U.S. 20 Iowa River Bridge

2ND NATIONAL PREFABRICATED BRIDGE ELEMENTS AND SYSTEMS WORKSHOP

owa Department Transportation

NEW BRUNSWICK, New Jersey

September 8-10, 2004

History of the Relocation Process

History of the Relocation Process

Environmental Concerns & Restrictions

Concerns

- Eagles roosting area
- Northern Monkshood plant
- Mussels in river
- Quality Wetlands

Environmental Concerns & Restrictions

Restrictions

- Limited clearing & grubbing under bridge.
- Minimized areas of construction zone.
- No bridging or crossing of the river.
- No work on site Nov. 1st Apr. 15th. This restriction was lifted

Environmental Concerns & Restrictions

Archeological Restrictions

Indian burial mounds
Ancient native american campsites
Headstones

Bridge Details (One Superstructure)

Bridge Details

Bridge Details (Piers)

Geotechnical Analysis & Recommendations

lowa Department of Transportation

Launching Pit Excavated at East Abutment

Girders Assembled in Launching Pit

Girders Supported Rollers

Ramp Plates Aid Transition at Field Splices

Girders Supported by Rollers

Girders Guided by Horizontal Rollers

Monitor Girder Position During Launching

Jacking System Used for Launching

Jacking System Used for Launching

Launching Nose Accommodates Deflection

Deflection of WB Span 1 During Launch

Launching Nose Landing at Final Pier

Looking East From Beneath Girders at Pier 1

Rollers Removed After Launching Completed

Bearings Inserted and Girders Jacked Down

Goals of Monitoring Program

Gain a more complete understanding of the behavior of launched plate girder bridges

Quantify structural performance and verify assumptions made during design

Identify locations of overstress or other damage

- Immediate repair
- Long-term maintenance concerns

wa Department Transportation

Substructure Monitoring

General pier behavior (drilled shaft and driven pile)

- Column base strain
- Column base translation and tilt
- Cap beam tilt

At near and far column faces

Substructure Monitoring

Magnitude of launch induced forces At hydraulic jacks At pier cap

Largest day launch cumulative column stress measured was 600 psi

Residual stress at end of day launch

Max. measured column stresses of approx. 260 psi due to applied launch force "spikes"; similar to calculated values

Pier design controlled by AASHTO loads -design checks considered ramp crossing loads

Drilled shaft foundation more "flexible" than pile group foundation in resisting launch forces

Superstructure Monitoring

Girder load distribution Bending

Cross-frame behavior

Roller contact stresses

- Bottom flange
- Web
- Flange to web welds

Design bearing for vertical compressive stress -closed form solution of equivalent line load -reaction at Pier 6 for Pier 5 touchdown

Significant longitudinal flange strain measured > F_v

Significant vertical strain measured

Cross-frame behavior is complex and sensitive -axial forces, biaxial bending, and torsion

Measured values exceeded design values

Design assumed AASHTO loads only

Member Type	Design Force	Calculated Force (WB1)	Calculated Force (WB5)
Upper Chord	20 kips C	42.6 kips T	86.2 kips T
Diagonals	38 kips T or C	56.2 kips T	172.1 kips T
Bottom Chord	20 kips T or C	31.1 kips T	39.7 kips C

Action Related to Contact Stress Issue

Post-construction inspection

- Visual and magnetic particle
- No signs of cracking or other damage

High stresses can result in "cold work" regionFracture characteristics not impacted

Launch Project Recommendations

Use large contact surface area for launch rollers

Design crossframe members/connections to support the weight of one girder supported only by crossframe

Provide comprehensive monitoring program

- Identify potential problematic issues
- Alert contractor during launch

Launch Project Recommendations

Develop a launching system that is reversible

Use a set of mirrors or other system to monitor the "plumbness" of piers

Use constant width bottom flanges for I-girders

Conclusion

This project is proof that the incremental launching erection method can be successfully performed on longer span steel I-girder bridges. It is anticipated that this method of construction will become more commonplace in the U.S. as bridge owners recognize its potential benefits. Incremental launching is applicable to either environmentally sensitive areas or locations limited by restricted access.

Acknowledgements

Jensen ConstructionHNTB

