INTRODUCTION
Asphadur is the trade name of an Austrian manufactured mixture of polymers of unsaturated hydrocarbons of varying lengths used with asphaltic concrete to improve its properties. Asphadur when added to the asphalt mixture is represented as increasing resistance to deformation due to heavy traffic, increasing the durability of the pavement, increasing the resistance to wear, decreasing the temperature susceptibility of the asphalt, and influencing the structure of the asphalt so that a favorable relationship between asphaltines and maltenes is achieved. This evaluation was directed primarily in studying the deformation problem through stability and indirect tensile strength and other related tests, i.e., asphalt content, aggregate gradations, etc. No effort was attempted to show any chemical change or shift in the composition of asphalt that might be affected by Asphadur.

SUMMARY
A laboratory evaluation of three asphaltic concrete, plant produced mixtures containing Asphadur has been made. The mixtures represent a type A asphaltic concrete and two type B asphaltic concretes.

The type A and one of the type B mixtures were used in pavements and will be evaluated later for durability and serviceability. The second type B mixture was made only for laboratory testing. In each instance, control batches of the same mixtures but without Asphadur were made for comparison. Type A is a high type asphaltic concrete, requires a minimum of 65% crushed particles and is generally used for higher traffic volume roads. Type B is used for intermediate or lower traffic volumes and requires a minimum of 30% crushed particles.

CONCLUSIONS
In each of the three projects, the addition of Asphadur to the asphalt mixtures increased the Marshall stability and the indirect tensile strength. These characteristics certainly would increase the resistance of the pavement to deformation due to heavy traffic loads or shoving due to accelerating or decelerating traffic.

We must also remain cognizant of the fact that the high temperature to which the mixture is subjected would also tend to give test results in the same direction as the Asphadur. If the Asphadur negates the hardening effect due to the overheating of the asphalt and does, in fact, improve the durability and temperature susceptibility of the asphalt, then Asphadur could become an important tool in certain areas of asphaltic concrete usage.

It appears, at this point, that the most meaningful and valid evaluation of the represented characteristics of Asphadur must come from performance reports, both visual and by laboratory testing, after the pavements have been in usage over periods of time. It is recommended at this time, that for continued evaluation, that Asphadur be considered for additional projects in suitable and selected locations.