(5) 

Excavated and Installed By 

 

(6) 

Construction 

Method 

(7) 

Project 

Number 

(8) 

31 NE Saunders  N/A  N/A  N/A Hawkins Construction Slurry LT-8810 

32 SD Yankton  N/A  N/A  N/A Jensen Construction Co. Slurry LT-9152 
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Table A.2. Columns 9 through 15 of DSHAFT Display Form 

ID 

Date of Final 

Installation 

(9) 

Drilled Shaft Location 

 

(10) 

Tested By 

 

(11) 

Date 

Tested 

(12) 

Date 

Reported 

(13) 

Diameter 

 

(14) 

Concrete Compressive 

Strength 

(15) 

1 12-Apr-02 
Test Shaft #1 - 42nd Street/I-

235 Overpass 

LOADTEST, Inc. (David 

J. Jakstis) 
17-Apr-02 24-Apr-02 48 4470 

2 05-Nov-08 
TS-1 - US 52 over ICE & 

Mill Creek 

LOADTEST, Inc. 

(Ahrens and Skiffington) 
18-Nov-08 25-Nov-08 36 5860 

3 02-Aug-02 
Test Shaft #2 - I-235 / 28th 

St. Overpass 

LOADTEST, Inc. (M. D. 

Ahrens) 
07-Aug-02 13-Aug-02 48 3800 

4 25-Oct-02 
Dedicated Test Shaft - I235 

over Des Moines River 

LOADTEST, Inc. Tobert 

C. Simpson 
08-Nov-02 18-Nov-02 42 3440 

5 23-Jan-04 
Test Shaft #1 - I-235 over UP 

RR 

LOADTEST, Inc. 

(Denton Kort) 
03-Feb-04 07-Feb-04 48 3900 

6 13-Mar-06 
Test Shaft 1 - 9th St. Bridge 

over I-235 

LOADTEST, Inc. (David 

J. Jakstis) 
22-Mar-06 29-Mar-06 30 3480 

7 01-May-06 
Test Shaft #1 - Hwy 1 over 

Des Moines River 

LOADTEST Inc. 

(Michael D. Ahrens) 
11-May-06 18-May-06 36 4100 

8 19-Apr-08 
Test Shaft - I-80 over 

Missouri River, east bank 

LOADTEST, Inc. (Jon 

Sinnreich) 
24-Apr-08 30-Apr-08 66 3800 

9 22-Aug-08 

TS-1: I-80 Bridge Project 

(Broadway Bridge Viaduct) 

in Council Bluffs 

Applied Foundation 

Testing 
13-Sep-08 09-Oct-08 60 5780 

10 21-Aug-08 

TS 2: 1-80 Bridge Project 

(Broadway Bridge Viaduct) 

in Council Bluffs; south 

Applied Foundation 

Testing 
12-Sep-08 09-Oct-08 60 5580 
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Table A.2. Columns 9 through 15 of DSHAFT Display Form (continued) 

ID 
Date of Final 

Installation 

(9) 

Drilled Shaft Location 

 

(10) 

Tested By 

 

(11) 

Date 

Tested 

(12) 

Date 

Reported 

(13) 

Diameter 

 

(14) 

Concrete Compressive 

Strength 

(15) 

11 20-Aug-08 

TS-3: I-80 Bridge Project 

(Broadway Bridge Viaduct) 

in Council Bluffs 

Applied Foundation 

Testing 
13-Sep-08 09-Oct-08 60 5770 

12 15-Nov-07 
Test Shaft 2 - I-35W over 

Mississippi River 

LOADTEST, Inc. (David 

Jakstis) 
22-Nov-07 26-Nov-07 78 4819 

13 30-Mar-01 
East Test Shaft - US 36 Over 

Republican River 

LOADTEST, Inc. (M. D. 

Ahrens) 
06-Apr-01 13-Apr-01 72 6011 

14 31-May-02 
Dedicated Test Shaft - 

Grandview Triangle 

LOADTEST (William G. 

Ryan) 
04-Jun-02 11-Jun-02 72 6000 

15 16-Aug-01 
KS-K-156 over Union Pacific 

Railroad and Side Road 
LOADTEST, Inc. 23-Aug-01 30-Aug-01 42 4550 

16 23-Jan-01 Pier 1 West, US 75 at 77th St. 
LOADTEST, Inc. (Robert 

Simpson) 
01-Feb-01 15-Feb-01 72 5620 

17 22-Sep-98 U.S. 231 over Ohio River 
LOADTEST, Inc. 

(Michael D. Ahrens) 
28-Sep-98 30-Sep-98 96 N/A  

18 22-Sep-02 
Rt. 65 Missouri River Bridge 

- TS at Pier 11 

LOADTEST, Inc. (Robert 

Simpson & William 

Ryan) 

30-Sep-02 02-Oct-02 78 7520 

19 28-Mar-01 
West Test Shaft - US 36 over 

Republican River 

LOADTEST, Inc. (M. D. 

Arhans) 
05-Apr-01 13-Apr-01 72 5419 

20 06-Feb-08 
TP-2 - Crosstown Commons 

Project 

LOADTEST, Inc. 

(William G. Ryan) 
18-Mar-08 26-Mar-08 72 5900 
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Table A.2. Columns 9 through 15 of DSHAFT Display Form (continued) 

ID 
Date of Final 

Installation 

(9) 

Drilled Shaft Location 

 

(10) 

Tested By 

 

(11) 

Date 

Tested 

(12) 

Date 

Reported 

(13) 

Diameter 

 

(14) 

Concrete Compressive 

Strength 

(15) 

21 06-Apr-06 
Test Pile - Amelia Earhart 

Bridge over Missouri River 

LOADTEST, Inc. (David 

J. Jakstis) 
18-Apr-06 26-Apr-06 60 6470 

22 27-Apr-99 

TS @ Sta 0+146 25m Lt. - 

Missouri River Bridge, 

Lexington 

LOADTEST, Inc. (M. D. 

Ahrens) 
03-May-99 13-May-99 46 4070 

23 27-Oct-95 

T-36 Bridge over the St. 

Croix River; 200m west of 

Minnesota bank along the 

alignment of the bridge 

LOADTEST, Inc. 08-Nov-95 05-Jul-95 48  N/A 

24 13-May-96 

F.A.U. Route 6265 CH-15 

Over the Illinois River, 

Marseilles (West drilled shaft 

of Pier 2) 

LOADTEST, Inc. (Jeff 

Coodwin) 
20-May-96 01-Sep-96 62 5280 

25 15-Apr-08 
Test Shaft #1 - IL 5/ IL 84 

Interchange 

LOADTEST, Inc. (Jon 

Sinnreich) 
21-Apr-08 24-Apr-08 42 4100 

26 06-May-10 
Broadway Viaduct - Council 

Bluffs, IA - TS 3 

LOADTEST, Inc. (Bill 

Ryan) 
20-May-10 26-May-10 66 6010 

27 05-May-10 
Broadway Viaduct - Council 

Bluffs, IA - TS 4 

LOADTEST, Inc. (Bill 

Ryan) 
21-May-10 28-May-10 66 5630 

28 17-Sep-08 
Long Foundation Drilling 

equipment Yard 
Loadtest, Inc. 26-Sep-08 N/A 48 5771 

29 02-Oct-08 
Long Foundation Drilling 

Equipment Yard 
Loadtest, Inc. 14-Oct-08 15-Oct-08 48 5900 
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Table A.2. Columns 9 through 15 of DSHAFT Display Form (continued) 

ID 
Date of Final 

Installation 

(9) 

Drilled Shaft Location 

 

(10) 

Tested By 

 

(11) 

Date 

Tested 

(12) 

Date 

Reported 

(13) 

Diameter 

 

(14) 

Concrete Compressive 

Strength 

(15) 

30 05-Oct-06 
I-215 Airport Connector - Las 

Vegas, NV - TS-1 

Loadtest, Inc. (Mr. 

Simpson and Mr. 

Graman) 

17-Oct-06 20-Oct-06 48 N/A  

31 29-Aug-01 
Wahoo South Connector - 

Wahoo, Nebraska - TS 1 

Loadtest, Inc. (Mr. 

Simpson and Mr. Jakstis) 
05-Sep-01 11-Sep-01 66 4670 

32 11-Jun-07 
TS #1 - Highway 81 over 

Missouri River Yankton, SD 

Loadtest, Inc. (Mr. 

Ahrens and Mr. Usab) 
20-Jun-07 02-Jul-07 96 3256 
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Table A.3. Columns 16 through 23 of DSHAFT Display Form 

ID 

ReBar 

Cage 

Diameter 

(16) 

Number of 

Longitudinal 

ReBars 

(17) 

Longitudinal 

ReBar Size 

 

(18) 

Longitudinal ReBar 

Tensile Yield 

Strength 

(19) 

Transverse 

ReBar 

Spacing 

(20) 

Transverse 

ReBar Size 

 

(21) 

Transverse ReBar 

Tensile Yield 

Strength 

(22) 

Ground 

Surface 

Elevation 

(23) 

1 42 18 #10 60 12 #5 60 974.40 

2 30 8 #10 60 12 #5 60 599.3 

3 42 18 #11 60 12 #4 60 891.5 

4 36 16 #10 60 12 #4 60 805.3 

5 N/A  14 #10 60 N/A #5 60 813.6 

6 22 10 #8 60 12 #5 60 918.6 

7 30 20 #9 60 10 #5 60 572.0 

8 60 18 #14 60 10 #5 60 975.3 

9  N/A 23 #10 60 12 #5 60 988.5 



51 

Table A.3. Columns 16 through 23 of DSHAFT Display Form (continued) 

ID 

ReBar 

Cage 

Diameter 

(16) 

Number of 

Longitudinal 

ReBars 

(17) 

Longitudinal 

ReBar Size 

 

(18) 

Longitudinal ReBar 

Tensile Yield 

Strength 

(19) 

Transverse 

ReBar 

Spacing 

(20) 

Transverse 

ReBar Size 

 

(21) 

Transverse ReBar 

Tensile Yield 

Strength 

(22) 

Ground 

Surface 

Elevation 

(23) 

10 N/A  23 #10 60 12 #5 60 988.84 

11  N/A 23 #10 60 12 #5 60 990.47 

12 70 13 #11 60  5 #6 60  743 

13 66 N/A  N/A N/A  60 #5 N/A  1434.4 

14 66 N/A N/A   N/A 60 #5 N/A  942.4 

15  N/A N/A N/A   N/A N/A N/A  N/A  1529 

16  N/A 33 #10 N/A  N/A #5 N/A  1013.9 

17 N/A  N/A  N/A N/A  N/A N/A  N/A  341 

18  N/A 22 #14 N/A  30 #5 N/A  637.5 
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Table A.3. Columns 16 through 23 of DSHAFT Display Form (continued) 

ID 

ReBar 

Cage 

Diameter 

(16) 

Number of 

Longitudinal 

ReBars 

(17) 

Longitudinal 

ReBar Size 

 

(18) 

Longitudinal ReBar 

Tensile Yield 

Strength 

(19) 

Transverse 

ReBar 

Spacing 

(20) 

Transverse 

ReBar Size 

 

(21) 

Transverse ReBar 

Tensile Yield 

Strength 

(22) 

Ground 

Surface 

Elevation 

(23) 

19 66 N/A N/A  N/A  60 #5 N/A  1433.4 

20 60 32 #10 N/A  12 #4 N/A  835 

21  N/A N/A N/A  N/A  N/A  N/A N/A  789 

22 N/A  N/A  N/A  N/A N/A  N/A N/A  671.0 

23  N/A N/A N/A  N/A  N/A  N/A N/A  700 

24 54 18 #14  N/A 3 #7 N/A  501 

25 38 32 #10  N/A N/A #5 N/A  622.8 

26  N/A 19 #11 60 10 #4 60 987.65 

27  N/A 19 #11 60 10 #4 60 987.65 
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Table A.3. Columns 16 through 23 of DSHAFT Display Form (continued) 

ID 

ReBar 

Cage 

Diameter 

(16) 

Number of 

Longitudinal 

ReBars 

(17) 

Longitudinal 

ReBar Size 

 

(18) 

Longitudinal ReBar 

Tensile Yield 

Strength 

(19) 

Transverse 

ReBar 

Spacing 

(20) 

Transverse 

ReBar Size 

 

(21) 

Transverse ReBar 

Tensile Yield 

Strength 

(22) 

Ground 

Surface 

Elevation 

(23) 

28 36 6 #10 60 13 #5 60  N/A 

29 30 5 #9 60 24 #3 60  N/A 

30  N/A N/A  N/A  N/A N/A  N/A  N/A 0 

31 N/A  32 #11 60 N/A #4 60 1190.09 

32 90 48 #11 60 12 #5 60 1156.9 
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Table A.4. Columns 24 through 32 of DSHAFT Display Form 

ID 

Water 

Table 

Elevation 

(24) 

Elevation of Top 

of Shaft Concrete 

 

(25) 

Elevation of 

Shaft Toe 

 

(26) 

Test Method 

 

 

(27) 

Rock-

Socketed 

 

(28) 

Test Site Soil 

Classification 

 

(29) 

Acceptable 

Quality of 

Concrete 

(30) 

Record 

Complete 

 

(31) 

Usable 

Data 

 

(32) 

1 
Not 

Encountered 
972.00 905.60 Osterberg Test Yes Clay Yes Yes Yes 

2 590.0 585.7 573.0 Osterberg Test Yes Clay Yes Yes Yes 

3 
Not 

Encountered 
890.0 824.2 Osterberg Test Yes Clay  N/A N/A  Yes 

4 787.8 803.5 730.8 Osterberg Test Yes Mixed Yes Yes Yes 

5 Unknown 813.6 734.3 Osterberg Test Yes Clay N/A  N/A  Yes 

6 N/A  916.5 852.5 Osterberg Test No Clay Yes Yes Yes 

7 559.0 572.0 538.0 Osterberg Test Yes Clay Yes Yes Yes 

8 955.5 973.5 868.3 Osterberg Test Yes Sand Yes Yes Yes 

9 983 990.04 923.74 
Statnamic 

Test 
No Mixed Yes Yes Yes 
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Table A.4. Columns 24 through 32 of DSHAFT Display Form (continued) 

ID 

Water 

Table 

Elevation 

(24) 

Elevation of Top 

of Shaft Concrete 

 

(25) 

Elevation of 

Shaft Toe 

 

(26) 

Test Method 

 

 

(27) 

Rock-

Socketed 

 

(28) 

Test Site Soil 

Classification 

 

(29) 

Acceptable 

Quality of 

Concrete 

(30) 

Record 

Complete 

 

(31) 

Usable 

Data 

 

(32) 

10 972.84 988.72 933.30 
Statnamic 

Test 
No Sand Yes Yes Yes 

11 973.47 991.52 935.69 
Statnamic 

Test 
No Sand Yes Yes Yes 

12 725 739 645.1 Osterberg Test Yes Sand N/A  Yes ?  

13 1426.1 1412.4 1385.4 Osterberg Test Yes Sand N/A  Yes  ? 

14 917.4 934 893.4 Osterberg Test Yes Rock N/A  Yes ? 

15 1515.7 1473.8 1454.8 Osterberg Test Yes Mixed N/A  Yes  ? 

16 953.9 1008.9 974.9 Osterberg Test Yes Clay N/A  Yes  ? 

17 360 337.1 231.9 Osterberg Test Yes Clay  N/A Yes  ? 

18 657.5 627.5 558.0 Osterberg Test Yes Sand  N/A Yes  ? 
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Table A.4. Columns 24 through 32 of DSHAFT Display Form (continued) 

ID 

Water 

Table 

Elevation 

(24) 

Elevation of Top 

of Shaft Concrete 

 

(25) 

Elevation of 

Shaft Toe 

 

(26) 

Test Method 

 

 

(27) 

Rock-

Socketed 

 

(28) 

Test Site Soil 

Classification 

 

(29) 

Acceptable 

Quality of 

Concrete 

(30) 

Record 

Complete 

 

(31) 

Usable 

Data 

 

(32) 

19 1426.1 1410.9 1384.7 Osterberg Test Yes Sand  N/A  -  ? 

20 825.5 829.3 774 Osterberg Test No Sand N/A  Yes  ? 

21 762 723.02 629.03 Osterberg Test Yes Sand  N/A -  ? 

22 Variable 605.0 573.0 Osterberg Test Yes Mixed  N/A -   ? 

23 698 549 521 Osterberg Test Yes Sand N/A   -  ? 

24 Unknown 496 421 Osterberg Test Yes Mixed N/A   -  ? 

25 Unknown 622.8 585.4 Osterberg Test Yes Mixed N/A   -  ? 

26 971.65 987.65 912.48 Osterberg Test No Sand N/A   - Yes 

27 971.65 687.65 912.65 Osterberg Test No Sand N/A   - Yes 
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Table A.4. Columns 24 through 32 of DSHAFT Display Form (continued) 

ID 

Water 

Table 

Elevation 

(24) 

Elevation of Top 

of Shaft Concrete 

 

(25) 

Elevation of 

Shaft Toe 

 

(26) 

Test Method 

 

 

(27) 

Rock-

Socketed 

 

(28) 

Test Site Soil 

Classification 

 

(29) 

Acceptable 

Quality of 

Concrete 

(30) 

Record 

Complete 

 

(31) 

Usable 

Data 

 

(32) 

28 
Not 

Encountered 
N/A  N/A  Osterberg Test Yes Clay  N/A Yes  ? 

29 
Not 

Encountered 
 N/A  N/A Osterberg Test Yes Clay  N/A  -  ? 

30 -85 -19 -122 Osterberg Test No Mixed  N/A  -  ? 

31 1172.08 1190.35 1121.26 Osterberg Test No Mixed  N/A  -  ? 

32 1151 1149.1 1041.8 Osterberg Test Yes Sand N/A   -  ? 
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Table A.5. Columns 33 through 38 of DSHAFT Display Form 

ID 
Attachments (1) 

(33) 

Attachments (2) 

(34) 

Attachments (3) 

(35) 

Attachments (4) 

(36) 

Attachments (5) 

(37) 

Attachments (6) 

(38) 

1 
Report on Drilled 

Shaft Load Test 

Map  CSL Report  - - - 

2 
Drilled Shaft Load 

Test Report 

Map  CSL Report  - - - 

3 
Report on Drilled 

Shaft Load Test 

Map  - - - - 

4 
Report on Drilled 

Shaft Load Testing  

CSL Report  Map  -  - - 

5 
Report on Drilled 

Shaft Load Testing  

Map  - - - - 

6 
Report on Drilled 

Shaft Load Testing  

CSL Report  Map  - - - 

7 
Report on Drilled 

Shaft Load Testing  

CSL Report  Map  - - - 

8 
Report on Drilled 

Shaft Load Testing  

CSL Report  Map  - - - 

9 
Report on Drilled 

Shaft Load Testing  

Report on Drilled 

Shaft Post 

Grouting  

CSL Report  Map  - - 

10 
Report on Drilled 

Shaft Load Testing  

Report on Drilled 

Shaft Post 

Grouting  

CSL Report  Map  - - 

file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-1/Report%20on%20Drilled%20Shaft%20Load%20Testing%20(Record%20ID-1).pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-1/Report%20on%20Drilled%20Shaft%20Load%20Testing%20(Record%20ID-1).pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-1/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-1/I235_42ndStreet.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-2/9466%20O-cell%20Report.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-2/9466%20O-cell%20Report.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-2/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-2/CSL.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-3/Load%20Test%2028th%20over%20I-235.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-3/Load%20Test%2028th%20over%20I-235.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-3/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-4/Load%20Test%20I-235%20over%20DSM%20River.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-4/Load%20Test%20I-235%20over%20DSM%20River.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-4/I235_DMRiver.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-4/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-5/8998%20%20I-235%20over%20UP%20PR%20%20Polk%20Co%20IA.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-5/8998%20%20I-235%20over%20UP%20PR%20%20Polk%20Co%20IA.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-5/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-6/LT-9149%20Final%20Report_2.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-6/LT-9149%20Final%20Report_2.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-6/CSL.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-6/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-7/LT-9183%20Final%20Report_2.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-7/LT-9183%20Final%20Report_2.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-7/CSL.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-7/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-8/9433.PDF
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-8/9433.PDF
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-8/CSL%20Rpt%20Demo%20Shaft%20I-80.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-8/Map.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Statnamic%20Load%20Testing.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Statnamic%20Load%20Testing.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Post%20Grouting.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Post%20Grouting.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Post%20Grouting.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/CSL%20TS-1.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Map-TS1.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Statnamic%20Load%20Testing.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Statnamic%20Load%20Testing.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Post%20Grouting.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Post%20Grouting.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Post%20Grouting.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/CSL%20TS-2%20South.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Map-TS2.htm
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Table A.5. Columns 33 through 38 of DSHAFT Display Form (continued) 

ID 
Attachments (1) 

(33) 

Attachments (2) 

(34) 

Attachments (3) 

(35) 

Attachments (4) 

(36) 

Attachments (5) 

(37) 

Attachments (6) 

(38) 

11 
Report on Drilled 

Shaft Load Testing  

CSL Report  Map  - - - 

12 
Report on Drilled 

Shaft Load Test 

- - - - - 

13 
Report on Drilled 

Shaft Load Testing  

- - - - - 

14 
Report on Drilled 

Shaft Load testing  

- - - - - 

15 
Report on Drilled 

Shaft Load Testing  

- - - - - 

16 
Report on Drilled 

Shaft Load Testing  

- - - - - 

17 
Report on Drilled 

Shaft Load Testing  

Additional 

Information  

- - - - 

18 
Report on Drilled 

Shaft Load Testing  

- - - - - 

19 
Report on Drilled 

Shaft Load Testing  

CSL Report  - - - - 

20 
Report on Drilled 

Shaft Load Testing  

- - - - - 

file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Statnamic%20Load%20Testing.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Iowa%20DOT%20Final%20Report%20of%20Statnamic%20Load%20Testing.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/CSL%20TS-3%20South.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-9,%2010,%2011/Map-TS3.htm
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-12/LT-9401%20-%20I-35%20W%20over%20Mississippi%20River%20-%20Final%20Report.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-12/LT-9401%20-%20I-35%20W%20over%20Mississippi%20River%20-%20Final%20Report.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-13/E%20shaft%20US%2036%20Republic%20Ks%20Republican%20Rvr%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-13/E%20shaft%20US%2036%20Republic%20Ks%20Republican%20Rvr%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-14/Grandview%20Triangle%20Load%20Test%202002.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-14/Grandview%20Triangle%20Load%20Test%202002.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-15/K%20156%20over%20RR%20Ellsworth%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-15/K%20156%20over%20RR%20Ellsworth%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-16/Pier%201%20West%2075%20at%2077th%20Topeka%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-16/Pier%201%20West%2075%20at%2077th%20Topeka%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-17/231%20over%20Ohio%20Rvr,%20Owensboro,%20Ky%201993.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-17/231%20over%20Ohio%20Rvr,%20Owensboro,%20Ky%201993.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-17/Pier%208&9,%20231%20over%20Ohio%20Rvr,%20Owensboro,%20Ky%201993.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-17/Pier%208&9,%20231%20over%20Ohio%20Rvr,%20Owensboro,%20Ky%201993.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-18/Route%2065%20Waverly%20Mo%202002.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-18/Route%2065%20Waverly%20Mo%202002.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-19/W%20shaft%20US%2036%20Republic%20Ks%20Republican%20Rvr%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-19/W%20shaft%20US%2036%20Republic%20Ks%20Republican%20Rvr%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-19/US%2036%20Scandia%20Ks,%20Republican%20Rvr%202001.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-20/27406%20drilled%20shaft%20osterberg%20test.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-20/27406%20drilled%20shaft%20osterberg%20test.pdf


60 

Table A.5. Columns 33 through 38 of DSHAFT Display Form (continued) 

ID 
Attachments (1) 

(33) 

Attachments (2) 

(34) 

Attachments (3) 

(35) 

Attachments (4) 

(36) 

Attachments (5) 

(37) 

Attachments (6) 

(38) 

21 
Report on Drilled 

Shaft Load Testing  

- - - - - 

22 
Report on Drilled 

Shaft Load Testing  

- - - - - 

23 
Report on Drilled 

Shaft Load Testing  

Digitized Load 

Transfer Data  

Osterberg Load 

Test Data 

- - - 

24 
Report on Drilled 

Shaft Load Testing  

- - - - - 

25 Load Test Report - - - - - 

26 
Drilled Shaft Load 

Test Report 

CSL Report  - - - - 

27 
Drilled Shaft Load 

Test Report 

Post Grouting 

Details  

CSL Report  - - - 

28 Load Test Report - - - - - 

29 Load Test Report - - - - - 

30 
Drilled Shaft Load 

Test Report 

- - - - - 

file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-21/Amelia%20Earhart%20Bridge%20O-cell%20test%202007.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-21/Amelia%20Earhart%20Bridge%20O-cell%20test%202007.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-22/Route%2013%20Lexington%20Mo%201999.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-22/Route%2013%20Lexington%20Mo%201999.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-23/8269%20St%20Croix%20River%20Bridge,%20MN%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-23/8269%20St%20Croix%20River%20Bridge,%20MN%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-23/Load%20Transfer%20Data.xlsx
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-23/Load%20Transfer%20Data.xlsx
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-23/Osterberg%20Load%20Test%20Data.xlsx
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-23/Osterberg%20Load%20Test%20Data.xlsx
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-24/Ocell%20Report%20LaSalle%20County%20Load%20Test%20LT-8276%201996.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-24/Ocell%20Report%20LaSalle%20County%20Load%20Test%20LT-8276%201996.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-25/Ocell%20load%20test%20D2.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-26/9640-2%20Report%20V3%200-1%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-26/9640-2%20Report%20V3%200-1%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-26/Broadway%20Viaduct%20CSL%20TS3&4%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-27/Grouted%20shaft%20O-cell%20test%20report%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-27/Grouted%20shaft%20O-cell%20test%20report%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-27/9640-1Draft%20Report%20Post%20Grouted%20-1%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-27/9640-1Draft%20Report%20Post%20Grouted%20-1%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-27/Broadway%20Viaduct%20CSL%20TS3&4%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-28,%2029/Nashville.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-28,%2029
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-30/LT-9289.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-30/LT-9289.pdf
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Table A.5. Columns 33 through 38 of DSHAFT Display Form (continued) 

ID 
Attachments (1) 

(33) 

Attachments (2) 

(34) 

Attachments (3) 

(35) 

Attachments (4) 

(36) 

Attachments (5) 

(37) 

Attachments (6) 

(38) 

31 
Drilled Shaft Load 

Test Report - Part 1 

Drilled Shaft 

Load Test Report 

- Part 2 

Drilled Shaft Load 

Test Report - Part 

3  

- - - 

32 
Drilled Shaft Load 

Test Report - Part 1 

Drilled Shaft 

Load Test Report 

- Part 2 

Drilled Shaft Load 

Test Report - Part 

3  

- - - 

file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%201%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%201%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%202%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%202%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%202%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%203%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%203%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-31/Wahoo%20South%20Connector%203%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%201%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%201%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%202%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%202%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%202%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%203%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%203%20of%203%5b1%5d.pdf
file:///C:/Documents%20and%20Settings/jaheine/Local%20Settings/Temporary%20Internet%20Files/Drilled%20Shaft%20Load%20Tests%20Records%20Directory/Record%20ID-32/Yankton%20South%203%20of%203%5b1%5d.pdf
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APPENDIX B. SUMMARY OF SUBSURFACE PROFILE AND MATERIAL 

PARAMETERS FOR DATASETS USED IN PRELIMINARY ANALYSIS 

Table B.1. Subsurface profile and material parameters for data point ID No. 1 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 
Firm glacial 

clay 
8.2 Cohesive - - 

2 
Firm silty 

glacial clay 
7.9 Cohesive - - 

3 Stiff silty clay 20 Cohesive - - 

4 
Firm glacial 

clay 
12.1 Cohesive - - 

5 Soft shale 16.4 
Cohesive 

IGM or rock 
- - 

6 Firm shale 3.3 
Cohesive 

IGM or rock 
- - 

 

Table B.2. Subsurface profile and material parameters for data point ID No. 2 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 

Slightly 

weathered 

dolomite 

12.7 Rock 
qu (shaft/toe) = 637.2 

ksf; RQD = 90% 

Em/Ei = 0.90
(a)

; 
)
; αE = 

0.96
(d)

; RMR = 84
(b)

; m = 

2.4
(c)

; s = 0.082
(c)

 

(a)
 –estimated from Table 7.3;

 (b)
 –determined from Table 7.5; 

(c)
 –determined from Table 7.5; 

(d)
 –estimated from 

Table 7.2. 

Table B.3. Subsurface profile and material parameters for data point ID No. 3 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 

Stiff to firm 

silty glacial 

clay 

39 Cohesive 
N60 = 12; c = 1.572 

ksf 
Su = 1.572 ksf

(d)
 

2 Firm silty clay 4.92 Cohesive 
N60 = 22; c = 2.934 

ksf 
Su = 2.934 ksf

(d)
 

3 
Clay shale 

bedrock 
21.88 Rock 

qu (shaft) = 196.56 

ksf; qu (toe) = 24.37 

ksf; RQD = 33% 

Em/Ei = 0.093
(a)

; αE = 

0.536
(e)

; RMR = 49
(b)

; m = 

0.183
(c)

; s = 0.00009
(c)

 

(a)
 –estimated from Table 7.3;

 (b)
 –determined from Table 7.5; 

(c)
 –determined from Table 7.5;

 (d)
 –assumed similar to 

cohesion;
 (e)

 –estimated from Table 7.2. 
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Table B.4. Subsurface profile and material parameters for data point ID No. 4 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 
Stiff sandy 

glacial clay 
10.496 Cohesive 

N60 = 23; c = 3.067 

ksf 

Su = 3.067 ksf
(d)

; γ = 0.128 

kcf
(a)

 

2 
Fine to 

medium sand 
32.5 Cohesionless 

N60 = 14; c = 1.857 

ksf 
γ = 0.114 kcf

(a)
 

3 Clay shale 29.7 
Cohesive 

IGM 

qu (shaft) = 91.584 

ksf; qu (toe) = 93.67 

ksf; RQD = 93% 

σn = 3.9
(b)

; RMR = 83
(c)

; m 

= 3.43
 (e)

; s = 0.082
(e)

 

(a)
 –estimated using N60 based on recommendation provided by Bowles (1996);

 (b)
 –estimated using equation 7.6;

 (c)
 –

determined from Table 7.5; 
(d)

 –assumed similar to cohesion; 
(e)

 –determined from Table 7.5. 

 

Table B.5. Subsurface profile and material parameters for data point ID No. 5 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 
Silty sandy 

lean clay 
7.9 Cohesive N60 = 5; c = 0.625 ksf 

Su = 0.625 ksf
(g)

; γ = 0.115 

kcf
(a)

 

2 Silty lean clay 4.9 Cohesive 
N60 = 11; c = 1.429 

ksf 
Su = 1.429 ksf

(g)
; γ = 0.127 

kcf
(a) 

3 
Silty sandy 

lean clay 
27.6 Cohesive N60 = 15; c = 2 ksf Su = 2 ksf

(g)
; γ = 0.138 kcf

(a) 

4 
Gravel with 

sand 
1.6 Cohesionless N60 = 100; c = 4 ksf;  γ = 0.15 kcf

(a)
 

5 Clay shale 23.3 
Cohesive 

IGM 

γ = 0.126 kcf; qu = 

14.4 ksf; RQD = 58% 
σn = 3.9 

6 Coal 3 
Cohesive 

IGM 
- qu = 5.76 ksf

(b)
; σn = 3.9 

7 Clay shale 7.5 
Cohesive 

IGM 
γ = 0.12 kcf; qu = 

5.76 ksf 
σn = 3.9 

8 
Carboniferous 

clay shale 
3.5 Rock 

γ = 0.131 kcf; qu 

(shaft) = 138.63 ksf; 

qu (toe) = 191.81 ksf 

RQD = 37%
(c)

; Em/Ei = 

0.106
(d)

; RMR = 38
(e)

; m = 

0.183
(f)

; s = 0.00009
(f)

 

(a)
 –estimated using N60 based on recommendation provided by Bowles (1996); 

(b)
 –assumed similar value of clay 

shale; 
(c)

 –estimated based on qu value; 
(d)

 –estimated from Table 7.3; 
(e)

 –determined from Table 7.5; 
(f)

 –determined 

from Table 7.5;
 (g)

 –assumed similar to cohesion. 
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Table B.6. Subsurface profile and material parameters for data point ID No. 6 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Firm clay fill 5.9 Cohesive 
N60 = 10; c = 1.286 

ksf 
Su = 1.286 ksf

(a)
 

2 Stiff silty clay 21 Cohesive N60 = 5; c = 0.625 ksf Su = 0.625 ksf
(a)

 

3 
Firm glacial 

clay 
18.7 Cohesive 

N60 = 13; c = 1.715 

ksf 
Su = 1.715 ksf

(a)
 

4 

Very Firm 

sandy glacial 

clay 

18.4 Cohesive 
N60 = 23; c = 3.067 

ksf 
Su = 3.067 ksf

(a)
 

(a)
 –assumed similar to cohesion. 

 

Table B.7. Subsurface profile and material parameters for data point ID No. 7 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Lean clay 4 Cohesive 
N60 = 20; c = 1.286 

ksf 
Su = 1.286 ksf

(a)
; γ = 0.125 

kcf
(b) 

2 
Lean clay with 

sand 
9 Cohesive 

N60 = 10; c = 2.667 

ksf 
Su = 2.667 ksf

(a)
; γ = 0.125 

kcf
(b) 

3 
Mod weathered 

limestone 
1.1 Rock qu = 555.84 ksf; 

RQD = 70%
(c)

; Em/Ei = 

0.7
(d)

; αE = 0.88
(e)

 

4 Fresh limestone 2.3 Rock 
qu = 1388.16 ksf; 

RQD = 79% 

Em/Ei = 0.79
(d)

; Em/Ei = 

0.79
(d)

; αE = 0.916
(e)

 

5 
Calcareous 

sandstone 
4.3 Rock 

qu = 862.56 ksf; RQD 

= 83% 
Em/Ei = 0.83

(d)
; αE = 0.932

(e)
 

6 

Fractured 

Limestone with 

weathered shale 

1.3 Rock qu = 1175.04 ksf 
RQD = 50%

(c)
; Em/Ei = 

0.15
(d)

; αE = 0.55
(e)

 

7 Fresh limestone 12 Rock 
qu (shaft) = 817.2 ksf; 

qu (toe) = 760.32 ksf;  

RQD = 96% 

Em/Ei = 0.96
(d)

; αE = 0.984
(e)

 

(a)
 –assumed similar to cohesion; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996);

 (c)
 –

estimated based on qu value;
 (d)

 –estimated from Table 7.3;
 (e)

 –estimated from Table 7.2. 
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Table B.8. Subsurface profile and material parameters for data point ID No. 8 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Silty clay 10 Cohesive 
N60 = 12; c = 1.572 

ksf 

Su = 1.572 ksf
(a)

; γ = 0.13 

kcf
(b)

 

2 
Silt with minor 

sand 
17 Cohesive N60 = 2; c = 0.25 ksf 

Su = 0.25 ksf
(a)

; γ = 0.121 

kcf
(b)

 

3 

Fine to medium 

sand with fine 

gravel 

42 Cohesionless N60 = 30; c = 4 ksf γ = 0.13 kcf
(b)

 

4 

Medium to 

coarse sand 

with gravel 

21.5 Cohesionless N60 = 21; c = 2.8 ksf γ = 0.121 kcf
(b)

 

5 Fresh limestone 14.7 Rock 

qu (shaft) = 510.34 

ksf; qu (toe) = 

553.40 ksf;  RQD = 

77% 

Em/Ei = 0.96
(c)

; αE = 0.984
(d)

; 

RMR = 60
(e)

; m = 0.58
(f)

; s = 

0.0029
(f)

 

(a)
 –assumed similar to cohesion; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996);

  

(c)
 –estimated from Table 7.3;

 (d)
 –estimated from Table 7.2;

 (e)
 –determined from Table 7.5; 

(f)
 –determined from 

Table 7.5. 

 

Table B.9. Subsurface profile and material parameters for data point ID No. 9 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Stiff silty clay 10 Cohesive 
N60 = 7; c = 0.875 

ksf 
Su = 0.875 ksf

(a)
; γ = 0.125 

kcf
(b)

 

2 
Soft to stiff silty 

clay 
10 Cohesive N60 = 4; c = 0.5 ksf 

Su = 0.5 ksf
(a)

; γ = 0.110 

kcf
(b)

 

3 Silty fine sand 10 Cohesionless 
N60 = 13; c = 1.715 

ksf 
γ = 0.113 kcf

(b) 

4 Fine sand 25 Cohesionless 
N60 = 20; c = 2.667 

ksf 
γ = 0.120 kcf

(b) 

5 Soft silty sand 5 Cohesionless N60 = 2; c = 0.25 ksf γ = 0.085 kcf
(b) 

6 Coarse sand 6.25 Cohesionless 
N60 = 16; c = 2.134 

ksf 
γ = 0.116 kcf

(b) 

(a)
 –assumed similar to cohesion; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996). 

 

Table B.10. Subsurface profile and material parameters for data point ID No. 10 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Stiff silty clay 5 Cohesive 
N60 = 12; c = 1.572 

ksf 

Su = 1.572 ksf
(a)

; γ = 0.130 

kcf
(b)

 

2 
Soft to stiff silty 

clay 
10 Cohesive 

N60 = 7; c = 0.875 

ksf 

Su = 0.875 ksf
(a)

; γ = 0.127 

kcf
(b)

 

3 Soft silty clay 5 Cohesive 
N60 = 5; c = 0.625 

ksf 

Su = 0.625 ksf
(a)

; γ = 0.122 

kcf
(b)

 

4 Fine sand 35 Cohesionless N60 = 15; c = 2 ksf γ = 0.115 kcf
(b)

 

5 

Coarse sand 

with trace 

gravel 

0.42 Cohesionless N60 = 18; c = 2.4 ksf γ = 0.118 kcf
(b)

 

(a)
 –assumed similar to cohesion; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996). 
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Table B.11. Subsurface profile and material parameters for data point ID No. 11 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Stiff silty clay 5 Cohesive 
N60 = 14; c = 0.625 

ksf 

Su = 0.625 ksf
(a)

; γ = 0.135 

kcf
(b)

 

2 
Soft to stiff silty 

clay 
15 Cohesive 

N60 = 5; c = 1.857 

ksf 

Su = 1.857 ksf
(a)

; γ = 0.115 

kcf
(b)

 

3 Fine sand 34.78 Cohesionless 
N60 = 17; c = 2.267 

ksf 
γ = 0.117 kcf

(b)
 

(a)
 –assumed similar to cohesion; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996). 

 

Table B.12. Subsurface profile and material parameters for data point ID No. 26 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Lean clay 10 Cohesive N60 = 4 
Su = 0.424 ksf

(a)
; γ = 0.120 

kcf
(b)

 

2 Fine sand 8.5 Cohesionless N60 = 4 γ = 0.090 kcf
(b)

 

3 Silty clay 5 Cohesive N60 = 3 
Su = 0.350 ksf

(a)
; γ = 0.110 

kcf
(b)

 

4 Fine sand 51.67 Cohesionless N60 = 11 γ = 0.110 kcf
(b)

 

(a)
 –estimated using equation 7.3; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996). 

 

Table B.13. Subsurface profile and material parameters for data point ID No. 27 

Soil 

Layer 

Material 

Description 

Thickness 

(ft) 

Material 

Type 

Measured Material 

Parameters 

Estimated Material 

Parameters 

1 Lean clay 10 Cohesive N60 = 7 
Su = 0.742 ksf

(a)
; γ = 0.125 

kcf
(b)

 

2 Fine sand 8.5 Cohesionless N60 = 5 γ = 0.094 kcf
(b)

 

3 Silty clay 5 Cohesive N60 = 5 
Su = 0.53 ksf

(a)
; γ = 0.115 

kcf
(b)

 

4 Fine sand 51.5 Cohesionless N60 = 13 γ = 0.113 kcf
(b)

 

(a)
 –estimated using equation 7.3; 

(b)
 –estimated using N60 based on recommendation provided by Bowles (1996). 
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