GS-12002
(Replaces GS-12001 and SS-12005)

General Supplemental Specifications for Highway and Bridge Construction

Effective Date
April 16, 2013

THE STANDARD SPECIFICATIONS, SERIES 2012, ARE AMENDED BY THE FOLLOWING MODIFICATIONS, ADDITIONS, AND DELETIONS. THESE ARE GENERAL SUPPLEMENTAL SPECIFICATIONS AND SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.
TABLE OF CONTENTS

Division 11. General Requirements and Covenants ... 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101.03, Definition of Terms</td>
<td>1</td>
</tr>
<tr>
<td>1102.09, A</td>
<td>1</td>
</tr>
<tr>
<td>1102.09, N</td>
<td>1</td>
</tr>
<tr>
<td>1102.10, Irregular Proposals</td>
<td>1</td>
</tr>
<tr>
<td>1102.17, E, 2, d</td>
<td>1</td>
</tr>
<tr>
<td>1102.17, G, 2</td>
<td>2</td>
</tr>
<tr>
<td>1102.19, E, 5, a</td>
<td>2</td>
</tr>
<tr>
<td>1102.19, F, 5</td>
<td>2</td>
</tr>
<tr>
<td>1102, Proposal Requirements and Conditions</td>
<td>3</td>
</tr>
<tr>
<td>1105.03, Working Drawings</td>
<td>4</td>
</tr>
<tr>
<td>1105.04, Conformity with and Coordination of the Contract Documents</td>
<td>6</td>
</tr>
<tr>
<td>1105.12, B</td>
<td>7</td>
</tr>
<tr>
<td>1106.07, Waste</td>
<td>7</td>
</tr>
<tr>
<td>1107.06, Federal Participation</td>
<td>7</td>
</tr>
<tr>
<td>1108.02, E, 4</td>
<td>7</td>
</tr>
<tr>
<td>1108.02, E, 5</td>
<td>7</td>
</tr>
</tbody>
</table>

Division 20. Equipment Requirements .. 8

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001.22, A, 3, a</td>
<td>8</td>
</tr>
<tr>
<td>2001.22, A, 3</td>
<td>8</td>
</tr>
<tr>
<td>2001.22, D, Aggregate Bins</td>
<td>8</td>
</tr>
</tbody>
</table>

Division 21. Earthwork, Subgrades, and Subbases ... 8

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2102.03, F, 3, Contractor Provided Clearances</td>
<td>8</td>
</tr>
<tr>
<td>2105, Stripping, Salvaging, and Spreading Topsoil</td>
<td>8</td>
</tr>
<tr>
<td>2122.04, B, Special Backfill</td>
<td>9</td>
</tr>
<tr>
<td>2123.02, A</td>
<td>9</td>
</tr>
<tr>
<td>2123.03, B, 1</td>
<td>10</td>
</tr>
</tbody>
</table>

Division 22. Base Courses ... 10

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2210.03, D, 2</td>
<td>10</td>
</tr>
<tr>
<td>2212.03, B, 2, b, Full Depth Repair Patches</td>
<td>10</td>
</tr>
<tr>
<td>2214.03, D, 6</td>
<td>10</td>
</tr>
<tr>
<td>2217.03, B, Rubblizing Existing PCC Pavement</td>
<td>11</td>
</tr>
</tbody>
</table>

Division 23. Surface Courses ... 11

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2301.03, A, 3, a, 2, Integral Curb Forms</td>
<td>11</td>
</tr>
<tr>
<td>2301.03, E, 2, d</td>
<td>11</td>
</tr>
<tr>
<td>2301.03, K, 3, b</td>
<td>12</td>
</tr>
<tr>
<td>2301.04, A, 1</td>
<td>12</td>
</tr>
<tr>
<td>2301.05, K, 1</td>
<td>12</td>
</tr>
<tr>
<td>2303, Hot Mix Asphalt Mixtures</td>
<td>12</td>
</tr>
<tr>
<td>2304.02, B, 3</td>
<td>38</td>
</tr>
<tr>
<td>2318.02, A, Asphalt Stabilizing Agent</td>
<td>38</td>
</tr>
<tr>
<td>2318.03, Construction</td>
<td>38</td>
</tr>
</tbody>
</table>

Division 24. Structures ... 39

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2401.05, B</td>
<td>39</td>
</tr>
<tr>
<td>2403.03, C, 2, h</td>
<td>39</td>
</tr>
<tr>
<td>2403.03, L, Design and Construction of Forms and Falsework</td>
<td>39</td>
</tr>
</tbody>
</table>

Page i
2403.03, L, 1, General. ... 40
2403.03, L, 3, c. .. 40
2405.03, H, 1, a. .. 40
2407.01, Description. .. 40
2407.02, A, 1. .. 41
2407.03, B, 4. .. 41
2407.03, J, 1, Precast Nonprestressed Units. 41
2407.03, J, 2, Precast Prestressed Units .. 41
2408.02, Materials Requirements, Identifications, and Fabrication. 41
2412.02, Materials. .. 41
2413.03, F, 2, a, 1. .. 42
2415.01, B, Precast .. 42
2416.02, Materials. .. 42
2416.03, A. ... 42
2416.03, D, 5, d. ... 42
2417.03, A, 1. .. 42
2418, Temporary Stream Diversion. ... 43
2419, Precast Concrete Units. ... 44
2430.02, B, 1, Concrete Units ... 47
2431.02, B, 1, Concrete Units ... 47
2432.02, B, 1, Concrete Units ... 48
2432.02, B, 1, a, 1 ... 48
2432.02, B, 1, a, 2 ... 48
2432.02, B, 1, b, 4 ... 48
2435.03, A, General Requirements for Installation of Manholes and Intakes. 48
2435.03, A, 11, Chimney Seal. ... 48
2435.03, D, 2, d. ... 48
2435.03, D, 3, e. ... 49
2435.05, A, 2. .. 49
2435.05, E, 2. ... 49
2435.05, F, 2. ... 49

Division 25. Miscellaneous Construction ... 49

2503.04, D, Connection to Existing Manhole or Intake 49
2503.05, D, Connection to Existing Manhole or Intake 49
2511.03, B, 1, General. ... 49
2512.03, C, Forms. ... 50
2513.02, Materials. ... 50
2513.02, D, Bolts Anchors, and Other Metal Fastenings 50
2513.03, A, 1, a. ... 51
2513.03, C, 1. ... 51
2513.03, D, 1, a. ... 51
2513.03, F, I. .. 51
2513.03, F, 4. ... 51
2521.03, Application.. 51
2522.03, E, 4, Anchor Bolts, Washers, and Nuts 51
2522.03, E, 12, b. .. 51
2524.03, B, Erection of Signs, Milepost Markers, and 6 Inch by 6 Inch (150 mm by 150 mm) Route Markers 52
2524.03, B, 1, c. ... 52
2524.04, Method of Measurement .. 52
2524.05, Basis of Payment ... 52
2527.02, D, 1, Removable Marking Tape. 52
2527.02, D, 1, b. ... 53
2527.03, F, 2. ... 53
2527.03, F, Markings Obliterated During Construction 53
2527.03, I, 2. ... 53
2527.04, A, 3, Removable Tape Markings 53
2527.05, A, 3, Removable Tape Markings 53
2528.03, I, Temporary Floodlighting ... 53
Appendix ... 73

Aggregate Gradation Table- English and Notes .. 73
Aggregate Gradation Table- Metric and Notes .. 74
Division 11. General Requirements and Covenants.

Section 1101

1101.03, Definition of Terms.

Add the definition:

Electronic Support File.
A file provided to the Contractor for their convenience that is not part of the contract documents. Electronic support files may include, but are not limited to:
- Machine control data files.
- Tabulations of plan quantities.
- Earthwork files.
- Alignment files.
- Soil testing data files.
- CADD files.

Section 1102

1102.09, A.

Replace the Article:

Only contractors who have been authorized to bid a proposal may submit a bid for a contract. For bids submitted to the Department that exceed $1 million, the bidder shall use subparagraph 2 or subparagraph 3 below. The Department may waive this requirement for unique or isolated situations.
1. Submit the signed, original Bidding Document furnished by the Contracting Authority with a Schedule of Prices from the Estimating Proposal.
2. Submit the signed, original Bidding Document furnished by the Contracting Authority with the computer printout and diskette of the Schedule of Prices from the bidding software furnished by the Department.
3. Submit an electronic bid with digital signature using the bidding software furnished by the Department and the electronic bid submittal procedures of the Department.

Unless otherwise specified, bidder shall submit an electronic bid with digital signature using bidding software furnished by the Department and electronic bid submittal procedures of the Department. When prequalification is waived per Article 1102.01, H, or elsewhere in the contract documents, bidder may submit the signed proposal on the original forms furnished by the Contracting Authority in lieu of submitting an electronic bid.

1102.09, N.

Replace the Article:

If a prospective bidder, contractor or supplier, for a proposal for which the Department is accepting bids, is in doubt as to the true meaning of any part of the contract documents, the bidder, contractor or supplier may submit to the Contracts Engineer a request for additional information, explanations, or interpretations. The request shall be submitted to the Q&A forum at the letting website used by the Department. Interpretations may be in the form of an addendum to the contract documents. The Contracting Authority will not be responsible for any information, explanation, or interpretation from any other source.

1102.10, Irregular Proposals.

Add the Article:

G. If a bidder fails to acknowledge receipt of an addendum. For electronic bidding, loading of the addendum into the Department’s bid preparation software is acknowledgment of receipt by bidder.

1102.17, E, 2, d.

Replace the Article:

The completed form shall be filled out in ink or be computer generated and submitted with the bidding documents. Failure to attach this completed form or submitting incomplete forms will cause the bid to be rejected as irregular, in accordance with Article 1102.10. Only DBE firms listed in the Directory, electronic DBE.BIN file supplied by the Department for the current letting may be used.
Replace the Article:
If the contract contained a DBE commitment, the Engineer will verify that the Contractor has attained the DBE commitment specified to each DBE firm listed on Form 102115. If the commitment is not met and was less than the goal, the price adjustment is the difference between the actual dollars paid and the commitment. If the commitment is not met and was greater than the goal, the price adjustment is the difference between the actual dollars paid and the goal. A price adjustment will be assessed for the amount of commitment not paid to each DBE firm used unless the DBE commitment to that DBE firm was reduced as allowed by Article 1102.17, G, 3.

Replace Article 4:
4) Form FHWA-1495, regarding wage rate information for a Federal-aid highway project, required only if Davis/Bacon predetermined wage rates apply to the project. Form WH-1321, Employee Rights Under the Davis-Bacon Act, required only if Davis/Bacon predetermined wage rates apply to the project.

Replace Article 9:
9) Form FHWA-1495A (Spanish version of form FHWA-1495), stating “Informacion Sobre Escalas De Salarios Proyecto De Carretera Con Ayuda Fed”, required only if Davis/Bacon predetermined wage rates apply to the project.* WH-1321 SPA (Spanish version of Form WH-1321) stating “DERECHOS DEL EMPLEADO BAJO LA LEY DAVIS-BACON” recommended only if Davis/Bacon predetermined wage rates apply to the project.*

Replace the Article:
An individual, group of individuals, or entity believing they have been subjected to discrimination prohibited by Title VI Nondiscrimination Provisions may file a written complaint with OES Civil Rights. A formal, signed complaint shall be filed within 180 calendar days of the alleged occurrence.

Upon receipt of the complaint, the OES-Civil Rights Coordinator will determine its jurisdiction, acceptability, need for additional information, and investigative merit of the complaint. In cases where the complaint is against one of the Department’s sub-recipients of federal highway funds or federal transition funds, the Department will assume the jurisdiction and will investigate and adjudicate the case.

Once the Coordinator decides to accept the complaint for investigation, the complainant and the respondent will be notified in writing of such determination within five calendar days. The complaint will receive a case number and be logged into the OES-Civil Rights’ records identifying its basis, race, color, national origin, and gender of the complainant.

In cases where the Department assumes the investigation of the complaint, the Coordinator will provide the respondent with the opportunity to respond to the allegations in writing. The respondent will have 10 calendar days to furnish OES-Civil Rights their response to the allegations.

Within 40 calendar days of receipt of the complaint, the OES-Civil Rights investigator will prepare an investigative report for the Director of the Department’s Operations and Finance Division to review. The report will include a narrative description of the incident, identification of persons interviewed, findings and recommendations for disposition. *This may be the District/Division Title VI Liaison, Coordinator, or Title VI Specialist.

The investigative report and its finding will be sent to the Attorney General’s Office for review. The Attorney General’s Office will review the report and associated documentation and provide input within 10 calendar days.

Comments or recommendations from the Attorney General’s Office will be reviewed by the Department’s Operations and Finance Division. The Department’s Operations and Finance Division will discuss the report and recommendations with the Title VI Coordinator. The report will be modified as needed and made final for its release.
Once the Department’s investigative report becomes final, the parties will be properly notified of the outcome and appeal rights.

The Department’s investigative report and a copy of the complaint will be forwarded to FHWA, Washington Division Office, within 60 calendar days of the receipt of the complaint.

If the complainant is not satisfied with the results of the investigation, they shall be advised of their rights to appeal the Department’s determination to the FHWA – Washington Division Office, U.S. DOT or U.S. Department of Justice. Appeals shall be filed within 180 calendar days after FHWA’s final resolution. Unless new facts not previously considered come to light, reconsideration of the Department’s determination will not be available.

The Department will serve as appealing forum to a complainant that is not satisfied with the outcome of an investigation conducted by a Department sub-recipient. The Department will analyze the facts of the case and issue its conclusion to the appellant within 60 calendar days of the receipt of the appeal.

The Contractor shall promptly, within 14 calendar days, investigate complaints of alleged discrimination made to the Contractor in connection with its obligation under this contract, attempt to resolve such complaints, and take appropriate corrective action within a reasonable time. If the investigation indicates the discrimination may affect persons other than the complainant, such corrective action shall include such other persons. Upon completion of each investigation, the Contractor shall inform complainant of their avenues of appeal.

If the complaint cannot be resolved at the contractor level, or when a contractor has a complaint against another contractor, the complainant or the Contractor can contact the Department’s Office of Employee Services-Civil Rights (OES-Civil Rights) Team.

The Department has a formal Civil Rights Complaint procedure. This procedure is available at www.iowadot.gov/civilrights/documents/IowaDOTExternalComplaintProcedure.pdf. An individual, group of individuals, or contractor believing they have been subjected to discrimination may file a written complaint with the Department’s OES-Civil Rights Team. A formal signed complaint shall be filed within 180 calendar days of the alleged occurrence.

1102, Proposal Requirements and Conditions.

Add the Article 1102.20, Title VI Assurance:

To comply with US DOT Order 1050.2 (dated August 24, 1971) the following Appendix A is a contract requirement of each contract and shall be included in each subcontract.

APPENDIX A

During the performance of this contract, the contractor, for itself, its assignees and successors in interest (hereinafter referred to as the “contractor”) agrees as follows:

1. Compliance with Regulations: The contractor shall comply with the Regulations relative to nondiscrimination in Federally-assisted programs of the Department of Transportation (hereinafter, “DOT”) Title 49, Code of Federal Regulations, Part 21, as they may be amended from time to time, (hereinafter referred to as the Regulations), which are herein incorporated by reference and made a part of this contract.

2. Nondiscrimination: The contractor, with regard to the work performed by it during the contract, shall not discriminate on the grounds of race, color, national origin, sex, age, or disability in the selection and retention of subcontractors, including procurement of materials and leases of equipment. The contractor shall not participate either directly or indirectly in the discrimination prohibited by section 21.5 of the Regulations, including employment practices when the contract covers a program set forth in Appendix B of the Regulations.

3. Solicitations for Subcontracts, Including Procurement of Materials and Equipment: In all solicitations either by competitive bidding or negotiation made by the contractor for work to be performed under a subcontract, including procurement of materials or leases of equipment, each potential subcontractor or supplier shall be notified by the contractor of the contractor’s obligations under this contract and the Regulations relative to nondiscrimination on the grounds of race, color, national origin, sex, age, or disability.
4. **Information and Reports:** The contractor shall provide all information and reports required by the Regulations or directives issued pursuant there to, and shall permit access to its books, records, accounts, other sources of information, and its facilities as may be determined by the Iowa Department of Transportation or Federal Highway Administration to be pertinent to ascertain compliance with such Regulations, orders and instructions. Where any information required of a contractor is in the exclusive possession of another who fails or refuses to furnish this information the contractor shall so certify to the Iowa Department of Transportation or the Federal Highway Administration as appropriate, and shall set forth what efforts it has made to obtain the information.

5. **Sanctions for Noncompliance:** In the event of the contractor's noncompliance with the nondiscrimination provisions of this contract, the Iowa Department of Transportation shall impose such contract sanctions as it or the Federal Highway Administration may determine to be appropriate, including, but not limited to:
 a. withholding of payments to the contractor under the contract until the contractor complies, and/or
 b. cancellation, termination or suspension of the contract, in whole or in part.

6. **Incorporation of Provisions:** The contractor shall include the provisions of paragraphs (1) through (6) in every subcontract, including procurement of materials and leases of equipment, unless exempt by the Regulations, or directives issued pursuant thereto. The contractor shall take such action with respect to any subcontract or procurement as the Iowa Department of Transportation or the Federal Highway Administration may direct as a means of enforcing such provisions including sanctions for non-compliance: Provided, however, that, in the event a contractor becomes involved in, or is threatened with, litigation with a subcontractor or supplier as a result of such direction, the contractor may request the Iowa Department of Transportation to enter into such litigation to Protect the interests of the Iowa Department of Transportation and, in addition, the contractor may request the United States to enter into such litigation to protect the interests of the United States.

Section 1105

1105.03, Working Drawings.

Replace Articles B through E:

B. For projects on the Secondary Road System (non-Primary projects), working drawings shall be submitted to the Engineer unless noted otherwise in the contract documents.

C. Unless specified otherwise in the contract documents, Contractor submittal time will be subject to the specified review time and the Contractor's need based on their schedule for the work.

D. Submittals shall not be subdivided or made in a piecemeal fashion unless approved by the Engineer. If subdivided submittals are approved by the Engineer, they shall be made in packages with logical break points (e.g. structural steel units) so the Engineer may make a complete review of subdivided submittal.

E. Submittals that are required to be revised and resubmitted shall have the revisions clouded or annotated to designate revisions. Resubmittals made in accordance with this provision will have a review time in calendar days of half of the review time shown in Table 1105.03-1. Resubmittals that are not in accordance with this provision will be allowed the review time shown in Table 1105.03-1.

F. **Electronic Submittals.**

1. For Primary and Interstate projects, electronic submittals may be made via email and sent to the following email addresses corresponding to the review office identified in Table 1105.03-1, or to the consultant email address indicated on the contract documents:

<table>
<thead>
<tr>
<th>REVIEW OFFICE</th>
<th>EMAIL ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>Bridges.Structures@dot.iowa.gov</td>
</tr>
<tr>
<td>Design (Soils Design Section)</td>
<td>Soils.Design@dot.iowa.gov</td>
</tr>
<tr>
<td>Traffic and Safety</td>
<td>Traffic.Safety@dot.iowa.gov</td>
</tr>
</tbody>
</table>

2. Provide a courtesy copy of the submittal to the Engineer and District Materials Engineer.

3. When the contract documents specify submittals to be sent to the design consultant's email address, the review office shall be courtesy copied, in addition to the Engineer and District Materials Engineer.
4. Electronic submittals shall be sent from the Contractor’s email address that is applicable to the project. Emails sent from subcontractor’s, fabricator’s, and supplier’s email address will not be accepted. Emails from personal email addresses are discouraged and may require authentication by the Engineer prior to acceptance for review.

5. Submittals shall be limited to 15 MB attachment file size. Split larger files and send in multiple emails.

6. The submittal file shall be Portable Document Format (PDF) sized to print on 11 inch by 17 inch (279.4 mm by 431.8 mm) or 8.5 inch by 11 inch (215.9 mm by 279.4 mm) paper. Full size print documents cannot be accepted in electronic format. Minimum resolution of 300 dpi (118 dots/cm) is recommended. Ensure document submitted is legible. Submittal files in other formats (e.g. CAD files) will not be accepted.

7. Provide project number and submittal description in the email subject line. The email will serve as the transmittal and shall include the Contractor’s name, address, and telephone number, and the fabricator’s name, address, and telephone number (if applicable) in the body of the email, or on the electronic attachment.

8. Shop drawings submitted electronically via email will be returned to the Contractor via email. Paper copies will not be distributed.

C G Paper Submittals.
For Primary and Interstate projects, all paper submittals shall be processed by the Contractor and sent to the review office identified in Table 1105.03-1 below with a copy of the cover letter sent to the Engineer and District Materials Engineer. The cover letter shall include the following information:

- Date of submittal or resubmittal
- Project number
- Description of submittal
- Contractor’s name, address, and telephone number
- Number of submittal copies
- Fabricator’s name, address, and telephone number (if applicable).

When the contract documents specify submittals to be sent to the design consultant, copies of the cover letter shall be sent to the review office, as well as the Engineer and District Materials Engineer.

Table 1105.03-1: Review Offices for Working Drawings

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REVIEW OFFICE</th>
<th>NUMBER OF COPIES</th>
<th>REVIEW TIME (calendar days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsework for slab bridges</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Cofferdam design (when required)</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Reconstruction of substructure (detailed plans for supporting the superstructure)</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Steel Structures</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Detail plans for falsework or centering support of steel structures (i.e. erection plans)</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Steel and aluminum pedestrian hand rails and aesthetic fences</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Highway sign support structures (i.e. bridge-type trusses, cantilever trusses, & bridge mounts)</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Precast concrete (i.e. deck panels, RCB culverts, noise wall panels, arch sections, etc.)</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Tower lighting</td>
<td>Bridges and Structures</td>
<td>2 (6)</td>
<td>30</td>
</tr>
<tr>
<td>Highway lighting</td>
<td>Traffic and Safety</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Highway signing steel breakaway posts</td>
<td>Traffic and Safety</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>
Traffic Signaling

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Safety</td>
<td>1105.04</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

Highway Signings - Type A & B Signs

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Safety</td>
<td>1105.04</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

Bridge Components

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (7)</td>
<td>30</td>
</tr>
</tbody>
</table>

Pre-engineered Steel Truss Recreational Trail Bridge

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (8)</td>
<td>30</td>
</tr>
</tbody>
</table>

MSE, Segmental, & Modular Block Retaining Walls

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (Soils Design Section)</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary Submittal: 3 design calculations, 3 shop drawings, & 3 field construction drawings
Final Submittal: 3 design calculations, 3 shop drawings, & 3 field construction drawings

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Submittal: 3 design calculations, 3 shop drawings, & 3 field construction drawings</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Submittal: 3 design calculations, 3 shop drawings, & 3 field construction drawings</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil Nail & Tie-Back Retaining Walls

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (Soils Design Section)</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 final design plans

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 final design plans</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermediate Foundation Improvement (IFI) (i.e. stone columns, geopiers, etc.)

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (Soils Design Section)</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 design calculations & 8 field construction drawings

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 design calculations & 8 field construction drawings</td>
<td>1105.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Removal of Box Girder Bridges

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (5)</td>
<td>30</td>
</tr>
</tbody>
</table>

Structural Erection Manual

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (6)</td>
<td>30</td>
</tr>
</tbody>
</table>

Temporary Shoring

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (6)</td>
<td>30</td>
</tr>
</tbody>
</table>

Temporary Sheet Pile Retaining Wall

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (6)</td>
<td>30</td>
</tr>
</tbody>
</table>

Safety Grates for RCB Culverts

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>2 (7)</td>
<td>30</td>
</tr>
</tbody>
</table>

Architectural Mock-Ups

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

Architectural Paving

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

Architectural Paint Color Samples and Manufacturer Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Architectural Concrete Texture Form Liner Samples and Drawings

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Architectural Concrete Sealer Samples and Manufacturer Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Architectural Ornamental Brick

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
<th>Quantity</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Structures</td>
<td>1105.04</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

(a) Number of copies only applies to paper submittals. Number of copies in parenthesis is the number required for full size prints. Full size prints are any print exceeding 11 inches by 17 inches (279.4 mm by 431.8 mm).

(b) Submittal time shall be within 45 calendar days from the date of award of contract.

D. Unless specified otherwise in the contract documents, Contractor submittal time shall be subject to the specified review time and the Contractor’s need based on their schedule for the work.

E. When the contract documents specify submittals to be sent to the Design Consultant, copies of the cover letter shall be sent to the specified Review Office, Resident Construction Engineer, and District Materials Engineer.

1105.04, Conformity with and Coordination of the Contract Documents.

Renumber Articles B, C, D, E, and F and Add the Article:

B. Electronic support files, if available, will be provided prior to letting and are for information only. Should there be a discrepancy between an electronic support file and a contract document, the contract document shall govern.
1105.12, B.

Add as the second sentence of the sixth paragraph:
The Contractor will not be billed for crossings located within areas designed for removal of pavement after cross hauling is completed as long as the pavement is not damaged by the cross hauling.

Section 1106

1106.07, Waste.

Rename and Replace the Article:
1106.07 CONTRACTOR FURNISHED BORROW AND WASTE AREAS.

A. The Contractor shall obtain necessary environmental clearances and permits.

B. The Contractor shall provide waste areas or disposal sites for excess material (excavated material or broken concrete) not desirable to be incorporated into the work. The Contractor shall ensure areas (including haul roads and staging areas) selected for waste or disposal do not impact the following:
 - Culturally sensitive sites or graves.
 - Wetlands or “Waters of the U.S.”, including streams or stream banks below the “ordinary high water mark”, without an approved U.S. Army Corps of Engineers Section 404 Permit.
 - Threatened or endangered species.
 - Floodplains.
 - Sovereign lands.
 - Storm water discharge.

C. No payment for overhaul will be allowed for material hauled to or from these sites. Excess material shall not be placed within the right-of-way unless specifically stated on the plans.

Section 1107

1107.06, Federal Participation.

Retitle the Article:
Federal Participation Requirement.

Replace Article B:

B. On all contracts involving Federal aid, all products of iron, steel, or a coating of steel which are incorporated into the work must have been of domestic origin and shall be melted and manufactured in the United States. The Engineer may allow minimal amounts of these materials from foreign sources, provided the cost does not exceed 0.1% of the contract sum or $2,500, whichever is greater. The Contractor shall certify that these materials are of domestic origin. This amount shall include transportation, assembly, and testing as delivered cost of foreign products to the project.

Section 1108

1108.02, E, 4.

Replace the Article:
Working days will not be charged for Saturdays, Sundays, and recognized legal holidays the Contractor does not work. Working days will be charged for Saturdays, Sundays, and recognized legal holidays the Contractor does work. Work not requiring inspection may be performed on Saturdays with no time charged.

1108.02, E, 5.

Delete the Article:
5. Working days will not be charged for Saturdays the Contractor does work, unless a 6 day work week is specified in the contract documents.
Division 20. Equipment Requirements.

Section 2001

Replace the Article:
A dual system of weigh belts is used to control delivery of virgin aggregates and recycled material to the dryer.

Add the Article:
f. Calibrated bins are dedicated to deliver each recycled asphalt material to the drum unless materials are pre-blended under the direction of the Engineer.

Add the Article:
4. The plant has a dedicated bin for each virgin aggregate product used in the job mix formula.

Section 2102

2102.03, F, 3, Contractor Provided Clearances.

Rename and Replace the Article:
3. Contractor Provided Obtained Clearances and Permits.
 Obtain and provide engineer necessary environmental, archaeological, and historic preservation clearances and permits, and comply with all restrictions attached to these clearances and permits for alternate borrow areas and sites where Contractor furnished borrow is obtained. Obtain other licenses and permits involved in the proposed use of these areas.

Section 2105

2105, Stripping, Salvaging, and Spreading Topsoil.

Replace the Section:
2105.01 DESCRIPTION.

A. Strip topsoil and prepare sod.

B. Haul, deposit, and spread topsoil.

2105.02 MATERIALS.
 None. For topsoil furnished by the Contractor, provide material meeting the requirements of Articles 4170.09, A, 1 and 4170.09, A, 3.

2105.03 CONSTRUCTION.

A. Stripping Topsoil.
 Remove topsoil from borrow pits, cuts, or areas to be covered by embankments. Prepare sod, haul, deposit, and spread topsoil on shoulders, slopes, excavated areas, borrow pits, and other designated areas according to the contract documents.
 Mow, burn, or remove, weeds, grass and growing crops or other herbaceous vegetation close to the ground as directed by the Engineer. Shred sod by shallow plowing or blading and thoroughly disking. Shred sod thoroughly enough to permit the soil to be easily spread in a thin layer over areas to be covered.

B 2. Topsoil Excavation.
 After existing sod has been prepared, remove the topsoil to the depth specified. If not otherwise specified, the depth shall be 12 inches (0.3 m). The topsoil may be moved directly to an area where it will be used or may be stockpiled for future use.

C B. Placing Topsoil.
 Spread topsoil uniformly over the area to be covered. Haul, deposit, and spread topsoil uniformly on shoulders, slopes, excavated areas, borrow areas, and other designated areas according to the contract documents to a minimum depth of 4 inches (100 mm) or to the depth specified in the contract documents. Smooth the surface of the topsoil and leave in a finished condition so that it will drain properly.

2105.04 METHOD OF MEASUREMENT.

A. Topsoil Stripped Onsite.
 A 1. The number of cubic yards (cubic meters) of topsoil moved will be computed on the basis of a uniform 12 inch (0.3 m) cut, or the depth as specified in the contract documents, over the area involved. Sufficient field measurements will be taken to assure reasonable conformity with the required depth of cut.

 B 2. Topsoil salvaged from excavated areas and paid for as topsoil will not be included in excavation quantities for which payment is made.

B. Topsoil Furnished by Contractor or Previously Stockpiled Onsite.
 The number of cubic yards (cubic meters) of topsoil will be computed on the basis of a uniform 8 inch (0.2 m) placement, or the depth as specified in the contract documents, over the area involved. Sufficient field measurements will be taken to assure reasonable conformity with the required depth of placement.

2105.05 BASIS OF PAYMENT.

A. Payment will be the contract unit price per cubic yard (cubic meter).

B. Payment is full compensation for preparing, stripping (if required), transporting, and placing the topsoil according to the contract documents.

C. Overhaul will not be paid for this item.

Section 2122

2122.04, B, Special Backfill:

Replace the Article:
 Contract quantity. Article 2102.04, A, 4, applies.

Section 2123

2123.02, A.

Replace the second sentence of the Article:
 Do not use unsuitable soils of Article 2102.02, D, 3, or topsoils. Place topsoil as required by Article 2105.03, B.
2123.03, B, 1. Add the Article: c. Placing material resulting from subgrade trimming operations and completing construction with a minimum of 4 inches (100 mm) of topsoil.

Division 22. Base Courses.

Section 2210

2210.03, D, 2. Replace the Article: If the material is prewetted before delivery, or if water is added to the base after delivery, ensure the water is uniformly distributed throughout the material so that all particles are uniformly wet. Verify water is within 2.0% of the amount determined as field optimum to produce maximum density together with stability with the field compaction procedure. This moisture content will usually be 85 to 90% of the optimum determined according to Materials Laboratory Test Method No. Iowa 103. Maintain this moisture content in the material until base compaction is complete.

Section 2212

2212.03, B, 2, b, Full Depth Repair Patches. Replace the Article: 1) Construct full depth repair patches according to Section 2529, with the following exceptions:
 a) If the thickness of full depth repair patches is not shown in the contract documents, base the thickness on the existing pavement type.
 b) Construct patches to be no less than:
 (1) 6 inches (150 mm) for County Roads.
 (2) 9 inches (230 mm) for Primary Roads.
 (3) 12 inches (300 mm) for Interstate Roads.
 2) Base maximum full depth repair patch thickness on the following:
 a) Portland Cement Concrete Repair Patch.
 (1) Rigid Pavement: Pavement thickness, but not more than 12 inches (300 mm).
 (2) Rigid Pavement resurfaced with HMA (composite patch): Rigid pavement thickness and the patch covered with HMA surface.
 (3) Flexible Pavement: Same as above for resurfaced rigid pavement.
 b) Hot Mix Asphalt Repair Patch.
 (1) Rigid Pavement: Pavement thickness, but not more than 12 inches (300 mm).
 (2) Rigid Pavement resurfaced with HMA: Thickness of pavement, including resurfacing, but not more than 12 inches (300 mm).
 (3) Flexible Pavement: Thickness of surface and base course, but not more than 12 inches (300 mm).

Section 2214

2214.03, D, 6. Delete the Article: 6. When resurfacing is part of the contract, sign the approaches to scarified areas on Primary Roads with ROUGH ROAD signs. Repeat the signs for traffic that may enter within the scarified area from intersecting public roads. Erect, move (if appropriate), and maintain these signs until the scarified areas are covered with new mixture.
Section 2217

2217.03, B, Rubblizing Existing PCC Pavement.

Replace Articles 2, 3, and 4:

2. Operate breaker unit at a speed so existing pavement is reduced into particles with a nominal maximum size of 4 inches (100 mm), based on visual inspection of rubblized pavement surface. When conditions warrant in specific locations, the Engineer may direct or allow larger maximum particle dimensions, not to exceed 12 inches (300 mm). Additional passes may be required if larger sizes remain after initial rubblizing pass. Do not operate breaker unit within 50 feet (15 m) of bridge abutments and other locations designated by the Contracting Authority.

3. Begin rubblizing procedure at a free shoulder edge and work towards centerline joint.

4. Operate vibratory steel drum roller close behind rubblizing operation at a speed not to exceed 6 feet (2 m) per second. Compact and seat rubblized pavement with a minimum of 4 coverages. In addition, roll surface immediately ahead of paving equipment to remove distortion that may occur from batch haul trucks or other equipment.

Division 23. Surface Courses.

Section 2301

2301.03, A, 3, a, 2, Integral Curb Forms.

Replace the Article:

a) Use metal forms to form the back of all integral curbs, except where returns have a small radius or other special sections making the use of metal forms impractical.

b) Rigidly attach back forms for curb to the side forms for the pavement slab. Use all fastenings provided by the form manufacturer. Supply a sufficient length of curb forms and number of fastenings to make it possible to leave the forms in place for at least 6 hours after the curb is placed.

c) At the time the curb form is placed, ensure the top of the pavement is free of all substances which prevent the rigid fastening or accurate alignment of the curb form. Ensure the curb form extends the plane of pavement form without a variation of more than 1/8 inch (3 mm). Set the top of the curb form at the elevation of top of curb being built, except at curb runouts.

d) Sloping faced curb not more than 4 inches (100 mm) in height may be shaped to the desired cross section with a curb mule without the use of face forms.

e) For straight sections of integral curb more than 4 inches (15 mm) high, the Contractor may use face forms or a slip form curb mule. If face forms are used, provide no less than 100 feet (30 m) for each curb being constructed. Properly secure face forms to maintain their shape and position during use. Ensure the face forms produce a curb cross section matching that of the details within the contract documents. Approved hand tools and methods may be used to supplement the forms in shaping the top roll and on returns and other special sections.

f) If a slip form curb mule is used, use a slip form curb mule that is no less than 6 feet (1.8 m) long, unless mounted on a machine. Obtain the Engineer's approval before using the slip form curb mule. Both back and face forms will be required when constructing barrier curbs or any curb having a top width of 8 inches (200 mm) or more.

Meet the requirements of section 2512, 03, C.

2301.03, E, 2, d.

Replace the Article:

Cutting the tie wires of the load transfer assemblies is optional. A maximum of three tie wires may remain uncut on each load transfer assembly.
2301.03, K, 3, b.

Replace Note (a) of Table 2301.03-1:

(a) Protection shall remain until overnight the first night covering is required. After the first night of covering, protection may be removed when one of the following conditions is met:

1. Pavement is 5 calendar days old.
2. Opening strength is attained.
3. Forecasted low temperatures exceed 35°F (2°C) for the next 48 hours.
4. Forecasted high temperatures exceed 55°F (13°C) in the next 24 hours and subgrade temperatures are above 40°F (4°C).

2301.04, A, 1.

Add as the second sentence of the Article:

The area of manholes, intakes, or other fixtures in the pavement will not be deducted from the measured pavement area.

2301.05, K, 1.

Delete the Article:

1. Deduction will not be made from the area of pavement for fixtures with an area less than 9 square feet (1 \(m^2\)).

Section 2303

2303, Hot Mix Asphalt Mixtures.

Rename and Replace the Section:

Section 2303. Hot Mix Asphalt Mixtures Flexible Pavement

2303.01 DESCRIPTION.

A. Design, produce, place, and compact flexible paving (HMA and warm mix asphalt (WMA)) mixtures. Use proper quality control practices for the construction of surface, intermediate, or base course on a prepared subbase, base, or pavement to the dimensions specified in the contract documents.

B. A surface course is the upper lift for a wearing surface of a designated thickness. An intermediate course is the next lower lift or lifts of a designated thickness. Use intermediate course mixtures for leveling, strengthening, and wedge courses. A base course is the lift or lifts placed on a prepared subgrade or subbase.

C. WMA refers to asphalt concrete mixtures produced at temperatures approximately 50°F (28°C) or more below those typically used in production of HMA, but no higher than 250°F (125°C) that shown in Article 2303.03, C, 3, d, 3, a. Temperature reductions may be achieved through additives or water injection systems approved by the Bituminous Engineer. The goal with WMA is to produce mixtures with similar or better strength, durability, and performance characteristics as HMA using substantially reduced production temperatures.

D. Unless explicitly stated, produce and place WMA mixtures meeting the same requirements established for HMA mixtures. Equivalent WMA mixtures may be substituted for HMA mixtures unless it is prohibited by the specifications.

2303.02 MATERIALS.

Use materials meeting the following requirements:

A. Asphalt Binder.

The Performance Graded asphalt binder, PG XX-XX, will be specified in the contract documents to meet climate, traffic, and pavement conditions. Use asphalt binder meeting requirements of Section 4137. Unless otherwise specified in the contract documents, use PG 58-28 for shoulder mixtures.
B. Aggregates.

1. Individual Aggregates.
 a. Use virgin mineral aggregate as specified in Materials I.M. 510 and meeting requirements of Section 4127.
 b. When frictional classification of the coarse aggregate is required, the contract documents will specify the friction level and location. Furnish friction aggregate from sources identified in Materials I.M. T203. Limestone aggregate sources defined as containing less than 15% magnesium oxide (MgO) are identified in Materials I.M. T203.

 1) Friction Classification L-2.
 a) On Interstates and all mixtures designed for 30,000,000 ESALS and higher (cross-overs and detours with posted speeds below 60 mph excluded), if 40% or more of the total aggregate is a limestone, use a combined aggregate such that:
 1) At least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 4 or better friction aggregate,
 2) At least 30% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 2 or better friction aggregate,
 3) At least 25% of the combined aggregate passing the No. 4 (4.75 mm) sieve is Type 2 or better friction aggregate, and
 4) The fineness modulus of the combined Type 2 aggregate is at least 1.0. Calculations for fineness modulus are shown in Materials I.M. 501.
 b) For all other mixtures that do not satisfy Article 2303.02, B, 1, a, use a combined aggregate such that:
 1) At least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 4 or better friction aggregate, and
 2) At least 25% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 2 or better friction aggregate, and
 3) For Interstates and all mixtures designed for 30,000,000 ESALS and higher, the fineness modulus of the combined Type 2 aggregate is at least 1.0. Calculations for fineness modulus are shown in Materials I.M. 501.

 2) Friction Classification L-3.
 Use a combined aggregate such that:
 • At least 80% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 4 or better friction aggregate, and
 • At least 45% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 3 or better friction aggregate, or if Type 2 is used in place of Type 3, at least 25% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 2.

 3) Friction Classification L-4.
 Use a combined aggregate such that at least 50% of the combined aggregate retained on the No. 4 (4.75 mm) sieve is Type 4 or better friction aggregate.

2. Blended Aggregates.
 a. Use a blended aggregate meeting the combined aggregate requirements in Materials I.M. 510.
 b. When mixtures include RAP, use a blended mineral aggregate gradation consisting of a mixture of RAP aggregate combined with virgin aggregate.

C. Recycled Asphalt Materials.

1. Recycled Asphalt Materials (RAM) includes Recycled Asphalt Pavement (RAP) and Recycled Asphalt Shingles (RAS). RAP is salvaged asphalt pavement. Use RAP from a source designated in the contract documents, or furnish Classified RAP, Certified RAP, or Unclassified RAP from the Contractor's stockpile. The designations Classified, Certified, and Unclassified are exclusively for the use of RAP in HMA.

2. Identify each RAP stockpile and document Classified and Certified RAP stockpiles as directed in Materials I.M. 505. Include the following information when documenting Classified RAP material in a stockpile for future use in HMA:
 • Identification of the project from which the material was removed,
 • Mix data from the original project including mixture type,
 • Aggregate classification,
 • Location and depth in the pavement structure,
3. The Engineer may reject a RAP stockpile for non-uniformity based on visual inspection. Work the stockpiles in such a manner that the materials removed are representative of a cross section of the pile.

4. Place stockpiles of RAP on a base sufficient to prevent contamination, as directed in Materials I.M. 505. Do not use RAP stockpiles containing concrete chunks, grass, dirt, wood, metal, coal tar, or other foreign or environmentally restricted materials. RAP stockpiles may include PCC (not to exceed 10% of the stockpile) from patches or composite pavement that was milled as part of the asphalt pavement. Track equipment may operate on the stockpile during its construction.

5. When RAP is taken from a project, or is furnished by the Contracting Authority, the contract documents will indicate quantity of RAP expected to be available and test information, if known. Salvage this material. Unless otherwise specified in the contract documents, RAP not used in HMA becomes the property of the Contractor.

6. For mix design purposes, the Contracting Authority will test samples of the RAM. The aggregate gradation and amount of asphalt binder in the RAM will be based on the Contracting Authority’s extraction tests. For mixtures containing RAM, adjust the contract binder grade as directed in Materials I.M. 510. No adjustments will be made to the contract unit price for required changes to the asphalt binder grade.

a. Classified RAP.

1) Classified RAP is from a documented source with the aggregate meeting the appropriate quality requirements in Materials I.M. 510, and properly stockpiled.

2) Classified RAP may be used in the base, intermediate, and surface mixtures for which the RAP aggregate qualifies. Classified RAP may be used in accordance with Table 2303.02-1.

3) Credit for frictional aggregate may be given for virgin aggregates used in the original pavement to be reclaimed. Types 4 and 5 frictional aggregate content in the RAP may be given full credit, while Types 2 and 3 content may be given credit for half the proportion in the original pavement. Credit may be used toward the total frictional aggregate requirement. No frictional credit shall be given beyond one generation of the RAP’s service life.

4) Credit may be given for crushed particles in the original pavement to be reclaimed as determined in the paving history (or mix design when paving history is unavailable).

b. Certified RAP.

Any stockpiled RAP not meeting the requirements of Classified RAP or from an unknown source may be given a Certified status when meeting quality control sampling, testing, and reporting requirements in Materials I.M. 505. Certified RAP may be used in accordance with Table 2303.02-1.

c. Unclassified RAP.

1) Any stockpiled RAP not meeting the requirements of Classified RAP or Certified RAP shall be designated as Unclassified RAP. Unclassified RAP may be used in accordance with Table 2303.02-1. No frictional aggregate credit or aggregate crushed particles credit will be given for Unclassified RAP.

2) When an Unclassified RAP stockpile is characterized by sampling and testing for mix design, no material can be added to the stockpile until the project is completed.
<table>
<thead>
<tr>
<th>Mix Designation</th>
<th>Aggregate Quality Type</th>
<th>Maximum Allowance</th>
<th>Allowable Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unclassified RAP</td>
<td>Certified RAP</td>
</tr>
<tr>
<td>HMA 100K S</td>
<td>B</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>HMA 100K I</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 10K B</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 300K S</td>
<td>B</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>HMA 300K I</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 1M S L-4</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 1M S</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 1M I</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 1M B</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 1M B (shoulder)</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 3M S L-4</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 3M S L-3</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 3M S</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 3M I</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 3M B</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 10M S L-3</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 10M I</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 10M B</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 30M S L-3</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 30M S L-2</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 30M I</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 30M B</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>HMA 100M S L-2</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 100M I</td>
<td>A</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>HMA 100M B</td>
<td>B</td>
<td>10%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Note: 1. At least 70% of the total asphalt binder in the surface mix shall be virgin.
2. Certified RAP meeting Type A quality for alumina per Section 4127 shall have the same maximum allowable usage as Classified RAP for all mixes.

7. Pre-consumer or post-consumer shingles that have been processed, sized, and ready for incorporation into an asphalt mixture constitute RAS material.

8. Up to 5% RAS by weight of total aggregate may be used in the design and production of an asphalt mixture. The percentage of RAS used is considered part of the maximum allowable RAP percentage. Unless explicitly stated otherwise in this specification or Materials I.M. 505, use RAS according to the same requirements as prescribed for RAP material.

9. RAS shall be certified from an approved supplier designated in Materials I.M. 506. Material processed prior to DOT source approval will not be certified.
D. Flexible Paving Mixture.

1. The job mix formula (JMF) is the percentage of each material, including the asphalt binder, to be used in the HMA mixture. Ensure JMF gradation is within control points specified for particular mixture designated. Use JMF to establish a single percentage of aggregate passing each required sieve size.

2. The basic asphalt binder content is the historical, nominal mixture asphalt binder content, expressed as percent by weight (mass) of asphalt binder in total mixture. Apply values in Table 2303.03-1, based on mixture size and type.

3. If asphalt binder demand for the combination of aggregates submitted for an acceptable mix design exceeds the basic asphalt binder content (see Table 2302.02-1) by more than 0.75%, include an economic evaluation with the mix design. Base this evaluation on past job mix history, possible aggregate proportion changes, and aggregate availability and haul costs for any changes or substitutions considered. For economic evaluation, provide an alternate mix design utilizing aggregates which results in an optimum binder content not exceeding basic asphalt binder content by more than 0.75% and documentation of costs associated with hauling both proposed aggregates and alternate aggregates to plant site. Alternate JMF shall meet requirements of Section 2303.

4. Use a mixture design meeting gyratory design and mixture criteria corresponding to the design level specified in the contract documents. The Engineer may approve the substitution of any mixture which meets requirements for a higher mixture than specified in the contract documents, at no additional cost to the Contracting Authority. When a commercial mix is specified, use a 1/2 inch (12.5 mm) 300K surface mixture or higher for JMF approval.

5. Use 1,000,000 ESAL HMA base mixture for shoulders placed as a separate operation. For outside shoulders on Interstate projects, the Contractor has the option to substitute the mainline intermediate or surface mixture for a specified base mixture, at the Contractor's expense.

6. Unless otherwise indicated on the contract documents, use a 1/2 inch (12.5 mm) or 3/4 inch (19 mm) 1,000,000 ESAL HMA Base mixture (or higher ESAL) for base widening. When an adjoining surface is designed for 300,000 ESALS or less and is paved during same project, use a base mixture at same ESAL level used in surface mixture.

7. Prepare gyratory mixture designs for base, intermediate, and surface mixtures. Follow the procedure outlined in Materials I.M. 510. Submit a mixture design complying with Materials I.M. 510. Propose both a production and a compaction temperature between 215ºF (102ºC) and 280ºF (138ºC) for WMA mixture designs.

8. Use a gyratory compactor for design and field control meeting the protocol for Superpave gyratory compactors AASHTO T 312. Compactors for which compliance with this protocol is pending may be used at the discretion of the District Materials Engineer.

E. Other Materials.

1. Tack Coat.
 Tack coat may be SS-1, SS-1H, CSS-1, or CSS-1H. Do not mix CSS and SS grades. RC-70 and MC-70 may also be used after October 1, at the Contractor's option.
2. Anti-strip Agent.
 a. Perform a moisture sensitivity evaluation of the proposed asphalt mixture design in accordance with Materials I.M. 507 319 for the following mixtures when placed in travelled lanes:
 1) Mixtures for Interstate and Primary highways designed for 30,000,000 ESALS and higher
 2) Mixtures for Interstate and Primary highways containing quartzite, granite, or other siliceous (not a limestone or dolomite) aggregate obtained by crushing from ledge rock in at least 40% of the total aggregate (virgin and recycled) or at least 25% of the plus No. 4 (4.75 mm).
 3) All WMA mixtures placed in travel lanes designed for 10,000,000 ESALS and higher. For the purpose of evaluating moisture sensitivity of a proposed mix design, the Contractor may test the proposed JMF from plant produced material placed off-site at no additional cost to the contracting authority.

 For the purpose of evaluating moisture sensitivity of a proposed mix design, Contractor may test proposed JMF from plant produced material placed off-site at no additional cost to the Contracting Authority.

 b. Sample and test plant produced mixture for moisture susceptibility in accordance with Materials I.M. 204 and Materials I.M. 507 319 for bid item plan quantities of more than 1000 tons (1000 Mg) as follows:
 1) For mixtures satisfying Article 2303.02, E, 2, a.
 2) For conditions satisfied in Article 2303.02, E, 2, g.

 c. Moisture susceptibility testing of plant produced mixture will not be required for base repair, patching, temporary pavement, or paved shoulders. Moisture susceptibility testing for mixture bid items of 1000 tons (1000 Mg) or less is only required on the mix design for mixtures satisfying Article 2303.02, E, 2, a.

 d. Use the following minimum stripping inflection point (SIP) requirements for plant produced material:

<table>
<thead>
<tr>
<th>PG High Temperature, °C</th>
<th>< 3,000,000 ESALS</th>
<th>≥ 3,000,000 ESALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>10,000</td>
<td>14,000</td>
</tr>
<tr>
<td>64</td>
<td>10,000</td>
<td>14,000</td>
</tr>
<tr>
<td>70</td>
<td>10,000</td>
<td>14,000</td>
</tr>
</tbody>
</table>

Note 1: If ratio between creep slope and stripping slope as defined in Materials I.M 319 is less than 2.00, the SIP is invalid.

A minimum tensile strength ratio (TSR) of 80.0% is required on plant produced mixture. When notified of non-compliant results, the Engineer may suspend paving operations until an approved “significant mix change” is implemented.

 e. For mixture bid items of more than 1000 tons (1000 Mg), when the Contractor’s mix design TSR results are greater than or equal to 80% and less than 90%, an anti-strip agent will be required until the Contracting Authority’s TSR results on the plant produced mixture are equal to or exceeding 80%. Plant produced material without anti-strip shall be tested without penalty to confirm the need for an anti-strip agent. See Materials I.M. 510 Appendix C for additional information.

 f. When the Contractor’s mix design TSR SIP results are below 80.0% the minimum specified in Article 2303.02, E, 2, d, an anti-strip agent will be required. Plant produced material with anti-strip shall be tested to verify the minimum TSR SIP is achieved. See Materials I.M. 510 Appendix C for additional information.

 g. The Engineer may require an evaluation of the test method in Materials I.M. 507 319 for plant produced mixture as follows:
 1) When there is a “significant mix change” to a mix satisfying Article 2303.02, E, 2, a.
 2) When there is contamination and/or coating of the aggregate for any mixture placed in a travel lane.
 3) When aggregates are inadequately dried during production of any mixtures placed in a travel lane.

 h. The following anti-strip agents may be used:
 1) **Hydrated Lime.**
 Meet the requirements of AASHTO M 303, Type I or ASTM C 1097, Type S. Do not apply Section 4193. Hydrated lime will not be considered part of the aggregate when determining the job mix formula and the filler/bitumen ratio.
 2) **Liquid Anti-strip Additives.**
For each JMF, obtain approval for liquid anti-strip additives blended into the binder. Approval will be based on the following conditions:

a) The asphalt binder supplier provides test results that the additive does not negatively impact the asphalt binder properties, including short term and long term aged properties.

b) The design is to establish the optimum additive rate when comparing the dry strength of specimens prepared with asphalt binder not containing the anti-strip additive to conditioned specimens prepared with asphalt binder containing the anti-strip additive that produces the optimum (maximum) SIP value. See Materials I.M. 510 Appendix C for additional information.

c) A dosage rate can be selected such that the conditioned indirect tensile strength can be improved by at least 10% while meeting all other requirements.

3) Polymer-based Liquid Aggregate Treatments.
For each JMF, obtain approval for polymer-based liquid aggregate treatments. Approval will be based on the design establishing the optimum additive rate when comparing the dry strength of specimens prepared without the anti-strip additive to conditioned specimens prepared with asphalt binder containing the anti-strip additive. See Materials I.M. 510 Appendix C for additional information.

Use sand meeting the requirements of Gradation No. 1 of the Aggregate Gradation Table in Article 4109.02.

4. Fabric Reinforcement.
Use fabric reinforcement meeting the requirements of Article 4196.01, B, 4.

5. WMA Technologies.
Chemical additives, organic additives, or water injection systems approved by the Bituminous Engineer may be used at the rate established by the mixture design in the production of WMA. Once production of a bid item has begun with a WMA technology, continue its use throughout the remainder of the bid item’s production unless otherwise approved by the District Materials Engineer.

2303.03 CONSTRUCTION.

A. General.

1. Contractor is responsible for all aspects of the project.

2. Provide quality control management and testing, and maintain the quality characteristics specified.

3. Apply Quality Management - Asphalt (QM-A) to asphalt mixture bid items when the plan quantity is greater than 1000 tons (1000 Mg) and all Interstate contracts. Follow the procedures and meet the criteria established in Articles 2303.02 and 2303.03, B; Section 2521; and Materials I.M. 510 and 511.

4. Apply Article 2303.03, E, for asphalt mixture bid items that have a plan quantity of 1000 tons (1000 Mg) or less as well as any patching bid items. For items bid in square yards (m²), apply Article 2303.03, E when the plan quantity by weight (estimated with a unit weight of 145 pounds per cubic foot (2323 kg/m³)) unless otherwise stated on the plans) does not exceed 1000 tons (1000 Mg). Article 2303.03, E applies to Interstate patching as well as Interstate bid items of less than 1000 tons (1000 Mg), all of which are placed in a non-travel lane.

B. Equipment.
Provide sufficient equipment of the various types required to produce, place, and compact each layer of mixture as specified, such that the mixture is workable at the minimum placement and compaction temperature desired, regardless of storage or haul distance considerations.

Modify the asphalt mixing plant as required by the manufacturer when introducing a WMA technology. Plant modifications may include additional plant instrumentation, the installation of water injection systems and/or WMA additive delivery systems, tuning the plant burner and adjusting the flights in order to operate at lower production temperatures and/or reduced tonnage.

Use equipment meeting the requirements of Section 2001 with the following modifications:
1. **Plant Calibration.**
 a. Calibrate each plant scale and metering system before work on a contract begins. Use calibration equipment meeting the manufacturer's guidelines and Materials I.M. 508.
 b. The Engineer may waive calibration of permanent plant scales when a satisfactory operational history is available. The Engineer may require any scale or metering system to be recalibrated if operations indicate it is necessary.
 c. Make calibration data available at the plant.
 d. Calibrate each aggregate feed throughout an operating range wide enough to cover the proportion of that material required in the JMF. Make a new calibration each time there is a change in size or source of any aggregate being used.
 e. For continuous and drum mixing plants, calibrate the asphalt metering pump at the operating temperature and with the outlet under pressure equal to that occurring in normal operations.

2. **Paver.**
 Apply Article 2001.19. Spreaders described in Article 2001.13, D, may be used to place paved shoulders. Spreaders used to place the final lift of paved shoulders shall meet additional requirements of Article 2001.19.

3. **Rollers.**
 a. For initial and intermediate rolling, use self-propelled, steel tired, pneumatic tired, or vibratory rollers meeting the requirements of Article 2001.05, B, C, or F. Their weight (mass) or tire pressure may be adjusted when justified by conditions.
 b. For finish rolling, use self-propelled, steel tired rollers or vibratory rollers in the static mode that meet the requirements of Article 2001.05, B, or F.

4. **Scales.**
 Apply Article 2001.07, B, to paving operations regardless of the method of measurement.

C. **HMA Construction.**

1. **Maintenance of the Subgrade and Subbase.**
 a. Maintain completed subgrade and subbase to the required density, true cross section, and smooth condition, prior to and during subsequent construction activities.
 b. If rutting or any other damage occurs to the subgrade or subbase as a result of hauling operations, immediately repair the subgrade and subbase. Such repair will include, if necessary, removal and replacement, at no additional cost to the Contracting Authority.
 c. Should traffic by others authorized to do work on the project be specifically permitted by the Engineer to use loads which exceed the Contractor's established limit, the Contracting Authority will pay repair costs for repairs directed by the Engineer.

2. **Preparation of Existing Surfaces.**
 a. **Cleaning.**
 Clean and prepare existing surface according to Article 2212.03, B, 1.
 b. **Tack Coats.**
 1) Apply tack coats when the entire surface area on which the coat is to be applied is free of moisture. Do not apply them when the temperature on the surface being covered is less than 25°F (-4°C).
 2) Place a tack coat to form a continuous, uniform film on the area to be covered. Unless directed otherwise, spread the tack coat at an undiluted rate of 0.02 to 0.05 gallon per square yard (0.1 to 0.2 L/m²). The tack coat may be diluted with water to improve application. Unless directed otherwise, spread tack coat at the following undiluted rates:
 - New HMA Surface 0.03 to 0.05 gallon per square yard (0.14 to 0.23 L/m²)
 - Milled HMA Surface 0.05 to 0.07 gallon per square yard (0.23 to 0.32 L/m²)
 - PCC/Existing HMA Surface 0.04 to 0.06 gallon per square yard (0.18 to 0.27 L/m²)
 Tack coat may be diluted with water to improve application.
 3) Allow tack coat to adequately cure prior to placement of HMA to assure bond to the underlying surface and avoid damage of the HMA being placed. If tack coat surface becomes dirty from weather or traffic, thoroughly clean and, if necessary, retack. A light application of sand cover may also be required, but this is anticipated only for excessive application rates, breakdowns, and short sections remaining at the end of a day's run.
4) On highways being constructed under traffic, use procedures that provide safety and convenience to the public (without soiling their vehicles) as controlling factors. Limit tack coat application lengths to minimize inconvenience to the public. Keep applications within the hot mixture placing work area that is controlled by flaggers at each end. Plan applications so they will be covered with hot mixture when the work area is opened to traffic at the end of the day’s work.

5) Tack the vertical face of exposed, longitudinal joints as a separate operation at a rate from 0.10 to 0.15 gallon per square yard (0.5 to 0.7 L/m²). Tack before the adjoining lift is placed. Lightly paint or spray vertical surfaces of all fixtures, curbs, bridges, or cold mixture with which the hot mixture will come in contact to facilitate a tight joint with the fresh mixture.

c. **Fabric Reinforcement.**
 1) When fabric reinforcement is required, the locations will be designated in the contract documents.
 2) Do not place fabric on wet or damp surfaces, or when the road surface is less than 50°F (10°C).
 3) Apply fiberglass fabric only with an adhesive recommended by the manufacturer.
 4) Place fabrics with an adhesive backing according to the manufacturer’s recommendations.
 5) Place other fabrics with a heavy coat of asphalt binder at a rate of 0.20 to 0.25 gallons per square yard (0.9 to 1.1 L/m²). Use the same binder grade used in the asphalt concrete mixture. For binders containing a WMA technology, place at a temperature between 260°F and 315°F (127°C and 160°C), otherwise place at a temperature between 295°F and 315°F (145°C and 160°C).
 6) Place fabric reinforcement according to the contract documents (full width or individual crack or joint treatment). Place fabric immediately following the adhesive or asphalt binder placement under the fabric. Placement may be by hand or by a mechanical method designed for this purpose.
 7) Take precautions to avoid wrinkles in the fabric and to ensure that air bubbles are removed without breaking the fabric. Cut and lap wrinkles or folds which cannot be removed by brushing in order to provide a smooth surface.
 8) Additional adhesive or asphalt binder may be required to produce a tight, bonded surface. When applied full lane width, use a minimum 12 inch (300 mm) transverse and longitudinal lap.
 9) Avoid applying tack coat over longitudinally placed fabric.
 10) To avoid damage to fabric, do not allow traffic over fabric during placement and during curing of the adhesive material. A light application of HMA mix may be hand sprinkled on the fabric to prevent damage from necessary equipment traffic.
 11) When directed by the Engineer, repair damaged or soiled fabric prior to HMA overlay, at no additional cost to the Contracting Authority. The Engineer may also require sanding during this period, at no additional cost to the Contracting Authority.

3. **Handling, Production, and Delivery.**

 Ensure plant operation complies with the following requirements:

 a. **Handling Mineral Aggregate and RAP.**
 1) Keep various aggregate products used separate from one another. Make adequate provisions to prevent intermingling.
 2) Handle stockpiling and processing in a manner to ensure uniform incorporation of the aggregate into the mix.
 3) Feed various aggregates separately in their proper proportions using feeders to the cold elevator. Feed them at a rate to permit correct and uniform temperature control of heating and drying operations.

 b. **Handling Asphalt Binder.**
 Bring asphalt binder to a temperature of 260°F to 330°F (125°C to 165°C) before being measured for mixing with the aggregates. The temperature between these limits may be further regulated according to the characteristics of the mixture, method of proportioning, and viscosity of the asphalt binder. Heat modified asphalt binder according to the supplier’s recommendations.

 c. **Handling Anti-strip Agents.**
 1) **Hydrated Lime.**
 Accurately proportion lime using a method acceptable to the Engineer.
 a) **Added to a Drum Mixer.**
 (1) Add hydrated lime at the rate of 0.75% by weight (mass) of the total aggregate (virgin and RAP) for Interstate and Primary projects. Add hydrated lime to a drum mixer using one of the following methods:
 a) Add to virgin aggregate on the primary feed belt, as a lime water slurry.
 b) Thoroughly mix with the total combined aggregate if the aggregate contains at least 3% total moisture.
(c) Add to the outer drum of a double drum system away from heated gas flow and prior to the addition of the virgin asphalt binder.

(2) Alternative methods for mixing will be allowed only with the Engineer’s approval. Do not introduce hydrated lime directly into a single drum mixer by blowing or by auger.

b) **Added to a Batch Plant.**
Add hydrated lime at the rate of 0.5% by weight (mass) of the total aggregate (virgin and RAP) for Interstate and Primary projects. Introduce it to a batch plant using one of the methods below. In any case, introduce the lime prior to the start of the dry mix cycle.

1) Place on the recycle belt which leads directly into the weigh hopper.

2) Add directly into the pugmill.

3) Add directly into the hot aggregate elevator into the hot aggregate stream.

c) **Added to the Aggregate Stockpile.**
Add hydrated lime at a rate established by the AASHTO T 283 test optimization of the SIP as determined by Materials I.M. 319. The instructions for establishing the rate are discussed in Materials I.M. 510. Add it to the source aggregates defined in Article 2303.02, E, 2, thoroughly mixed with sufficient moisture to achieve aggregate coating, and then place in the stockpile.

2) **Liquid.**

a) When liquid anti-strip additives are used, employ equipment complying with the anti-strip manufacturer’s recommended practice to store, measure, and blend the additive with the binder.

b) The additive may be injected into the asphalt binder by the asphalt supplier or the Contractor. If the Contractor elects to add the liquid anti-strip agent, they assume the material certification responsibilities of the asphalt binder supplier. Ensure the shipping ticket reports the type and amount of additive and time of injection.

c) Ensure the asphalt supplier provides the Contractor and Engineer with the shelf life criteria defining when the anti-strip additive maintains its effectiveness. Do not use binder that has exceeded the shelf life criteria.

d) When using polymer-based aggregate treatment, comply with the manufacturer’s recommended specifications and guidelines.

d. **Production of Hot Mix Asphalt Mixtures.**

1) Regulate the exact proportions of the various materials to be within the limits specified to produce a satisfactory bituminous coating and mixture. First dry mix the aggregates, then add the asphalt binder.

a) In batch plants, add the asphalt binder in an evenly spread sheet over the full length of the mixer box.

b) In continuous plants, spray the asphalt binder evenly into the aggregate within the first 30% of the length of the mixer box using a positive pressure spray.

c) In drum mixing plants, spray the asphalt binder evenly into the aggregate using a positive pressure spray.

2) Operate the mixer so that the mixture is of consistently uniform temperature, and when discharged from the mixer does not vary more than 20ºF (11ºC).

3) Do not allow the temperature of the mixtures to fall outside the following parameters:

a) Keep the production temperature of WMA mixtures between 215ºF (102ºC) and 280ºF (138ºC) until placed on the grade. **Maximum production temperature for WMA is 330ºF (165ºC) after October 1st.**

b) Do not produce WMA mixtures more than 10ºF (6°C) below the target temperature designated in the JMF without the approval of the Engineer.

c) Keep the production temperature of HMA mixtures between 225ºF (102ºC) and 330ºF (165ºC) until placed on the grade. Do not discharge HMA into the hopper when its temperature is less than:

1) 245 ºF (118ºC) for a nominal layer thickness of 1 1/2 inches (40 mm) or less, or

2) 225 ºF (102ºC) for a nominal layer thickness of more than 1 1/2 inches (40 mm).

d) Flexible paving mixtures not meeting these requirements will be rejected.

e) Production temperature limits apply starting at point of discharge from mixer.

5 4 Use a rate of production that will not exceed the manufacturer’s rated capacity for the mixer and will provide uniform coating. For batch mixers, use a dry mixing time of no less than 5 seconds and a wet mixing time of no less than 25 seconds. For continuous mixers, use a mixing time of no less than 30 seconds.
5) Control handling and manipulation of the hot mixture from the mixer to the final spread on the road in order to maintain uniform composition and minimize segregation of coarser particles. Minimize segregation to the extent that it cannot be visibly observed in the compacted surface. Apply only approved release agents to trucks and equipment, as specified in Article 2001.01.

6) Except for an unavoidable delay or breakdown, provide continuous and uniform delivery of hot HMA to any individual spreading unit. Deliver at a rate sufficient to provide as continuous an operation of the spreading unit as practical. Keep the paver hopper sufficiently full at all times to prevent non-uniform mixture flow to the screed.

4. Placement.
 a. Clean the surface of each layer according to Article 2212.03, B, 1. If necessary, retack to provide bond with the succeeding course.
 b. Prior to placing the final lift, correct bumps or other significant irregularities that appear or are evident in the intermediate course or other lower course.
 c. Do not place HMA mixtures under the following circumstances:
 1) On a wet or damp surface.
 2) When road surface temperature is less than that shown in Tables 2303.03-1 and 2303.03-2.
 d. The Engineer may further limit placement if, in the Engineer’s judgment, other conditions are detrimental to quality work.
 e. When placing the mixture, maintain a finishing machine forward speed that will provide a continuous uniform operation. Minimize stopping.
 f. Use a wire or string line to guide finishing machine and maintain alignment. Correct edge alignment irregularities immediately.
 g. The contract documents will show the total thickness to be placed. Spread the mixture at a rate such that, when compacted, the layer(s) will be the required thickness.
 h. Base the minimum layer thickness on Table 2303.03-3. Minimum layer thickness does not apply to leveling/scratch courses.
 i. Ensure the compacted thickness of the top layer does not exceed 3 inches (75 mm). This restriction does not apply to HMA shoulders.
 j. The maximum compacted thickness of lower layers may exceed 4 inches (100 mm) if it is demonstrated that the thicker layers have satisfactory density. The riding characteristics of the thicker layers must be within conformance to that expected from a 3 inch (75 mm) layer.
 k. Complete each layer to full width before placing succeeding layers.
 l. While operating on the road surface, do not use kerosene, distillate, other petroleum fractions, or other solvents, for cleaning hand tools or for spraying the paver hopper. Do not carry containers of cleaning solution on or near the paver. When a solvent is used, do not use the paver for at least 5 hours after the last use of the solvent.
hours after cleaning. Collect and remove all cleaning materials and cleaning residue from the project and plant site. The cleaning material and residue becomes the property of the Contractor.

m. Whenever practical, spread mixtures using a finishing machine. Irregular areas may be spread by hand. Spread the hot mixture uniformly to the desired depth with hot shovels and rakes. Do not dump loads faster than they can be spread properly. Do not allow workers to stand on the loose mixture while spreading.

n. After spreading, carefully smooth to remove all segregated coarse aggregate and rake marks. Use rakes and lutes designed for use on HMA mixtures.

o. Unless stated elsewhere in the contract documents, when placing two adjacent lanes, pave no more than 1 day of rated plant production before paving the adjacent lane(s). Place the adjacent lane to match the first lane during the next day of plant production.

p. Do not spread more mixture than can be compacted in the specified working hours of the same working day.

q. At the close of each working day, clear all construction equipment from the roadbed.

r. Prior to opening a lane to traffic, place fillets or full width granular shoulders according to Article 2121.03, C, 4. Place the material adjacent to and equal in thickness to the resurfacing. Fillet removal is incidental to the HMA mixture.

5. Compaction.
 a. General.
 1) Promptly and thoroughly compact each layer. Use mechanical tampers for areas inaccessible to the rollers.
 2) Use a rolling procedure and compactive effort that will produce a surface free of ridges, marks, or bumps. Obtain the Engineer’s approval for the rolling procedure and compactive effort.
 b. Class I Compaction.
 1) Applications.
 a) Use Class I compaction for base, intermediate, and surface courses for the traffic lanes, ramps, and loops on all roadways.
 b) For Class I compaction, the quality characteristic is in-place air void content and will be based on the theoretical maximum specific gravity (Gmm) obtained from the Quality Control Program for that day’s mixture.
 2) Test Strip Construction for Class I Compaction.
 a) For the purpose of evaluating properties of the HMA mixtures and for evaluating an effective rolling pattern:
 (1) Construct a test strip of the surface mixture prior to its placement on the surface course for Interstate highways, Primary highways, and ramps connecting Interstate and Primary highways.
 (2) Construct a test strip of the intermediate mixture at the start of its placement on the intermediate course for Interstate highways, interstate-to-interstate ramps.
 (3) Test strips for base mixtures may be constructed, but are not required.
 b) When the contract documents specify both intermediate and surface courses and a test strip is required, place a surface course test strip in lieu of intermediate mixture in a section of the intermediate course prior to actual surface course placement. If surface course and intermediate course are not placed the same calendar year, then place test strip at beginning of surface mix production.
 c) Test strips are not required when the entire production of the mixture bid item is placed in a single day.
 d) The quantity of HMA mixture subject to the test strip production, will be pre-established with the Engineer and limited to a half day’s production:
 e) Only one test strip will be allowed for each mixture and shall be declared to the Engineer prior to placement. The Engineer may require additional test strips if a complying HMA mixture or rolling pattern was not established.
 f) Use procedures and documentation during test strip construction that allow the Engineer and Contractor to confirm mixture design properties and effectiveness of compaction procedures.
 g) Use test strip production control that meets the requirements of Article 2303.03, D, 3, c. The test strip will be an independent lot. Determine sublots in accordance with Table 2303.03-4.
 c. Class II Compaction.
 Intended for paved shoulders, temporary crossovers, onsite detours, and other situations where Class I is not specified.
 1) For all rollers, make initial contact with the hot mixture using the power driven wheels or drum.
2) Perform initial rolling at a temperature so the mixture will compact without excessive distortion. Except on longitudinal joints and super-elevated curves, begin rolling with the initial roller at the outer edges of the pavement. With each successive pass, progress inward toward the center. For each reverse trip, lap all but 4 to 6 inches (100 to 150 mm) of the previous track. When reversing direction, stop the initial roller at an angle with the longitudinal direction.

3) Following the initial rolling, give the layer an intermediate rolling with a pneumatic tired roller before the temperature falls below 225°F (110°C). Cover the area no less than six times with the intermediate roller.

4) Use a finish, steel tired roller to smooth out all marks and roughness in the surface.

5) For areas inaccessible to rollers, use mechanical tampers or other approved compaction methods.

 a. Construct longitudinal joints for courses on resurfacing projects directly above the longitudinal joint in the existing pavement. Limit the offset distance between longitudinal joints in succeeding full depth HMA paving courses to 3 inches (75 mm) or less. Adjust hot mixture spreading along longitudinal joints to secure complete joint closure and full compression of the mixture with a smooth surface and joint after compaction.
 b. Separate transverse construction joints in succeeding courses by at least 6 feet (1.6 m). Do not use wood or metal headers to form joint edge during rolling of the fresh mixture. Saw header to a straight line at right angles to the center line to provide a full thickness vertical edge before continuing paving. Provide a 10 foot (3 m) straightedge for checking transverse construction joints for smoothness. Before compaction, use hand methods to correct surface variations at transverse construction joints indicated by the straightedge.
 c. When a transverse construction joint is open to traffic, install a temporary runout 10 feet (3 m) long per 1 inch (25 mm) of lift thickness. Use suitable paper or burlap (not sand, dirt, or wood) under the taper to prevent adhesion.
 d. When required to end paving for winter shutdown, locate runouts adjacent to each other. Install a winter shutdown runout 25 feet (8 m) long per 1 inch (25 mm) of lift thickness.
 e. For temporary runouts open to traffic for periods greater than 4 weeks or winter shutdown runouts, the Contractor may reduce the amount of top size aggregate in the transition taper. Remove temporary runouts and winter shutdown runouts before commencing paving. Runout removal is incidental to the HMA mixture.

7. Miscellaneous Operations.
 a. Leveling and Strengthening Courses.
 1) The contract documents will show course thickness. Place strengthening and leveling courses as indicated in the contract documents. Use the same mixture specified for the base or intermediate course.
 2) When the width of strengthening or leveling course is 8 feet (2.4 m) or more, spread using a finishing machine.
 3) Compact leveling courses and intermediate mixtures placed as leveling/scratch courses (less than or equal to 1 inch (25mm) plan thickness) using Class II compaction, except make all passes with a pneumatic roller.
 b. Wedge Courses.
 1) Use the base or intermediate mixture to construct wedge courses used to secure desired curve super-elevation. When possible, spread using a finishing machine.
 2) Place wedge courses in compacted layers no thicker than 3 inches (75 mm). Avoid crushing the coarse aggregate. Place wedge courses to the full width of the pavement.
 3) On super-elevated curves which require wedge course placement, stage the shoulder construction. After completing each day’s wedge placement operations and prior to suspending that day’s construction activities, construct a full width shoulder on the high side up to the completed wedge course elevation. Shoulder construction staging will be considered incidental to shoulder construction.
 4) The Engineer may waive field void sampling for wedge courses provided compaction has been thorough and effective.
 c. Fixtures in the Pavement Surface.
 1) Adjust manholes, intakes, valve boxes, or other fixtures encountered within the area to be covered by HMA to conform to the final adjacent finished surface. Payment for adjustment of
manholes or intakes will be per Section 2435. Payment for adjustment of valve boxes and other fixtures will be per Section 2554. Unless specified otherwise in the plans, adjust fixtures:

- Between placing the surface course and the layer preceding the surface course, or
- After placing the surface course using a composite patch or PCC patch.

2) Use PCC and HMA patch material complying with the requirements of Section 2529. Make patches large enough to accommodate the structure being adjusted.

3) Construct patches to be square. Orient them diagonally to the direction of traffic flow. Ensure the elevation of the adjusted fixture and patch does not differ from the elevation of the surrounding pavement surface by more than 1/4 inch (6 mm).

4) When shaping and compacting resurfacing near inlets to storm sewer intakes, shape to ensure maximum drainage into intakes.

d. **Fillets for Intersecting Roads and Driveways.**

1) Shape, clean of loose material, and tack coat the surface adjacent to the pavement being surfaced when fillets are designated in the contract documents for driveways to homesteads and commercial establishments and at intersecting roads. On the tack coated surface, place and compact the hot mixture in layers equal to the adjacent layer. Extend from the edge of the pavement as shown on the plans.

2) Place and compact fillets at intersecting roads at the same time as the adjacent layer.

3) Entrance fillets that are 8 feet (2.4 m) or wider may be placed as a separate operation. Pave fillets which are 8 feet (2.4 m) or wider with a self propelled finishing machine described in Article 2001.19.

4) The Engineer may approve other equipment for placement of fillets, based on a demonstration of satisfactory results.

e. **Stop Sign Rumble Strips.**

If the plans include the bid item Rumble Strip Panel (In Full Depth Patch), apply Section 2529. To meet the requirements of placing Stop Sign Rumble Strips before opening roadway sections to traffic, the Contractor may construct temporary rumble strip panels meeting the final pattern and location of the Stop Sign Rumble Strip indicated in the plans.

f. **Paved HMA Shoulders.**

1) Compact paved HMA shoulders using one of the following methods:
 a) Class II compaction (Article 2303.03, C, 5, c),
 b) Rolling pattern established during the first day of shoulder placement to achieve Class I compaction (Article 2303.03, C, 5, b), or
 c) Same rolling pattern established for adjoining mainline or ramp driving lane, as determined by density coring.

2) Shoulder area will not be included in Percent Within Limits (PWL) calculations for field voids on adjoining mainline or ramp driving lane. A price adjustment may be applied to shoulder areas that do not adhere to the established roller pattern.

D. Quality Assurance Program.

For interstate mixtures placed in a travel lane and each mixture bid item that has a plan quantity of more than 1000 tons (1000 Mg) (patching excluded) apply requirements of this article.

For items bid in square yards (m²), apply the requirements of this article when the plan quantity by weight (estimated with a unit weight of 145 pounds per cubic foot (2323 kg/m³) unless otherwise specified in the plans) exceeds 1000 tons (1000 Mg).

HMA mixture bid items with plan quantities of 1000 tons (1000 Mg) or less and patching bid items are both defined as small quantities. For those bid items, meet the requirements of Article 2303.03, E. For items bid in square yards (m²), when the plan quantity by weight (estimated with a unit weight of 145 pounds per cubic foot (2323 kg/m³) unless otherwise specified in the plans) does not exceed 1000 tons (1000 Mg), meet the requirements of Article 2303.03, E.

1. **General.**

 Follow the procedures and meet the criteria established in Articles 2303.02 and 2303.03, B, Section 2521, and Materials I.M. 510 and 511.

2. **Mix Design - Job Mix Formula.**

 a. The Contractor is responsible for the JMF for each mixture.
b. Submit a completed JMF, using the computer format of Form 956, for approval to the materials lab designated by the Contracting Authority. Submit supporting documentation demonstrating the design process was followed and how the recommended JMF was determined. Include an economic evaluation when required. Include trial and final proposed aggregate proportions (Form 955) and corresponding gyratory data. In addition, submit sufficient loose mixture and individual material samples for approval of the design.

c. Personnel preparing the JMF shall be Iowa DOT certified in bituminous mix design.

d. If the JMF is not satisfactory, submit another JMF for review. An approved JMF will be required prior to beginning plant production. The Contractor will be charged $1000 for each JMF approval requested and performed which exceeds two per mix size, type, and proposal item on any individual project or group of tied projects.

a. General.
 1) Perform sampling and testing to provide the quality control of the mixture during plant production. Certified Plant Inspection according to Section 2521 is required.
 2) Personnel performing production quality control testing shall be Iowa DOT certified for the duties performed.
 3) Provide easy and safe access for Iowa DOT staff to the location in the plant where samples are taken.
 4) All of the following qualify as a “significant mix change”:
 - A single occurrence of an aggregate interchange of greater than 5%.
 - An aggregate interchange of greater than 5% from last approved JMF.
 - A single occurrence of an asphalt content change greater than 0.2%.
 - An asphalt content change greater than 0.2% from last approved JMF.
 - A deletion or introduction of a new material into the mix.
 - A change of additive dosage rate.
 - A change of binder, aggregate, or additive source.

b. Sampling and Testing.
 Submit a testing plan meeting the requirements of Materials I.M. 511, Appendix D prior to the preconstruction meeting.
 1) Asphalt Binder
 Sample and test asphalt binder to verify the quality of the binder grade. Take asphalt binder samples at random times as directed and witnessed by the Engineer according to Materials I.M. 204.
 2) Aggregate Gradation
 a) Use cold feed or ignition oven gradation for aggregate gradation control to assure materials are being proportioned according to the specifications. Take aggregate quality control samples at random times in accordance with Materials I.M. 204.
 b) Take a minimum of one aggregate gradation for each day’s production that exceeds 100 tons (Mg). Higher testing frequencies may be used when defined by a pre-determined quality control plan approved by the Engineer. When more than one sample in a day’s production is tested, use the average gradation to determine compliance of the daily lot.
 c) Engineer will verify Contractor gradation with an ignition oven or a split cold feed sample. When cold feed quality control is verified with the ignition oven, split a cold feed sample with the Engineer on the first day’s production of each mixture. The Engineer will determine the need for a correction factor for the cold feed gradation based on the Engineer’s cold feed gradation and ignition oven results. The Engineer may require additional cold feed split samples to evaluate the need or value of a correction factor for the cold feed and ignition oven gradation.
 d) Secure aggregate gradation samples transported to the agency lab for determination of the ignition oven correction factor testing in accordance with Materials I.M. 511.
3) **Uncompacted Asphalt Mixture**

 a) Sample the hot HMA mixture at random locations as directed and witnessed by the Engineer according to Materials I.M. 322. Secure and test the samples according to Materials I.M. 511. **Modify sampling location to include placement with mix stored from a prior day’s production.**

 b) Sampling frequency will be determined by the estimated daily production of each mixture placed. The number of sublots is defined in Table 2303.03-4:

<table>
<thead>
<tr>
<th>Estimated Daily Production, Tons (Mg)</th>
<th>Number of Sublots</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-500</td>
<td>1</td>
</tr>
<tr>
<td>501-1250</td>
<td>2</td>
</tr>
<tr>
<td>1251-2000</td>
<td>3</td>
</tr>
<tr>
<td>2001-4500</td>
<td>4</td>
</tr>
<tr>
<td>Over 4500</td>
<td>5</td>
</tr>
</tbody>
</table>

 c) The Contractor may request to have a quality control plan that indicates a higher testing frequency if pre-approved by the Engineer at the preconstruction meeting.

 d) Assist the Engineer with material sampling for verification testing. When the Engineer provides notification that a sample is to be taken, initiate sampling within 15 minutes. Sampling should normally be completed within 30 minutes of notification.

 e) Do not take paired samples from the first 100 tons (100 Mg) of mix produced each day or the first 100 tons (100 Mg) of mix following a significant mix change. When paving operations are staged so each day of placement is less than 100 tons (100 Mg) for the entire production of the bid item, establish a sampling plan with the Engineer that includes a minimum of one sample per 2500 tons (2500 Mg).

 f) For PWL analysis of laboratory voids, each mixture bid item will constitute a lot. Lot size is defined as follows:

 1) No less than 8 and no more than 20 sequential tests will constitute a lot (exceptions stated below).

 2) After the 8th test, all subsequent samples collected over the remainder of that week will also be included in the lot up to a maximum of 20.

 3) Once a lot has been established with at least 8 tests, a new lot will begin at the start of the following week or the day following the 20th sample, whichever occurs first. Lots shall not contain partial days. When the 20th sample is reached, include all samples taken that day in the lot.

 4) When determining PWL lot size for lab voids, Sunday through Saturday defines a week.

 5) If the bid item’s production has ended and fewer than 8 tests are available, those tests may be combined with the previous lot provided the maximum lot size has not already been reached. When combining results, if the day to be combined contains the 20th sample, include all samples for that day. Do not combine partial day’s results.

 6) If samples cannot be combined with the previous lot due to maximum lot size restrictions or if fewer than 8 tests are available for the entire production of a bid item, combine those tests into a single lot and use the AAD analysis in Materials I.M. 501.

 7) Test strips will be considered a separate lot.

 8) When the same mix type is produced for multiple bid items in one day, assign all box samples to each bid item’s existing PWL lot for lab voids. Assign the quantity of each bid item produced to its respective lot.

 g) Test the quality control sample of each production paired sample as follows:

 1) Prepare and compact two gyratory specimens according to Materials I.M. 325G. Compact loose WMA field samples, transported to the laboratory, at 240°F (115°C).

 2) Determine the bulk specific gravity of compacted mixture (G_{mb}) at N_{design} for each specimen according to Materials I.M. 321. G_{mb} will be determined by compacting specimens to N_{design}. Average the results.

 3) Determine the Theoretical Maximum Specific Gravity of the uncompacted mixture according to Materials I.M. 350.

 4) Determine laboratory air voids for each sample according to Materials I.M. 501.

 h) Use the target laboratory voids listed in Materials I.M. 510 Appendix A unless otherwise specified in the contract documents.

 i) Use the following methods of acceptance for laboratory voids:
(1) For base widening, non-high speed ramps, non-interstate shoulders, recreational trails, and other mixture bid items not placed in travel lanes of a permanent pavement, acceptance for laboratory voids will be based on a moving average absolute deviation (AAD) from target as defined in Materials I.M. 501. Use the production tolerance in Table 2303.03-5. At any time, if more than 100 tons (100 MG) of the bid item is placed in an area not listed above, apply Article 2303.03, D, 3, b, 3, ix, b 2303.03, D, 3, b, 3, i, 2, for entire production of bid item.

(2) For all other mixture bid items, determine PWL for each lot as defined in Materials I.M. 501. Use 1.0% below the target air voids as the lower specification limit and 1.0% above the target air voids as the upper specification limit. Lot size is defined in Article 2303.03, D, 3, b, 3, vi 2303.03, D, 3, b, 3, f. When the same mix type is placed in both PWL and AAD areas in a single day, include all samples for that day in the PWL lot as well as the quantity of the mixture bid item produced and placed in the PWL area.

(3) When same mix type is produced for multiple bid items in a single day from a single plant, apply all samples for that day to the lot for each bid item.

j) For mixture bid items in a PWL lot, determine the pay factor using the average absolute deviation (AAD) procedure described in Materials I.M. 501 for proportions of a mixture bid item which are produced in irregular intervals and placed in irregular areas. The following items qualify as such and shall be combined into a single lot:
- Asphalt mixture produced and placed on gores, detours, cross-overs, temporary pavements, turning lanes, and fillets,
- Asphalt mixture produced and placed on ramps that are not high-speed ramps,
- Asphalt mixture produced and placed on non-interstate shoulders.

To be considered irregular, the production rate for mixture bid items described above is not to exceed 1000 tons (1000 Mg) (10,000 square yards (8400 m²) for items bid in square yards in a single day.

4) Moisture Susceptibility
a) The Engineer may obtain plant produced samples for moisture susceptibility testing in accordance with Materials I.M. 507 319 at any time for mixtures identified in Article 2303.02, E, 2, A a or Article 2303.02, E, 2, G f, to verify the minimum TSR requirement in Article 2303.02, E, 2, d has been achieved.

b) When liquid anti-strip additives are added by the Contractor at the plant, satisfy one of the following methods to regulate the quantity of additive:
(1) Present certification that the equipment used to measure and blend the liquid anti-strip additive:
- Meets the anti-strip supplier’s recommended practice,
- Is directly tied to the asphalt binder supply system, and
- Has been calibrated to the equipment manufacturer’s guidelines.
(2) Test the binder to measure the quantity of liquid anti-strip additive in the binder for every 5000 tons (5000Mg) of HMA production. Obtain the Engineer’s approval for the supplier’s test method prior to use of the test.
(3) Run the test method in Materials I.M. 507 319 during production. If unable to certify or test for the presence and quality, run the test method in Materials I.M. 507 319 each 10,000 tons (10,000 Mg) of production to measure the effectiveness of the additive. Ensure test results satisfy 80% TSR when compared to the dry strength of specimens prepared with asphalt binder containing the additive the minimum requirement in Article 2303.02, E, 2, d.

c. Production Control.
1) After the JMF is established, the combined aggregate furnished for the project, the quantity of asphalt binder, and the laboratory air voids should consistently comply with the JMF, as target values. Control them within the production tolerance given in Table 2303.03-5.
Table 2303.03-5: Production Tolerances

<table>
<thead>
<tr>
<th>Measured Characteristic</th>
<th>Target Value (%)</th>
<th>Specification Tolerance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold feed gradation No. 4 (4.75 mm) and larger sieves by JMF</td>
<td>± 7.0</td>
<td></td>
</tr>
<tr>
<td>Cold feed gradation No. 8 (2.36 mm) by JMF</td>
<td>± 5.0</td>
<td></td>
</tr>
<tr>
<td>Cold feed gradation No. 30 (600 µm) by JMF</td>
<td>± 4.0</td>
<td></td>
</tr>
<tr>
<td>Cold feed gradation No. 200 (75 µm) by JMF</td>
<td>± 2.0 (b)</td>
<td></td>
</tr>
<tr>
<td>Field laboratory air voids absolute deviation from target (c)</td>
<td>0.0 ≤ 1.0</td>
<td></td>
</tr>
<tr>
<td>Daily asphalt binder content by JMF</td>
<td>± 0.3</td>
<td></td>
</tr>
<tr>
<td>VMA (e) by JMF</td>
<td>± 1.0 (f)</td>
<td></td>
</tr>
</tbody>
</table>

(a) Based on single test unless noted otherwise.
(b) Maintain the filler/bitumen ratio of the plant produced mixture between 0.6 and 1.4.
(c) When lab voids acceptance is not based on PWL.
(e) Restricted to an asphalt film thickness as specified for the level of HMA mixture. May be waived per Materials I.M. 510, Appendix A.
(f) Based on the daily lot average.

2) Control plant production so that the plant produced HMA mixture will meet mixture design criteria (within the test tolerances given in Table 2303.03-5) for Air Voids and VMA at N_{design} gyrations of the gyratory compactor. Monitor the slope of the gyratory compaction curve of plant produced material. Slope variations in excess of ±0.40 of the mixture design gyratory compaction curve slope may indicate potential problems with uniformity of the mixture.

3) The gyratory mix design gradation control points for the size mixture designated in the project plans will not apply to plant production control.

4) Strive for the target value of the percent air void and asphalt binder by adjusting gradation and asphalt binder content.

5) Produce a uniform composition mixture complying with the JMF.

6) Adjustments to the JMF target gradation and asphalt binder content values may be made.
 a) The Contractor determines from quality control testing that adjustments are necessary to achieve the specified properties.
 b) Consult with the Engineer regarding adjustments to the JMF.
 c) Notify the Engineer if the average daily gradation for a mixture bid item is outside the production tolerances. If other production tolerances and mixture requirements of Materials I.M. 510 Appendix A are acceptable, a change in gradation target can be requested.
 d) If filler/bitumen ratio exceeds the limits listed in Table 2303.03-5, change the JMF at the start of the next day's production for that mixture.
 e) The Contractor’s adjustment recommendations prevail, provided all specifications and established mix criteria are being met for plant production.

7) Measure estimated film thickness and voids in the mineral aggregate (VMA) for specification compliance every day of HMA production.

8) Prepare quality control charts according to Materials I.M. 511. Keep the charts current and available showing both individual sample results and moving average values for both lab voids and absolute deviation from target. Base moving average values on four consecutive sample results. The moving average absolute deviation from target may restart only in the event of a mandatory plant shutdown for failure to maintain the average within the production tolerance. Include the target value and specification tolerances on control charts.

9) Calculate laboratory voids for individual samples according to Materials I.M. 501. Use the individual density and individual maximum specific gravity determined for each sample. To determine the moving average of laboratory voids, use the average of the last four individual sample laboratory voids. Calculate absolute deviation from target lab voids according to Materials I.M. 501 of this specification. To determine the moving average absolute deviation from target laboratory voids, use the average of the last four individual sample absolute deviations from target laboratory voids.
10) Monitor the test results and make mix adjustments, when appropriate, to keep the mixture near the target values. Notify the Engineer whenever the process approaches a specification tolerance limit. When acceptance for lab voids is not based on PWL, cease operations when the moving average point for absolute deviation from target lab voids is outside the specification tolerance limit. Assume responsibility to cease operations, including not incorporating material which has not been placed. Do not start the production process again until notifying the Engineer of the corrective action proposed.

4. Construction.
 a. Field Voids for Class I Compaction.
 1) Take samples to determine field voids from the compacted mixture and test no later than the next working day following placement and compaction.
 2) A lot is considered to be one layer of one mixture bid item placed during a day’s operation. The Engineer may approve classifying multiple layers of construction placed during a single day as a lot provided only one mixture was used.
 3) For the following situations sampling for field voids may be waived by the Engineer provided compaction has been thorough and effective, or sampling may be modified by mutual agreement to include more than one day’s production provided samples are taken prior to trafficking:
 - When the day’s operation is not more than 2500 square yards (2500 m²) excluding areas deducted from the field voids lot,
 - When the day’s operation is not more than 500 tons (500 Mg) excluding quantities deducted from the field voids lot,
 - When the mixture is being placed in irregular areas, or
 - When placing wedge or strengthening courses.
 4) The Engineer will obtain and test samples for each lot according to Materials I.M. 204 Appendix F. The Contractor may request to have a quality control plan that indicates a higher testing frequency at no additional cost to the Contracting Authority if pre-approved by the Engineer at the preconstruction meeting. The Engineer will determine the core locations. The length laid in each lot will be divided into approximately equal sublots. Obtain one sample at a random location, as directed and witnessed by the Engineer, in each sublot. Determine a new random location for the sublot when the designated core location falls on a runout taper at an existing pavement, bridge, or bridge approach section where the thickness is less than the design thickness.
 5) If a sample is damaged or measures less than 70% or more than 150% of the intended thickness, an alternate sampling location will be determined and used. Take samples from no less than 1 foot (300 mm) from the edge of a given pass of the placing equipment, from run-outs, or from day’s work joints or structures.
 6) Use the following methods of acceptance for field voids:
 a) For mixture bid items placed in the following areas:
 - Base widening placed in a travel lane,
 - Non high-speed ramps,
 - Bridge approaches placed as a separate operation,
 - Non-interstate travel lanes intended to be in service for fewer than 12 months,
 - State Park and Institutional roadways,
 - Recreational trails,
 - Irregular areas identified by the Engineer that may include areas not suitable for continuous paving, and
 - Wedges,
 the Engineer will accept the field voids lot based on the average test results or an established effective rolling pattern when approved by the Engineer. Do not exceed 8% average field voids. The Engineer may modify the sample size and frequency provided compaction is thorough and effective. The Engineer may apply the pay schedule in 2303.05, A, 3, b, 3 to areas where thorough and effective compaction is not achieved.
 b) For all other areas of Class I compaction, determine PWL, as defined in Materials I.M. 501, for each lot using a lower specification limit (LSL) of 3.5% voids (96.5% of Gₘₐₚ) and an upper specification limit (USL) of 8.5% voids (91.5% Gₘₐₚ).
 7) When the PWL falls below 80.0, use the procedure outlined in Materials I.M. 501 to identify outliers with 1.80 as the quality index criterion. Only one core may be considered an outlier in a single lot. If an outlier is identified, recalculate the PWL with the results of the remaining cores and determine whether the PWL is improved. Use the larger of the original and recalculated PWL to determine the pay factor.
8) When the PWL falls below 50.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

9) Use maximum specific gravity (Gmm) results in field voids calculations as follows:
 a) When cores represent one day’s production and more than one Gmm test result is available, use the average Gmm in the field voids calculation for all cores.
 b) When cores represent one day’s production and only one Gmm test result is available, use the single Gmm test result in the field voids calculation for all cores.
 c) When the cores represent more than one day’s production, use the average of all Gmm test results from all days corresponding with the cores.

b. Longitudinal Joint Compaction:
 1) When PWL is used for Class I field voids acceptance and placement of lot results in the formation of a longitudinal joint(s) matching one or more lanes, obtain and test samples taken directly on each joint created.
 2) Using random core locations determined for field voids lot, Engineer will randomly select four of these locations to be sampled for joint density. At each of the four locations (longitudinal station/milepost), obtain one sample for each longitudinal joint being formed as directed and witnessed by the Engineer. Take samples using a 6 inch (150 mm) diameter bit centered on top of the visible line between the two lanes.
 3) Do not sample when matching new paving to pre-existing lanes.
 4) Use average of all validated Gmm test results from all days corresponding with the cores, when calculating field voids of the joint(s).
 5) Include results on daily plant report.

b. Thickness:
 1) The Engineer will measure cores, exclusive of sealcoat, according to Materials I.M. 337. All areas of uniform thickness and width for the project will be divided into lots. Sampling frequency and lot definitions are as follows:
 a) Thickness cores sampled from completed course shall be taken full depth and divided into lots based on areas of uniform thickness and width. Use frequency specified for taking density samples from surface lift.
 b) Density cores sampled as part of a field voids lot will be combined into daily lots based on cores’ intended thickness.
 2) Use the frequency specified for taking Gmb samples from the surface lift when measuring for completed thickness. Samples for thickness not tested for Gmb, because they are less than 70% of the intended thickness, are included for thickness. In these particular instances, do not measure the thickness of additional sufficiently thick samples used to determine field voids. Take thickness samples full depth of the completed course. After measurement, remove the Gmb samples for the top layer from the core. When measuring density of top lift from a full depth core, measure thickness before trimming core for density testing.
 3) For full depth cores taken from completed course, intended thickness is designated in the contract documents. For all other cores, intended thickness is established by the Contractor meeting requirements in Articles 2303.03, C, 4, h through j. If any of the measurements for a lot is less than the designated thickness, the quality index for thickness of that lot will be determined by the following formula:

 \[
 QI_{Thickness} = \frac{\text{Average Thickness}_{Measured} - (\text{Thickness}_{Plan}^{intended} - 0.5)}{\text{Maximum Thickness}_{Measured} - \text{Minimum Thickness}_{Measured}}
 \]

 (English)

 \[
 QI_{Thickness} = \frac{\text{Average Thickness}_{Measured} - (\text{Thickness}_{Plan}^{intended} - 12.7)}{\text{Maximum Thickness}_{Measured} - \text{Minimum Thickness}_{Measured}}
 \]

 (Metric)

 4) Provided there is reasonable assurance that the pavement complies with the required thickness, the Engineer may waive sampling for thickness for the following situations:
 a) When the day’s operation is 2500 square yards (2500 m²) or less.
 b) When the mixture is being placed in irregular areas.
 c) When the mixture is being placed next to structures.
5) When the quality index falls below 0.00 and final lift of the course has been placed, the Engineer may declare the lot or parts of the lot defective.

c. Smoothness.
Construct pavement to have a smooth riding surface according to the following:
1) Apply Section 2317 to HMA surface mixture bid items of a Primary project if any individual HMA mixture bid item is 1000 tons (1000 Mg) or greater or 5000 square yards (4200 m²) or greater. Apply Section 2316 to all other Primary projects with a surface course and when specifically required for other projects.
2) When neither Section 2316 nor Section 2317 is applied to a project, periodically check the riding surface longitudinally with a 10 foot (3 m) straightedge. The surface shall not deviate from a straight line by more than 1/8 inch in 10 feet (3 mm in 3 m). If a deviation is present, correct the area according to Article 2316.03, B, 2.

5. Sampling and Testing.
 a. General.
 1) Maintain and calibrate the quality control testing equipment using prescribed procedures. Sample and test according to the specified procedures as listed in the applicable Materials I.M. and Specifications. When the results from a Contractor’s quality control lab are used as part of product acceptance, the Contractor’s quality control lab is required to be qualified.
 2) Identify, store, and retain all quality control samples and field lab gyratory specimens used for acceptance until the lot is accepted. The Contracting Authority will prescribe the method of securing the identity and integrity of the verification samples according to Materials I.M. 511. Store verification samples for the Contracting Authority until delivery to the Contracting Authority’s lab.
 3) Identify all samples using a system the Engineer approves.
 b. Individual Materials and Uncompacted Mixture.
 1) Complete the following as designated by the Engineer:
 • Identify samples of asphalt binder, aggregate, and tack coat material.
 • Secure and promptly deliver the samples to the appropriate laboratory.
 2) Take paired samples of uncompacted HMA mixture (each box of the pair weighing at least 30 pounds (14 kg)) according to Materials I.M. 322.
 3) Conduct quality control tests for mixture properties using representative portions of the mix from the quality control sample of each sublot.
 4) Split samples for specimen preparation according to Materials I.M. 357.
 5) Paired sampling may also be accomplished by taking a bulk sample and immediately splitting the sample according to Materials I.M. 322 on the grade.
 6) Record and document all test results and calculations on data sheets approved by the Contracting Authority. Record specific test results on the Daily Plant Report the Contracting Authority provides. Also include a description of the quality control actions taken (adjustment of cold feet percentages, changes in JMF, and so forth) on the Daily Plant Report.
 7) Facsimile, or deliver by other methods the Engineer approves. Deliver the Daily Plant Report to the Engineer and designated laboratory daily as directed in Materials I.M. 511. At project completion, provide Engineer a copy of electronic file(s) containing project information generated during the progress of the work.
 8) When sampling for moisture susceptibility testing, obtain a 70 pound (35 kg) sample according to Materials I.M. 322. If the Contractor’s TSR results from the mixture design are less than 90%, sample at a minimum frequency of 1/10,000 tons of plant production until a complying test result is achieved, after which the minimum frequency may be reduced to 1/50,000 tons. Each sample shall constitute a separate lot and include all quantities placed from beginning of bid item’s production (or previous sampling point) to next sampling point (or 10,000 tons, whichever is less). The Engineer will select, at random, the sample location. Split the sample and deliver half to the Central Materials Laboratory.
 c. Compacted Pavement Cores.
 1) Cut and trim samples under the direction of and witnessed by the Engineer for tests of Gₘb, thickness, or composition by using a power driven masonry saw or by drilling a minimum 4 inch (100 mm) nominal diameter core.
 2) Restore the surfaces the same day. Dry, fill with the same material, and properly compact core holes.
 3) Pavement core samples will be identified, taken possession of by the Engineer, and delivered to the Contractor’s quality control field laboratory.
4) The Engineer may either:
 - Transport the cores directly to the lab, or
 - Secure the cores and allow the Contractor to transport the cores to the lab.

5) The compacted HMA pavement will be tested in a timely manner by the Engineer’s personnel who are Iowa DOT Certified to perform the test.

6) Prepare and test the cores according to Materials I.M. 320, 321, and 337.

d. Verification and Independent Assurance Testing.
 1) The Contractor's quality control test results will be validated by the Engineer's verification test results on a regular basis using guidelines and tolerances set forth in Materials I.M. 216 and 511.
 2) If the Engineer's verification test results validate the Contractor's test results, the Contractor's results will be used for material acceptance. Disputes between the Contractor's and Engineer's test results will be resolved according to Materials I.M. 511.
 3) The Engineer will randomly select one or more of the daily production verification samples. Some or all of the samples selected will be tested in the materials laboratory designated by the Engineer. The Engineer will use the verification test results to determine if the Contractor's test results can be used for acceptance.
 4) The Engineer will test each lot of cores at the Contractor's field quality control laboratory. Cores may also be tested by the Contractor; however, the Contractor's test results will not be used for material acceptance.
 5) Personnel and laboratories performing tests used in the acceptance of material are required to have participated in the statewide Independent Assurance Program according to Materials I.M. 208.

E. Quality Control for Small HMA Paving Quantities.

1. Mix Design.
 Prepare the JMF. Prior to HMA production, obtain the Engineer's approval for the JMF. Comply with Article 2303.02 and Materials I.M. 510.

 For mixtures meeting the criteria in Article 2303.02, E, 2, a:
 a. An anti-stripping agent is required when $\text{TSR on mix design} < 90\%$, the optimum dosage is greater than 0%.
 b. Use Materials I.M. 507 to optimize the design dosage rate.
 c. When prior-approved designs have demonstrated acceptable field TSR SIP values, the anti-stripping agent and dosage from the JMF may be used in lieu of optimization testing.

2. Plant Production.
 a. Ensure HMA production plant calibration for the JMF is current and no more than 12 months old.
 b. Use certified asphalt binder and approved aggregate sources meeting the JMF. Ensure the plant maintains an asphalt binder log to track the date and time of binder delivery. Ensure HMA delivery tickets identify the JMF.
 c. Monitor the quality control test results and make adjustments to keep the mixture near the target JMF values.

3. Construction.
 a. Take compacted mixture G_{mm} measurements, except when Class II compaction is specified, no later than the next working day following placement and compaction. Use the field quality control laboratory compaction for field G_{mm} control, as specified in Article 2303.03, D. The Engineer may accept the void content of the compacted layer based on cores or calculations from density gauge measurements. The Engineer may waive field void sampling provided the compaction has been thorough and effective.
 b. For small quantities, a lot will be the entire quantity of each HMA mixture bid item.
 c. The PWL for field voids will not apply to small quantities.

 a. Material sampling and testing is for production quality control only. Acceptance of mixture is based on Contractor certification. Perform a minimum of one aggregate cold-feed and one uncompacted HMA test per lot. Sampling and testing of uncompacted HMA mixture is only required for mechanically placed mixture. Sample and test according to the Standard Specifications and Materials I.M.s using certified technicians and qualified testing equipment. The Engineer may approve alternative sampling
procedures or may waive sampling of uncompacted mix and gradation if Contractor can provide plant reports from other recent project(s) demonstrating the JMF has been produced within specification. Take the sample between the first 100 to 200 tons (100 to 200 Mg) of production. No split samples for agency verification testing are required.

b. Asphalt binder will be accepted based on the asphalt supplier’s shipment certification. No binder sampling or testing is required.

c. Material sampling or testing is not required for daily HMA production of less than 100 tons (100 Mg) of any small quantity mixture on any project bid item.

d. Moisture susceptibility testing on plant produced mixture is not required.

5. Certification.

a. Provide a certification for the production of any mixture in which the requirements in this article are applied. Place the test results and the following certification statement on the Daily HMA Plant Report (Form 800241).

“The HMA mixture contains certified asphalt binder and approved aggregate as specified in the approved mix design and was produced in compliance with the provisions of Article 2303.03, E.”

b. The Daily HMA Plant Report for certified HMA may be submitted at the end of the project for all certified HMA quantities, or submitted at intervals for portions of the certified quantity.

2303.04 METHOD OF MEASUREMENT.

A. Hot Mix Asphalt Mixture.

1. General.

a. Removal of fillets is incidental to the contract unit price for the mixture.

b. If the Contractor chooses to place intermediate or surface mixture in lieu of base for the outside shoulders, the quantity will be calculated from the pavement and shoulder template. If placed as a separate operation, the quantity will be calculated from scale tickets. If the substitute mixture placed on the shoulder is for an intermediate course fillet only, include the quantity in the fillet for payment in the quantity placed in the adjacent intermediate course.

c. Payment for the quality control requirements for small quantities will not be measured separately.

d. Unless stated otherwise, equivalent WMA mixtures may be substituted for specified HMA mixtures.

a. The quantity of the type specified, expressed in tons (megagrams), will be determined from the weight (mass) of individual loads, including fillets, measured to the nearest 0.01 tons (0.01 Mg).

b. Loads may be weighed in trucks, weigh hoppers, or from the weight (mass) from batch plants computed by count of batches in each truck and batch weight (mass). Article 2001.07 applies. Segregate the weights (mass) of various loads into the quantities for each pay item.

a. The quantity of the type specified, expressed in square yards (square meters), will be shown in the contract documents to the nearest 0.1 square yard (0.1 m²). The area of manholes, intakes, or other fixtures will not be deducted from the measured pavement area.

b. When constructing shoulders on a basis of payment of square yards (square meters), inspection of the profile and elevation will be based on the completed work relative to the pavement edge. The Contractor is responsible for the profile and elevation of the subgrade and for thickness.

B. Asphalt Binder.

1. Measure the amount of asphalt binder used from batch plants, continuous plants, or drum mixing plants by stick measurement in the Contractor’s storage tank or in-line flow meter reading, according to Article 2001.07, B.

2. Compute the asphalt binder quantity added to the storage tank using a supplier certified transport ticket accompanying each load.

3. The quantity of asphalt binder not used in the work will be deducted.
4. When the quantity of asphalt binder in a batch is measured by weight (mass) and is separately identified by automatic or semi-automatic printout, the Engineer may compute the quantity of asphalt binder used from this printout. By mutual agreement, this method may be modified when small quantities or intermittent operations are involved.

5. The Engineer will calculate and exclude the quantity of asphalt binder used in mixtures in excess of the tolerance specified in Article 2303.03, D, 3, c.

6. When payment for HMA is based on area, the quantity of asphalt binder used will not be measured separately for payment.

C. Recycled Asphalt Pavement.

1. A completed Daily HMA Plant Report with the certification statement is required for measurement and payment for Contractor Certified HMA. The quantity of asphalt binder will be based on the approved JMF and any plant production quality control adjustments.

2. The quantity of asphalt binder in RAP incorporated into the mixture, will be calculated in tons (megagrams). This quantity shall be based on the actual asphalt binder content determined for the mix design from the results of the Engineer’s extraction tests.

3. The quantity of asphalt binder in RAP, which is incorporated into the mix, will be included in the quantity of asphalt binder used.

D. Anti-strip Agent.

Will not be measured separately. The quantity will be based on tons (megagrams) of HMA mixture with anti-strip agent added.

E. Tack Coat.

Will not be measured separately.

F. Fabric Reinforcement.

The quantity, in square yards (square meters) to the nearest 0.1 square yard (0.1 m²), will be shown in the contract documents.

G. Hot Mix Asphalt Pavement Samples.

Will not be individually counted for payment if furnished according to Article 2303.03, D, 5, or required elsewhere in the contract documents.

H. Recycled Asphalt Shingles.

67% of the asphalt binder from RAS which is incorporated into the mixture will be included in the quantity of asphalt binder used.

2303.05 BASIS OF PAYMENT.

The costs of designing, producing, placing, and testing bituminous mixtures and the cost of furnishing and equipping the QM-A field laboratory will not be paid for separately, but are included in the contract unit price for the HMA mixes used. The application of tack coat and sand cover aggregate are incidental and will not be paid for separately. Pollution testing is at the Contractor’s expense. The installation of temporary Stop Sign Rumble Strips will not be paid for separately, but is incidental to the price bid for the HMA course for which it is applied. The quality control requirements for small quantities are incidental to the items of HMA mixtures in the contract.

A. Asphalt Concrete Mixture.

1. Payment will be the contract unit price for Hot Mix Asphalt Mixture of the type specified per ton (megagram) or square yard (square meter). Unless stated otherwise, equivalent WMA mixtures may be substituted for specified HMA mixtures with no change in the contract unit price.

2. Payment for test strips will be the contract unit price for the test strip mixture bid item per ton (megagram) regardless of lift placement.
3. Payment will be adjusted by the following Pay Factor for field voids and laboratory voids determined for the lot.

Multiply the unit price for the HMA bid item by the Pay Factor rounded to 3 decimal places.

a. Laboratory Voids
 1) Payment when PWL is used for acceptance:

PWL	Pay Factor
95.1 – 100.0	\(0.006000 \times \text{PWL} + 0.430\)
80.0 – 95.0	1.000
50.0 – 79.9	\(0.008333 \times \text{PWL} + 0.3333\)
Less than 50.0	0.750

 When PWL is less than 50.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

 2) Payment when AAD is used for acceptance:

AAD from Target Air Void	Pay Factor
0.0 – 1.0	1.000
1.1 – 1.5	0.900
1.6 to 2.0	0.750
Over 2.0	0.500 max.

 When the AAD is more than 2.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

 3) Use the following payment schedule when a test strip is constructed:

AAD from Target Air Void	Pay Factor
0.0 – 1.5	1.000
1.6 to 2.0	\(2.5 - \text{AAD}\)
Over 2.0	0.500 max.

 When the AAD is more than 2.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

b. Field Voids
 1) Payment when PWL is used for acceptance:

PWL	Pay Factor
95.1 – 100.0	\(0.008000 \times \text{PWL} + 0.240\)
80.0 – 95.0	1.000
50.0 – 79.9	\(0.008333 \times \text{PWL} + 0.3333\)
Less than 50.0	0.750

 When PWL is less than 50.0, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

 2) Payment when a test strip is constructed:

Average Field Voids (Pa), %	Pay Factor
0.0 to 9.0	1.000
9.1 to 9.5	\(10 - \text{Pa}\)
Over 9.5	0.500 max.

 When the average air void content from a test strip exceeds 9.5%, the Engineer may declare the lot or parts of the lot deficient or unacceptable.

 3) Payment when PWL is not used for acceptance:

Average Field Voids (Pa), %	Pay Factor
0.0 to 8.0	1.000
8.1 to 9.5	\((11 - \text{Pa})/3\)
Over 9.5	0.500 max.

 When the average air void content exceeds 9.5%, the Engineer may declare the lot or parts of the lot deficient or unacceptable.
4. When the basis of payment is by area, payment will be further adjusted by the appropriate percentage in Table 2303.05-2 below according to the quality index for thickness determined for that lot:

<table>
<thead>
<tr>
<th>Quality Index (Thickness)</th>
<th>Percent of Payment (Previously Adjusted for Field Voids)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than 0.34</td>
<td>100</td>
</tr>
<tr>
<td>0.14 to 0.34</td>
<td>95</td>
</tr>
<tr>
<td>0.00 to 0.13</td>
<td>85</td>
</tr>
<tr>
<td>Less than 0.00</td>
<td>75 maximum</td>
</tr>
</tbody>
</table>

5. Payment for courses for which quality index (thickness) is not determined because of size or shape, and courses which are found to be deficient in average width, will be according to Article 1105.04.

6. When moisture susceptibility testing in accordance with Materials I.M. 507 is performed on plant produced mixture, the payment for asphalt mixture will be adjusted according to Table 2303.05-3:

<table>
<thead>
<tr>
<th>Contracting Authority’s Results (Percent TSR)</th>
<th>Pay Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSR ≥ 80</td>
<td>1.00</td>
</tr>
<tr>
<td>70 ≤ TSR < 80</td>
<td>PF = 0.025*TSR - 1</td>
</tr>
<tr>
<td>TSR ≤ 70</td>
<td>0.75 maximum</td>
</tr>
</tbody>
</table>

B. Asphalt Binder.

1. Payment will be the contract unit price per ton (megagram) for the number of tons (megagrams) of asphalt binder used in the work.

2. Payment for asphalt binder will be for new asphalt binder the asphalt binder in the RAP which is incorporated in the mixture, and 67% of the asphalt binder from RAS which is incorporated into the mixture. The quantity of asphalt binder in RAM, which is incorporated into the mix, will be calculated in tons (megagrams) of asphalt binder in the RAM. This will be based on the actual asphalt binder content determined for the mix design from the results of the Engineer’s extraction test.

3. When the basis of payment for HMA is in square yards (square meters), compensation for asphalt binder will be included in the contract unit price per square yard (square meter).

C. Recycled Asphalt Pavement.

RAP owned by the Contracting Authority will be made available to the Contractor for the recycled mixture at no cost to the Contractor other than loading, hauling, and processing as required for incorporation into the mix.

D. Anti-strip Agent.

1. When anti-strip agent is required, the incorporation of the anti-strip agent into the asphalt mixture will be considered as extra work ordered by the Engineer if the Contracting Authority’s TSR test results from the field produced mixture meet or exceed the minimum requirement and the conditioned indirect tensile strength is improved by at least 10% over that from the plant mixture without anti-strip (or original JMF conditioned strength when plant mix without anti-strip is not available) established in Article 2303.02, E, 2, d. Payment will be made at the rate of $2.00 per ton (megagram) of asphalt mixture in which the anti-strip agent is incorporated. WMA mixtures designed for 10,000,000 ESALS and higher must satisfy Articles 2303.02, E, 2, a, 1 or 2 to be eligible for anti-strip payment. For mix designs (small quantities excluded) with a TSR greater than or equal to 80%, payment will stop when the Contracting Authority’s TSR results of the field produced mixture without the agent are greater than or equal to 80% and any remaining asphalt binder containing the agent in the current tank is consumed.

2. Payment will be full compensation for designing, adding, and testing for anti-strip agent.
Section 2318

E. Tack Coat.
 Incidental to HMA.

F. Fabric Reinforcement.
 1. Payment will be the contract unit price for Fabric Reinforcement per square yard (square meter).
 2. Payment is full compensation for furnishing all materials, labor, and equipment necessary for installing the fabric as required, including the adhesive or heavy tack coat of asphalt binder used as the adhesive.

G. Hot Mix Asphalt Pavement Samples.
 1. Payment will be the lump sum contract price for cutting HMA Pavement Samples to determine field voids or thickness according to the specifications, when either of these is the responsibility of the Contractor, and elsewhere when required by the contract documents.
 2. Payment is full compensation for furnishing all such samples for all courses or items of work, and for delivery of samples as specified in Article 2303.03, D, 5.

Section 2304

2304.02, B, 3.

Replace the second sentence of the Article:
Apply compaction per Section 2303.

Section 2318

2318.02, A, Asphalt Stabilizing Agent.

Replace Articles 1 and 2:
 1. Standard Asphalt Emulsion (HFMS-2s) meeting the requirements of Section 4140 shall be used on Primary and Interstate projects. Other projects may use CSS-1 or HFMS-2s emulsions meeting the requirements of Section 4140 may be used in place of HFMS-2s on other projects, or an engineered emulsion when specified on the contract documents. Do not use emulsions as a stabilizing agent for cold-in-place recycling during nighttime operations.
 2. Foamed Asphalt using PG 52-34 or PG 46-34 asphalt binder meeting the requirements of Section 4137 may be used on Interstate, Primary, Secondary, and local projects. For projects using PG 52-34 as the cold-in-place stabilizing agent, meet the following requirements:
 - Minimum G*/sinδ of 0.70 kPa for the original asphalt binder,
 - Minimum G*/sinδ of 1.5 kPa for RTFO aged binder, or
 - Maximum G*sinδ of 5000 kPa for PAV aged binder.

2318.03, Construction.

Replace the first paragraph:
Except in specific cases when permitted by the Engineer, CIR will only be allowed between May 1 and October 1. Do not perform recycling operations when:
 - The ambient daytime temperature is below 60°F (15°C),
 - For night work, the following day’s forecasted high is below 60°F (15°C),
 - The weather is foggy or rainy, or
 - Weather conditions are such that proper mixing, placing, and compacting of the recycled material cannot be accomplished.
Division 24. Structures.

Section 2401

2401.05, B.

Replace the third bullet:

If the existing structure will become the property of the Contracting Authority, payment for proper storage, salvage, and delivery of the structure shall be according to Section 2555.

Section 2403

2403.03, C, 2, h.

Replace the Article:

h. Protect concrete placed when the air temperature is at or below 40°F (4°C) as provided in Article 2403.03, F.

2403.03, L, Design and Construction of Forms and Falsework.

Replace Articles 4 and 5:

Design formwork and falsework for the following loads:

a. Vertical load of concrete with a density of 150 pounds per cubic foot (2400 kg/m³).

b. Horizontal load of fresh concrete as a liquid with a density of 150 pounds per cubic foot (2400 kg/m³) for the depth of plastic concrete, except when lesser pressures are permitted by AASHTO Guide Design Specifications for Temporary Works.

c. Vertical dead load of forms and falsework.

d. Vertical dead load of rail and walkway applied at edge of deck form equal to 75 pounds per linear foot (1.1 kN/m).

e. Construction live load equal to 50 pounds per square foot (2.4 kPa) of horizontal projection.

f. Live load equal to 6 kips (26.69 kN) of finishing machine located along the edge of the deck form to maximize the design condition.

g. Wind loads on walls and columns according to the requirements of the ACI equal to 50 pounds per square foot (24 kPa) for elevations to 30 feet (10 m) above the ground, increased for elevations above 30 feet (10 m).

h. Other applicable loads such as horizontal loads due to equipment or construction sequence, additional live load, impact, stream flow, and snow loads specified in AASHTO Guide Design Specification for Bridge Temporary Works.

5. Design Stresses.

a. Design formwork and falsework using load groups specified in AASHTO Guide Design Specifications for Bridge Temporary Works and material working stresses and a normal duration of load, as for a permanent structure. For structural steel and reinforced concrete use the allowable stress percentages given with load groups. For lumber and timber use appropriate load and duration factors instead of percentages. Calculate lumber strength on the basis of dressed size and, except for sheathing, a dry condition. Publications of the APA – The Engineered Wood Association, ACI, and the National Forest Products Association American Forest & Paper Association, American Wood Council will be considered standard references for design and analysis of plywood, lumber, and timber formwork and falsework.

b. Do not exceed 50 times the dimension of the least side for the unsupported length of wooden columns and compression members. Analyze the member as a column.

c. Unless the Contractor certifies a higher stress grade or value as allowed by AASHTO Guide Design Specification for Temporary Works, adequacy of falsework material will be checked reviewed on the basis of the following values:

1) Structural steel stresses per AASHTO for 30,000 36,000 psi (207 248 MPa) yield strength and 22,500 22,000 psi (155 151 MPa) maximum working stress.

2) Plywood sheathing stresses per American Plywood Association APA – The Engineered Wood Association for concrete form grade Plyform, Class I, wet use, permanent loading, 7 day duration of
load, span-perpendicular-to-face grain. Orientation of plywood panels must be shown on drawings if advantage is taken of greater strength with span-parallel-to-face grain.

3) **Stresses** Design values for lumber in good condition and 4 inches (100 mm) or less in thickness, in psi (MPa) as follows:

\[
\begin{align*}
&f_b, \text{ bending} = 1000 \, 875 \, (6.90 \, 6.03) \\
&f_t, \text{ tension} = 625 \, 450 \, (4.30 \, 3.10) \\
&f_v, \text{ shear} = 420 \, 135 \, (2.93 \, 0.93) \\
&f_c, \text{ perpendicular to grain} = 345 \, 425 \, (2.49 \, 2.93) \\
&f_c, \text{ parallel to grain} = 4050 \, 1150 \, (27.9 \, 7.93) \\
&E, \text{ modulus} = 1,500,000 \, 1,400,000 \, (10,300 \, 9650)
\end{align*}
\]

These design values are to be modified for seven-day duration of load (except for \(f_c\), perpendicular to grain and \(E\), modulus) and other applicable adjustment factors when determining allowable stresses.

4) **Stresses** Design values for lumber in good condition and 5 inches (125 mm) thick and thicker in psi (MPa) as follows:

\[
\begin{align*}
&f_b, \text{ bending} = 1200 \, 850 \, (8.30 \, 5.86) \\
&f_t, \text{ tension} = 1000 \, 450 \, (6.90 \, 3.10) \\
&f_v, \text{ shear} = 120 \, 125 \, (0.83 \, 0.86) \\
&f_c, \text{ perpendicular to grain} = 390 \, 425 \, (2.70 \, 2.93) \\
&f_c, \text{ parallel to grain} = 1000 \, 625 \, (6.90 \, 4.31) \\
&E, \text{ modulus} = 1,600,000 \, 1,300,000 \, (11,000 \, 8960)
\end{align*}
\]

These design values are to be modified for seven-day duration of load (except for \(f_c\), perpendicular to grain and \(E\), modulus) and other applicable adjustment factors when determining allowable stresses.

5) Safe bearing value of coarse sand, gravel, very firm clay, and other similar confined soils in thick beds at 1500 pounds per square foot (72 kPa) unless recommended otherwise by a Professional Engineer licensed in the State of Iowa. Safe bearing value of compacted berms at 2000 pounds per square foot (96 kPa).

2403.03, L, 1, General.

Add the Article:

c. Design values for lumber and timber vary considerably depending on size and or use, species, and grade. For each type of structural member, list on the falsework plans specifications for the following if known: size or use category, species group, and minimum grade.

2403.03, L, 3, c.

Add as the first sentence of the Article:

To ensure stability for pile bents 10 feet (3 m) or less in height that are not sway braced, show pile type, size, and minimum embedment length on plans.

Section 2405

2405.03, H, 1, a.

Replace the Article:

Use bolts, nuts and washers, galvanized according to ASTM A 153 F 2329, Class C; or ASTM B 695, Class 50 55, Type I.

Section 2407

2407.01, Description.

Replace Articles C and D:

C. Apply the provisions of this section to production and construction of prestressed precast concrete bridge units and nonprestressed precast concrete as defined in Section 1101 bridge units.

D. Unless modified elsewhere in the contract documents, all fabrication is required to be done only in precast fabrication plants that are approved prior to the letting as per Materials I.M. 445 570 and 570 LRFD.
2407.02, A, 1.

Replace the first sentence of the Article:

Apply Sections 4110, 4111, and 4115, except the gradation requirements of Articles 4110.02, 4111.02, and 4115.03.

2407.03, B, 4.

Replace the Article:

If using HPC for prestressed concrete beams, use a mix design that has been evaluated according to ASTM C 1202 or AASHTO TP 95, and approved by the Engineer. To obtain mix design approval either:

a. Submit to the Engineer ASTM C 1202 results from mix samples taken and tested by an independent laboratory. The results shall be 1500 coulombs or less when cured using accelerated moist curing.

b. Submit to the Engineer AASHTO TP 95 results from mix samples taken and tested by an independent. The results shall be 30 kilohm-cm or more when cured for 28-day moist curing.

c. Contact the Engineer and arrange for a trial batch. The producer certified technician shall cast 4 inch cylinders for testing by the Materials Laboratory. The ASTM C 1202 results shall be 1500 coulombs or less when cured using accelerated moist curing or the AASHTO TP 95 results shall be 30 kilohm-cm or more on samples moist cured for 28 days.

d. When silica fume, class F fly ash, or GGBFS is used in the mix, the Engineer may waive ASTM C 1202 or AASHTO TP 95 testing.

2407.03, J, 1, Precast Nonprestressed Units.

Rename the Article:

Precast Nonprestressed Bridge Units.

2407.03, J, 2, Precast Prestressed Units.

Rename the Article:

Precast Prestressed Bridge Units.

Section 2408

2408.02, Materials Requirements, Identifications, and Fabrication.

Replace the first sentence:

Unless modified elsewhere in the contract documents, all fabrication to which this section applies shall be done in the states, territories, and possessions of the United States and in other locations within the geographic limits of North America and in steel fabrication shops and plants that are approved prior to the letting according to Materials I.M. 557.

Section 2412

2412.02, Materials.

Renumber Article E and Add the Article:

E. When Type A Mid Range water reducing admixture is used, the slump, measured according to Materials I.M. 317, may be increased to between 1 inch (25 mm) and 4 inches (100 mm) as a target range, allowing a maximum of 5 inches (125 mm).

F. Use a single source of cement during an individual placement. Drain all aggregate for at least 24 hours after washing and before batching.
Section 2413

2413.03, F, 2, a, 1.

Delete the second sentence of the Article:
When Class HPC-O is used on projects with a deck overlay quantity greater than 1800 square yards (1500 m²), allow the surface to cure for 168 hours.

Section 2415

2415.01, B, Precast.

Replace the Article:
1. Precast box culverts may be accepted when shown in the contract documents. Apply Section 2419.

2. Use culvert sections that meet the requirements of ASTM 1433 C 1577.

3. The contract documents will designate the span, rise, and either the design earth cover, or the design loading, both defined in ASTM 1433 C 1577.

4. Apply section 2407 to the aggregates used in the concrete. Use coarse aggregate in concrete mixture from an approved source meeting requirements of Section 4115, with Class 2 or better durability rating.

5. Apply the appropriate requirements of Section 2407 to manufacturing process inspection.

6 5. Concrete strength will be based on cylinder tests.

Section 2416

2416.02, Materials.

Replace the Article:
Meet the requirements of Section 4145 for the type and strength (class) of pipe specified in the contract documents. Apply Section 2419.

2416.03, A.

Replace Table 2416.03-1:

<table>
<thead>
<tr>
<th>Culvert Use</th>
<th>Minimum Pipe Size in. (mm)</th>
<th>Maximum Pipe Size in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Culvert</td>
<td>18 (450)</td>
<td>108 (2700)</td>
</tr>
<tr>
<td>Entrance Culvert</td>
<td>15.375 (395)</td>
<td>18 (450)</td>
</tr>
</tbody>
</table>

2416.03, D, 5, d.

Replace the second sentence of the Article:
Use Class C structural concrete as specified in Section 2401 2403.

Section 2417

2417.03, A, 1.

Replace Table 2417.03-1:

<table>
<thead>
<tr>
<th>Culvert Use</th>
<th>Minimum Pipe Size in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Culvert</td>
<td>18 (450)</td>
</tr>
<tr>
<td>Entrance Culvert</td>
<td>15.375 (395)</td>
</tr>
</tbody>
</table>
Section 2418

2418, Temporary Stream Diversion.

Add the Section:

2418.01 DESCRIPTION.
Construct, maintain, and remove temporary stream diversion according to the contract documents. Temporary stream diversion involves diverting flow of a perennial stream around the construction site by use of either a diversion channel, pipe, or hose. Temporary stream diversion applies to projects involving installation or extensions of reinforced box culverts 6 feet by 6 feet (1800 mm by 1800 mm) or larger, precast box culverts 6 feet by 6 feet (1800 mm by 1800 mm) or larger, or arch pipe culverts 102 inches by 62 inches (2590 mm by 1575 mm) or larger.

2418.02 MATERIALS.

A. Impervious Dike.
- Use one of the following:
 - Impervious fabric with earth, stone, or other fill material,
 - Revetment stone meeting the requirements of Section 4130 with impervious soil or fabric behind the dike,
 - Sandbags,
 - Sheet piles, or
 - Other as approved by the Engineer.

B. Temporary Energy Dissipation.
- Revetment stone meeting the requirements of Section 4130.

C. Sediment Control.
- Meet the requirements of Section 2602 for silt fence or perimeter and slope sediment control devices.

2418.03 CONSTRUCTION.
Unless stated otherwise in the contract documents, the Contractor may choose which type of temporary stream diversion to construct. Construct temporary stream diversion according to Standard Rood Plan RL-20.

A. Temporary Stream Diversion by use of a Pipe or Hose.
This method may include bypass pumping.

1. Set up bypass pump (if used) and temporary pipe or hose. Provide temporary energy dissipation measures at discharge point of temporary outlet pipe or hose. Firmly anchor bypass pump and pipe or hose.

2. Construct impervious dike upstream of work area. When constructing dike, place revetment or impervious fabric prior to placing soil or earth.

3. Construct impervious dike or sediment control device downstream to isolate work area.

4. Routinely inspect bypass pump and temporary pipe or hose to ensure proper operation. Inspect impervious dike(s) for leaks and repair damage. Inspect discharge point for erosion. Install additional temporary energy dissipation material as needed. Ensure flow is adequately diverted through pipe or hose and maintain all elements of the temporary stream diversion throughout period of construction.

5. Immediately after completion of construction in the work area, remove impervious dike(s), bypass pump, temporary pipe or hose, temporary energy dissipation material, and sediment control materials in the stream.

B. Temporary Stream Diversion by use of a Diversion Channel.

1. Excavate diversion channel without disturbing existing channel. Install sediment control along top of diversion channel.
2. Connect downstream diversion channel into downstream existing channel. Install temporary energy dissipation measures at discharge point into existing channel.

3. Connect upstream diversion channel into existing channel at upstream side to divert flow into diversion channel.

4. Construct impervious diversion dike in existing channel at upstream side to divert flow into diversion channel. When constructing dike, place revetment or impervious fabric prior to placing soil or earth.

5. Construct impervious dike or other sediment control in existing channel at downstream side to isolate work area.

6. Routinely inspect diversion channel for scour/erosion and sediment loss at channel discharge location. Install rock checks in channel and additional temporary energy dissipation material at outlet as needed. Inspect impervious dikes for leaks and repair damage. Ensure flow is adequately diverted through diversion channel and maintain all elements of temporary stream diversion throughout the period of construction.

7. Immediately after completion of construction in the work area, remove impervious dike(s), temporary energy dissipation material, and sediment control materials in the stream. Divert channel back into existing channel. Backfill and compact diversion channel in accordance with Article 2107.03, E.

2418.04 METHOD OF MEASUREMENT.

A. Each Temporary Stream Diversion will be counted.

B. Sediment control and sediment control removal will be measured according to Article 2602.04 for type of device used.

2418.05 BASIS OF PAYMENT.

A. Payment will be at contract unit price for each Temporary Stream Diversion. If there is no bid item for temporary stream diversion, it will be paid for according to Article 1109.03, B. Payment is full compensation for labor, equipment, and materials necessary to construct and remove Temporary Stream Diversion. Payment of 50% of item will be made upon completion of installation of temporary stream diversion and remaining 50% will be paid upon completion of removal of temporary stream diversion and restoration of work site.

B. Sediment control and sediment control removal will be paid for according to Article 2602.05 for type of device used.

Section 2419

2419, Precast Concrete Units.

Add the Section:

2419.01 DESCRIPTION.

A. Provide precast concrete units produced in a plant for which equipment, procedures, and quality of concrete have been approved by the Contracting Authority.

B. Provide, or have fabricator provide, technical personnel experienced and skilled in application of precast system being used. Ensure technical personnel cooperate with Engineer in technical aspects of the work.

C. Apply provisions of this section to production and construction of precast concrete as defined in Section 1101.
D. Unless modified elsewhere in the contract documents, perform fabrication in precast fabrication plants that are approved prior to letting.

E. Requirements for specific precast units are found in the Materials I.M. 445 series, Materials I.M. 571, and in the following specification sections:
 - Section 4145: Concrete Culvert Pipe
 - Section 2415: Concrete Box, Arch, and Circular Culverts
 - Section 2416: Rigid Pipe Culverts
 - Section 2430: Modular Block Retaining Wall
 - Section 2431: Segmental Retaining Wall
 - Section 2432: Mechanically Stabilized Earth (MSE) Retaining Wall
 - Section 2513: Concrete Barrier (Precast)

2419.02 MATERIALS.
Use materials meeting requirements of Division 41 for respective material, and the following:

A. Aggregates.
 1. Apply Sections 4110, 4111, 4115, and 4117, except gradation requirements of Articles 4110.02 and 4115.03.
 2. Submit aggregate gradations and proportions with mix design to District Materials Engineer for approval.
 3. Use aggregates similar to Class V only when 30% or more of total weight (mass) of aggregate is limestone.

B. Admixtures.
 When authorized by Engineer, approved admixtures complying with Section 4103 may be used and shall be from an approved source identified in Materials I.M. 403.

C. Reinforcing Steel and Wire Fabric.
 Comply with requirements of Section 4151 and ensure materials are from an approved source identified in Materials I.M. 451. Precast fabricator shall accept reinforcing steel with certified mill test reports for each heat delivered.

D. Cement.
 Apply Section 4101, unless otherwise specified. If the use of Type III Portland cement has been authorized, use it in same proportions as specified for Type I Portland cement. Cement with total equivalent sodium oxide between 0.61% and 0.75% may be used, provided it is non-reactive with proposed aggregate when tested according to ASTM C 1260, C 1567, or C 1293.

E. Supplementary Cementitious Materials.
 1. Apply Section 4108.
 2. Fly ash may be substituted for Portland cement. Use a substitution rate of no more than 25% by weight (mass) for wet cast concrete only. Fly ash shall be from an approved source identified in Materials I.M. 491.17.
 3. GGBFS may be substituted for Portland cement. Use a substitution rate of no more than 35% by weight (mass) for GGBFS as a mineral admixture. GGBFS shall be from an approved source identified in Materials I.M. 491.14.
 4. The maximum total supplementary cementitious materials substitution shall not exceed 50%.

2419.03 Construction.

A. Equipment.
 Use equipment meeting requirements of Section 2001 and the following:
1. **Forms:** Use forms for precast concrete true to dimensions shown in contract documents, true to line, mortar tight, and of sufficient rigidity to not sag or bulge out of shape under placement and vibration of concrete. Ensure inside surfaces are smooth and free of projections, indentations, or offsets that might restrict differential movements of forms and concrete.

2. **Weighing and Proportioning Equipment.**
 Apply Article 2001.20, except that a vibrator will not be required on cement batch hopper.

3. **Mixing Equipment.**

4. **Bins.**
 Article 2001.06

B. Concrete.

1. For precast construction, use at least 610 pounds (360 kg) of total cementitious material per cubic yard (cubic meter) of concrete. Do not exceed maximum water-cementitious ratio, including free moisture in aggregate, of 0.450 pound per pound (0.450 kg/kg).

2. Intended air entrainment of finished wet cast concrete is 6%. To allow for loss during placement, use a target value of 6.5% for air content of fresh unvibrated concrete, with a maximum variation of ± 1.0%.

C. Proportioning, Mixing, and Placing Concrete.

1. Proportion and mix concrete according to applicable requirements of Article 2403.02, D, 3.

2. Do not place concrete when ambient temperature is below 35°F (2°C) unless Engineer has approved plant for cold weather concrete placement. When necessary, heat aggregate or water, or both, so temperature of concrete when deposited in forms is 40°F to 90°F (4°C to 32°C). Do not use frozen material in concrete.

3. When a series of units is cast in a line, cast entire series in one continuous operation, or as directed by Engineer. Place successive batches before preceding batch has perceptibly hardened or dried. Do not allow more than 45 minutes to pass between placement of successive batches of concrete in a unit. Do not retemper concrete or add water to interface of the concrete between batches.

4. Carefully work and consolidate concrete around reinforcement without displacing it. Ensure formation of honeycomb, stone pockets, or similar defects have not occurred. Consolidate concrete using small diameter vibrators or by other means approved by Engineer. Overfill forms during consolidation. Screed off excess concrete and finish surface to desired texture.

D. Curing.

1. Use a method of curing that prevents loss of moisture and maintains an internal concrete temperature at least 40°F (4°C) during curing period. Obtain Engineer’s approval for this method.

2. In all cases, cover concrete and leave covered until curing is completed. Side forms and pans forming underside of channel shapes may be removed during this period if cover is immediately replaced. Do not, under any circumstances, remove units from casting bed until strength requirements are met.

3. When accelerated heat is used to obtain temperatures above 100°F (38°C):
 a. Record temperature of interior of concrete using a system capable of automatically producing a temperature record at intervals of no more than 15 minutes during entire curing period.
 b. Space systems at a minimum of one location per 100 feet (30 m) of length per unit or fraction thereof, with a maximum of three locations along each line of units being cured.
 c. Ensure all units, when calibrated individually, are accurate within ± 5°F (3°C).
d. Do not artificially raise temperature of concrete above 100°F (38°C) for a minimum of 2 hours after units have been cast. After 2 hour period, temperature of concrete may be raised to a maximum temperature of 160°F (71°C) at a rate not to exceed 25°F (15°C) per hour.

e. Hold maximum temperature for a period sufficient to develop strength required for release of prestress or for post tensioning, as the case may be.

f. Lower temperature of concrete at a rate not to exceed 40°F (22°C) per hour by reducing amount of heat applied until interior of concrete has reached the temperature of surrounding air.

E. Placing Reinforcement.
Place reinforcement carefully, accurately, and secure in proper position according to contract documents. Apply Article 2404.03.

F. Removal of Forms.
If forms are removed before concrete has attained strength which will permit units to be moved or stressed, remove protection only from immediate section from which forms are being removed. Immediately replace protection and resume curing following form removal. Do not remove protection any time before units attain specified compressive strength when surrounding air temperature is below 20°F (-7°C).

G. Tolerances.
Limit variation from dimensions shown in contract documents to no more than 1/8 inch (3 mm). For overruns, greater deviation may be accepted if, in Engineer's opinion, it does not impair suitability of member for its intended use.

H. Handling and Storage.
During fabrication, storage, handling, and hauling take care to prevent cracking, twisting, unnecessary roughness, or other damage. In particular, do not allow tiedowns to come in direct contact with concrete surfaces. Do not subject units to excessive impact. Replace, at no additional cost to Contracting Authority, units that are, in Engineer's opinion, damaged in a way to impair their strength or suitability for their intended use.

I. Finish.
Finish surfaces which will be exposed in finished structure as provided in Article 2403.03, P, 2, b.

2419.04 METHOD OF MEASUREMENT.
For precast units, Engineer will determine quantity of each of the various respective sizes, lengths, and types per the sections listed in Article 2419.01, E.

2419.05 BASIS OF PAYMENT.
Payment will be per the sections listed in Article 2419.01, E.

Section 2430

2430.02, B, 1, Concrete Units.

Add the Article:
 f. Apply Section 2419.

Section 2431

2431.02, B, 1, Concrete Units.

Add the Article:
 j. Apply Section 2419.
Section 2432

2432.02, B, 1, Concrete Units.

Add the Article:

n. Apply Section 2419.

2432.02, B, 1, a, 1

Replace the Article:

Type I cement meeting requirements of Section 4101.

2432.02, B, 1, a, 2

Delete the Article:

2) Cement content per cubic yard (cubic meter) of concrete for face panels and precast coping sections no less than 600 pounds (360 kg) nor more than 700 pounds (420 kg).

2432.02, B, 1, b, 4

Replace the Article:

Test two three specimens at 7 days and two three at 28 days. A test will be average compressive strength of 2 three cylinders.

Section 2435

2435.03, A, General Requirements for Installation of Manholes and Intakes.

Add the Article:

Place and compact the material according to Article 2552.03, E.

2435.03, A, 11, Chimney Seal.

Rename and Replace the Article:

11. Chimney Seal Infiltration Barrier.
For sanitary sewer manholes, install an internal or external rubber chimney seal infiltration barrier.

a. Internal or External Chimney Seal.
 a.1) Do not use external chimney seal if seal will be permanently exposed to sunlight.
 b.2) Extend seal 3 inches (75 mm) below the lowest adjustment ring.
 c.3) Extend seal to 2 inches (50 mm) above the flange of the casting for a standard two piece casting, or 2 inches (50 mm) above the top of the base section of the casting for an adjustable three piece casting.
 d.4) Use multiple seals, if necessary.
 e.5) Install compression bands (external chimney seal) or expansion bands (internal chimney seal) to lock the rubber sleeve or extension into place and to provide a positive watertight seal. Once tightened, lock bands into place. Use only manufacturer recommended installation tools and sealants.

b. Molded Shield.
 1) Clean surface of structure cone section.
 2) Apply sealant to top surface of cone section. Use sufficient sealant to accommodate flaws in surface of cone section.
 3) Cut molded shield to height by adding dimensions of adjustment rings and casting height. Be sure not to interfere with seating of lid into casting frame.
 4) Seat molded shield against sealant on cone section.
 5) Add adjustment rings and casting to meet final grade.

2435.03, D, 2, d.

Replace the Article:
Replace chimney seal infiltration barrier for sanitary sewer manhole using only new materials.
2435.03, D, 3, e.

Replace the Article:
Replace chimney seal infiltration barrier for sanitary sewer manhole using only new materials.

2435.05, A, 2.

Replace the Article:
Payment is full compensation for excavation, placing bedding and backfill material, compaction, base, structural concrete, reinforcing steel, precast units (if used), inverts, pipe connections, chimney seals infiltration barriers, castings, and adjustment rings.

2435.05, E, 2.

Replace the fourth bullet:
Installing new chimney seal infiltration barrier (sanitary sewer manholes only).

2435.05, F, 2.

Replace the fifth bullet:
Installing new chimney seal infiltration barrier (sanitary sewer manholes only).

Division 25. Miscellaneous Construction.

Section 2503

2503.04, D, Connection to Existing Manhole or Intake.

Replace the Article:
Connections to existing manhole or intake will be measured according to Article 2435.04, G.

2503.05, D, Connection to Existing Manhole or Intake.

Replace the Article:
Connections to existing manhole or intake will be paid according to Article 2435.05, G.

Section 2511

2511.03, B, 1, General.

Replace the Article:
Widths shown in contract documents are minimums, excluding curbs or flares.

The contract documents will contain staking diagram sheets for construction of pedestrian curb ramps, landings, sidewalk turning spaces, and transitions. Measure or stake as required to construct features. If either of the following is met, Engineer will provide staking for that quadrant and verify slopes during finishing:
- Running Slope. Tolerance between design slope and maximum allowable slope is less than 1.0%.
- Cross Slope and Turning Space Slopes. Tolerance of ±0.5% from design slope would exceed minimum or maximum allowable slope.

If adequate construction tolerances are allowed, Engineer will not provide staking for construction of sidewalk or recreation trail. If field adjustments outside the acceptable range indicated in the contract documents are necessary, notify the Engineer prior to construction.

At locations other than curb ramps, turning spaces, and transitions, ensure cross slope is between 0.5% and 2.0%. Ensure grade is within approximately 2.0% steeper than profile grade of adjacent roadway, or does not exceed 5.0%, whichever is steeper.

Field adjustments shall comply with the following requirements.
a. Construct sidewalks and recreational trails to a longitudinal slope not to exceed 5.0% and a cross slope not less than 1.5% or greater than 2.0%. A cross slope less than 1.5% will be allowed in tie-in areas.

b. Construct ramps as follows:
 - 5.0 feet (1.5 m) minimum width, exclusive of curbs or flares.
 - Longitudinal slope not to exceed 8.0%.
 - Cross slope not to exceed 2.0%.

c. Construct landings as follows:
 - 5.0 foot (1.5 m) minimum width by 5.0 foot (1.5 m) minimum length.
 - Longitudinal slope not to exceed 2.0%.
 - Cross slope not to exceed 2.0%.

d. Install detectable warnings according to manufacturer’s recommendations. Install detectable warnings for full width of curb ramp, excluding curbs and flares.

Section 2512

2512.03, C, Forms.

Replace the Article:

1. Unless slip form equipment is permitted, When hand placement methods are used, form all straight sections of curb and gutter with steel forms for the full depth of the concrete. Wood forms may be used on curving sections.

2. Place a steel face, rigidly welded or bolted to the main form, on any extensions used to obtain the required depth of form.

3. Ensure the top face of forms does not vary from a true plane by more than 1/8 inch in 10 feet (3 mm in 3 m). Ensure the upstanding face, including any extension, does not vary from a true plane by more than 1/4 inch in 10 feet (6 mm in 3 m). Remove forms that are bent, twisted, warped, broken, or battered from the work. Allow Engineer to inspect and approve repaired forms before using.

4. Use flexible or rigid forms of proper curvature for curves having a radius of 100 feet (30 m) or less.

5. While concrete is being placed and consolidated, form the front face of the curb with fixed or movable forms. If movable slip forms are used, use forms that are least 6 feet (1.8 m) long with provide a suitable opening for placing and consolidating concrete. Obtain Engineer’s approval for slip forms.

6. Curb may be placed and shaped by hand methods, without the use of a front face form, provided placement tolerances in Article 2512.03, C, 3, are met. Form back of curb and consolidate to produce an integral unit with underlying gutter section.

7. Set forms with the upper edge to the correct line and grade. Firmly hold forms in place with adequate stakes and bracing.

8. Forms with height greater than the thickness of the concrete may be used, with no additional cost to the Contracting Authority for extra concrete required, if:
 - The upper edge is set accurately to line and grade, and
 - The subgrade is excavated to meet the bottom edge of the form in a slope not steeper than one vertical to four horizontal.

Section 2513

2513.02, Materials.

Add to the end of the first paragraph of the Article:
Apply Section 2419 for precast concrete barrier rail.

2513.02, D, Bolts Anchors, and Other Metal Fastenings.

Replace the Article:
Apply Article 2407.02, G 2419.02, F.
2513.03, A, 1, a.

Replace the first sentence of the Article:
Use concrete specified in Section 2407.2419.

2513.03, C, 1.

Replace the Article:
Apply Article 2407.03, D, except apply the finishing requirements in Article 2403.03, P, 2, b, only to temporary barrier rail 2419.03, C.

2513.03, D, 1, a.

Replace the second sentence of the Article:
Apply Article 2407.03, D, 2419.03, D, when elevated temperature cure is used.

2513.03, F, 1.

Replace the Article:
For permanent precast and cast-in-place concrete barrier, apply Article 2407.03, L, 2419.03, I, except do not commence the finishing operation until completion of the initial wet cure period.

2513.03, F, 4.

Replace the last sentence of the Article:
Complete patching operations only as directed by the Engineer and according to Article 2407.03, L.

Section 2521

2521.03. Application.

Replace the Article:
A. This specification applies to all HMA, HMA patching material, PCC, structural concrete, and flowable mortar, except where excluded by a note in the contract documents.

B. The Engineer may waive aggregate gradations, moisture, and specific gravity tests based on previous satisfactory experience with the plant for PCC which is furnished at a maximum rate of 25 cubic yards (25 m³) per day, whether from one or more sources. This may be based on quantities planned by the Contractor several days ahead of placement.

Section 2522

2522.03, E, 4, Anchor Bolts, Washers, and Nuts.

Replace the first paragraph of the Article:
Ensure galvanizing for anchor bolts, washers, and nuts meets the requirements of ASTM F 2329; or ASTM B 695, Class 50 55, Type I Coating.

2522.03, E, 12, b.

Replace the Article:
Ensure that after fabrication, pole shafts, anchor bolts, base plate, washers, nuts, and all steel items are:
- Fully galvanized inside and outside according to ASTM A 123 or ASTM A 153 F 2329 as appropriate, and
- Are of uniform color and appearance.
Section 2524

2524.03, B, Erection of Signs, Milepost Markers, and 6 Inch by 6 Inch (150 mm by 150 mm) Route Markers.

Add the Article:

3. Perforated Square Steel Tube (PSST) Posts and Anchors.
 a. Position posts within anchor at furthest corner from likely point of impact from an errant vehicle.
 b. Embed post within anchor without any play.
 c. Provide minimum insertion length as required by manufacturer.
 d. Ensure inside of break-away and slip base anchors installed in concrete are free of concrete to allow drainage.
 e. Install triangular slip base assembly as required by manufacturer.

2524.03, B, 1, c.

Replace the Article:

Set wood posts in 12 inch (300 mm) diameter holes of the proper depth with a minimum embedment of 5.0 feet (1.5 m).

2524.04, Method of Measurement.

Add the Articles:

G. Perforated Square Steel Tube Posts.
 Linear feet (meters), to nearest foot (0.3 m), measured from top of anchor to top of post. Embedded length will not be measured separately, but included in price bid for Perforated Square Steel Tube Posts.

H. Perforated Square Steel Tube Post Anchors.
 By count of each type installed.

2524.05, Basis of Payment.

Renumber and Replace Article G:

G I. Excavation in Unexpected Rock.
 Excavation in unexpected rock for wood posts for Type A or B signs, steel posts for Type A or B signs, concrete footings for Type A or B signs, delineators, perforated square steel tube posts, and milepost marker posts will be paid for as extra work. Unexpected rock will be considered as rock encountered during post erection, but neither visible from the roadway nor indicated in the contract documents.

Add the Articles:

G. Perforated Square Steel Tube Posts.
 1. Per linear foot (meter).
 2. Payment is full compensation for furnishing, fabricating, and erecting posts.

H. Perforated Square Steel Tube Post Anchors.
 1. Each, by type.
 2. Payment is full compensation for providing and installing anchor, coring pavement, backfilling with concrete, slip base hardware, and other details necessary to provide anchor complete and erected in place.

Section 2527

2527.02, D, 1, Removable Marking Tape.

Rename the Article:
 Wet, Retroreflective Removable Marking Tape Markings.
2527.02, D, 1, b.

Replace the Article:
Complying with the following:
1) Preformed markings consist of white or yellow films providing immediate and continuing retroreflection during dry, wet, and rainy conditions.
2) Nominal width of 4 inches (100 mm).
3) Yellow or white, weather and traffic resistant film, precoated on one side with a pressure sensitive adhesive.
4) Flexible and formable.
5) Capable of remaining in place during its useful life. Ensure tape is capable of performing for the duration of a normal construction season and being removed intact or in large pieces. Ensure tape is reflective throughout its useful life. Normal construction season is defined as the time between the last snowplowing in the spring and the first snowplowing in the fall/winter.
6) Easily removed from the pavement at any time. Ensure tape design and manufacture allows it to be readily removed when markings are no longer needed.

2527.03, F, 2.

Replace the first sentence of the Article:
On Primary and Interstate highways, replace pavement markings before the lane or road is opened to traffic in the following situations:

2527.03, F, Markings Obliterated During Construction.

Renumber Articles 3 and 4, and Add the Article:
3. On other roadways, centerline markings obliterated during construction shall be replaced within 3 calendar days after the operation that obliterated the markings has been completed within the entire project limits. Place traffic control as shown in the contract documents.

2527.03, I, 2.

Replace the Article:
Use wet, retroreflective removable tape markings for temporary pavement markings which extend diagonally across a final traffic lane.

2527.04, A, 3, Removable Tape Markings.

Rename and Replace the Article:
3. Wet, Retroreflective Removable Tape Markings.
 Stations (meters) placed. Removing wet, retroreflective removable tape markings will not be measured separately for payment.

2527.05, A, 3, Removable Tape Markings.

Rename and Replace the Article:
3. Wet, Retroreflective Removable Tape Markings.
 a. Per station (meter) placed.
 b. Payment includes removing the wet, retroreflective removable marking tape markings, when required.

Section 2528

2528.03, I, Temporary Floodlighting.

Replace the Article:
1. Ensure floodlighting is installed and in service before work is started that requires nighttime traffic control by the traffic control plan.
2. Ensure temporary floodlighting meets the following:
a. Pole-mounted luminaire or a luminaire mounted on portable equipment.

b. Mounting height of luminaires is no less than 35 feet (11 m) above the roadway and as shown in the contract documents. Pole length determined by field measurement to obtain specified mounting height.

c. Clearance for overhead wiring a minimum of 18 feet (5.5 m). Auxiliary poles used to furnish power to floodlighting offset 30 feet (9 m) from the traveled way unless there are right-of-way restrictions.

d. Poles placed outside the normal shoulder line at the approximate locations shown in the contract documents.

e. Above ground lighting circuits are aluminum or A.C.S.R. triplex.

f. Underground lighting circuits are type U.S.E. or U.F.

3. Meet the following requirements for luminaires used for floodlighting:

a. Standard roadway types with totally enclosed refractors.

b. IES glare control rating of “cut off”.

c. The lamps with an initial output rating of 19,000 lumens or greater.

d. Photoelectric controlled for dusk to dawn operation.

e. Approval of the Engineer.

4. Exercise reasonable care to avoid interruptions during the hours of darkness, promptly repair damage to the system, and replace all burned out lamps as soon as possible.

1. General.

a. Set up and operate either pole mounted or portable, mobile self contained LED temporary floodlights at locations shown in contract documents.

b. Ensure floodlighting is installed and in service before commencing work requiring nighttime traffic control according to the traffic control plan.

c. Exercise reasonable care to avoid interruptions during hours of darkness, promptly repair damage to system, and replace burned out lamps promptly.

2. Equipment.

a. Pole Mounted Floodlights.

1) Pole-mounted luminaire.

2) Mounting height of luminaires is no less than 35 feet (11 m) above the roadway and as shown in the contract documents. Pole length determined by field measurement to obtain specified mounting height.

3) Place poles outside normal shoulder line at approximate locations shown on the contract documents.

4) Meet the following requirements for floodlighting luminaires:
 • Standard roadway types with totally enclosed refractors.
 • IES glare control rating of “cut off”.
 • Lamps with initial output rating at least 19,000 lumens.
 • Photoelectric controlled for dusk to dawn operation.
 • Approval of the Engineer.

5) Ensure clearance for overhead wiring at least 18 feet (5.5 m). Auxiliary poles used to furnish power to floodlighting offset 30 feet (9 m) from traveled way unless there are right-of-way restrictions.

6) Above ground lighting circuits are aluminum or A.C.S.R. triplex.

7) Underground lighting circuits are type U.S.E. or U.F.

b. Portable, Mobile Self Contained LED Floodlights.

1) Mounted on portable trailers containing solar cell array and storage battery system to power LED luminaire. Ensure system meets NCHRP 350 Category IV crash testing.

2) Ensure mounting height of LED luminaires is no less than 17 feet (5.2 m) above roadway, or as shown in the contract documents.

3) Locate portable trailers so LED luminaire is centered over outside edge of pavement and trailer is on shoulder offset as far as possible from traveled way.

4) Meet materials requirements of Article 4188.05 for LED Floodlighting Luminaires.
2528.03, L, Limitations.

Add the Article:

13. When milled or scarified surfaces exist, sign approaches to scarified areas using ROUGH ROAD (W8-8) signs. Place signs at least 250 feet (75 m) in advance of milled or scarified areas. Repeat signs for traffic that may enter within the scarified area from intersecting public roads. At locations where milled or scarified areas end at project limits, bridges, or end of day’s work; place BUMP (W8-1) signs within 50 feet (15 m) in advance of each location. Erect, move, and maintain these signs until milled or scarified areas have been covered with new HMA or PCC pavement.

Section 2529

2529.01, B.

Add the Articles:

8. Full depth PCC finish patches (50 feet (15 m) or greater in length).

9. Full depth HMA finish patches (50 feet (15 m) or greater in length).

2529.03, A, 1.

Replace the fourth sentence of the Article:

The patch thickness and type of patch material may will be included.

2529.03, B, Full Depth Patch Thickness.

Delete the Article:

B. Full Depth Patch Thickness.

If full depth patch thickness is not shown in the contract documents, establish thickness as follows:

1. HMA Patches.
 Interstate and Primary pavement: the thickness of the HMA pavement, but no less than 9 inches (230 mm) or more than 15 inches (380 mm).

2. PCC Patches.
 a. PCC pavements on Interstate and Primary Roads: the thickness of the pavement but no less than 9 inches (230 mm) or more than 12 inches (300 mm).
 b. County roads: thickness no less than 6 inches (150 mm) or more than 12 inches (300 mm).

3. Composite Patches.
 PCC pavements which have been resurfaced with HMA: patch materials and thickness the same as the existing pavement except the PCC portion of the patch is not to be less than 9 inches (230 mm) or more than 12 inches (300 m) unless specified otherwise in the contract documents. If the HMA resurfacing exceeds 4 1/2 inches (120 mm) (nominal) place an HMA patch, unless specified otherwise in the contract documents.

2529.03, H, 2.

Replace the first sentence Article:

Place, consolidate, finish, and cure of the concrete as provided in Section 2301, except as follows:

2529.03, H, 2, c.

Replace the Article:

Dump or convey the concrete into the patch areas to avoid segregation of the aggregates and cement. Spread it into place and vibrate with a mechanical vibrator. Smooth the concrete and finish it to the elevation of the adjacent PCC pavement surface. Avoid excessive vibrating.
2529.03, I, Smoothness.

Replace the first sentence of the Article:
Apply Section 2316 to smoothness of full depth finish patches (except when the contract includes an overlay or pavement surface repair by diamond grinding or milling within the patch area) with the following modifications for Full Depth Finish Patches (50 feet (15 m) or greater in length):

2529.03, I, 1.

Delete the third sentence of the Article:
For each patch added by the Engineer that is greater than 50 foot (15 m) long, the Contractor will be paid $500 in addition to the appropriate unit prices involved. This is to compensate for additional smoothness requirements.

2529.03, K, 5.

Delete the third sentence of the Article:
A flagger will be required at these locations.

2529.03, K, 6.

Delete the Article:
6. When HMA patches on two-lane roadways and PCC patches with calcium chloride are constructed, adjust the work schedule so all equipment and obstructions are removed from the travel lanes and shoulders from 30 minutes before sunset to 30 minutes after sunrise.

2529.05, A, 1, a.

Replace the Article:
Each. The type or types of patches to be counted will be identified by the following types and tabulated in the contract documents.
1) Full Depth HMA Finish Patches.
2) Full Depth PCC Finish Patches, Without Dowels.
3) Full Depth PCC Finish Patches, Without Dowels, Composite Section.
4) Full Depth PCC Finish Patches, With Dowels.
5) Full Depth PCC Finish Patches, Composite Section.
6) Full Depth PCC Finish Patches, Continuously Reinforced.
7) Full Depth PCC Finish Patches, Continuously Reinforced, Composite Section.

2529.05, A, 2, Full Depth Finish Patches, By Area.

Rename the Article:
Full Depth Finish Patches, by Area and Full Depth Finish Patches, by Area (50 Feet (15 m) or Greater in Length).

2529.05, A, 2, b.

Replace the Article:
Payment is full compensation for:
- Removal of the old pavement,
- Restoring the subgrade or subbase,
- Furnishing and installation of tie bars,
- Restoring longitudinal reinforcement for continuously reinforced patches, and
- Furnishing and placing the patching material, including the asphalt binder, tack coat, curing, joint sealing, and placing backfill material in the disturbed area, and,
- Profilograph testing and any required profile correction for patches 50 feet (15 m) or greater in length.

2529.05, A, 2, c.

Replace Table 2529.05-1:
Table 2529.05-1: Patching Quantity Adjustment

<table>
<thead>
<tr>
<th>% Change of Thickness</th>
<th>% Change of Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10</td>
<td>0</td>
</tr>
<tr>
<td>> 10 to 20</td>
<td>10</td>
</tr>
<tr>
<td>> 20 to 30</td>
<td>15</td>
</tr>
<tr>
<td>> 30</td>
<td>20 Paid per Article 1109.03, B</td>
</tr>
</tbody>
</table>

2529.05, F, 2.

Replace the second sentence of the Article:

If removal of anchor lugs is not a bid item in the contract documents, payment will be paid $600 1200 per lane in which an anchor lug, or portion of anchor lug, is removed.

Section 2532

2532.03, B, 3, a.

Replace the Article:

When specified in the contract documents, grind and longitudinally groove the entire surface of the bridge deck according to Article 2412.03, D, 4, a. For other projects, re-establish transverse grooving through corrected areas using diamond blades to provide a surface similar to a new deck except the area within approximately 2 feet (0.6 m) from the curb.

Section 2535

2535.02, A, Concrete Crib Units.

Replace the Article:

Precast concrete complying with the applicable requirements of Section 2407 2419.

Section 2541

2541.03, C, 3.

Delete the second sentence of the Article:

When work encroaches on an adjacent lane, a flagger will be required at that location.

Section 2542

2542.03, C, 2.

Delete the second sentence of the Article:

When work encroaches on an adjacent lane, a flagger will be required at that location.

Section 2548

2548.02, B, 1.

Replace the Article:

Use asphalt emulsion Grade CSS-1 or CSS-1h, meeting requirements of Section 4140.

Section 2549

2549.01, C.

Replace the second sentence of the Article:

Includes construction of structural liners, protective liners, and chimney seals infiltration barriers.
2549.03, B, 2, Rubber Chimney Seal.

Rename the Article:

Rubber Chimney Seal Infiltration Barrier.

2549.04, D, Rubber Chimney Seal.

Rename and **Replace** the Article:

Rubber Chimney Seal Infiltration Barrier.

Each rubber chimney seal infiltration barrier installed on an existing manhole will be counted.

2549.05, D.

Rename and **Replace** the Article:

Rubber Chimney Seal Infiltration Barrier.

1. Payment will be made at the contract unit price for each chimney seal infiltration barrier.

2. Payment is full compensation for all necessary compression or expansion bands and extension sleeves as necessary to complete chimney seal infiltration barrier.

Section 2552

2552.02, A, 1, a, Suitable Backfill Material.

Replace the Article:

Class II, Class III, Class IVA, or Class IVB as defined in Article 2552.02, B C.

2552.02, A, 1, b, 1.

Replace the Article:

Soils not classified as suitable backfill material, as defined in Article 2552.02, B C.

2552.02, A, 1, c, Topsoil.

Replace the Article:

Class V material. Apply Article 2552.02, C D.

2552.02, B, Bedding Material.

Rename and **Replace** the Article:

Bedding (Class I) Material.

1. **Class I Material.**

 a. Crushed stone complying with the following gradation:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2 inch (37.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>1 inch (25 mm)</td>
<td>95 to 100</td>
</tr>
<tr>
<td>1/2 inch (12.5 mm)</td>
<td>25 to 60</td>
</tr>
<tr>
<td>No.-4 (4.75 mm)</td>
<td>0 to 10</td>
</tr>
<tr>
<td>No.-8 (2.36 mm)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

 b. The Engineer may allow the use of gravel or authorize a change in gradation subject to materials available locally at the time of construction.

 c. The Engineer may authorize the use of crushed PCC for pipe sizes up to 12 inches (300 mm).

 d. Use aggregates having a percentage of wear, Grading A or B, not exceeding 50%, determined according to AASHTO T 96.
Meet the requirements of Section 4118.

2552.02, Materials.

Renumber Articles C, D, E, and F and Retitle Articles C, D, and E:

- C D. Backfill Material (Other Areas).
- D E. Topsoil (Class V) Material.
- E F. Stabilization (Foundation) Material.
- F G. Special Pipe Embedment and Encasement Material.

Add the Article:

- C. Backfill Material (Under Interstate and Primary Roadways).

Meet the requirements of Section 4119.

2552.03, E, Pipe Bedding and Backfill Material.

Renumber and Rename Articles 3, 4, and 5:

- 3 4. Haunch Support (Other Areas).
- 4 5. Primary and Secondary Backfill (Other Areas).
- 5 6. Final Trench Backfill (Other Areas).

Add the Article:

- 3. Backfill Under Interstate and Primary Roads:
 a. Place in lifts no greater than 6 inches (150 mm) thick.
 b. Thoroughly tamp or vibrate each layer to insure compaction.
 c. Place backfill material after recording locations of connections and appurtenances or at the Engineer's direction.
 d. Terminate backfill material at subgrade elevation.

Section 2553

2553.02, B, 3, Pipe Diameter.

Replace the second sentence of the Article:

If diameter is not specified, use a minimum inside casing diameter of at least 4 inches (100 mm) greater than the largest outside diameter of the carrier pipe, including pipe bells.

Division 26. Roadside Development.

Section 2601

2601.04, G.

Replace the Article:

Mowing described in Article 2601.03, B, 4, a: acres to the nearest 0.1 acre (hectares to the nearest 0.1 hectare) of surface area.

2601.05, A, 9, b.

Replace the Article:

Payment is full compensation for the Turf Reinforcement Mat, preparation, and materials including shaping channels, ditches and slopes, soil fill, seed and fertilizing, and wood excelsior mat and watering.

2601.05, A, 13.

Replace the Article:

Mowing as described in Article 2601.03, B, 4, a: contract unit price per acre to the nearest 0.1 acres (hectare to the nearest 0.1 hectares).
Replace the Article:

Prior to the preconstruction conference, furnish the Engineer an initial Erosion Control Implementation Plan (ECIP) for accomplishment of temporary and permanent erosion control. In addition, furnish the proposed method of erosion control on haul roads and borrow pits as well as the plan for the removal of excess materials from the project.

In the ECIP, include stages for erosion control work to address Contractor’s timetable and sequence for major activities or stages on the contract, including:

- Initial controls required prior to land disturbing activities,
- Number of earthwork balances for the contract,
- Sensitive areas requiring special consideration,
- Anticipated suspension of work,
- Compliance with Pollution Prevention Plan (PPP),
- Method of erosion control on haul roads and borrow pits, and
- Removal of excess materials from project.

Add the Articles:

L. Mobilizations, Erosion Control.

1. Mobilizations, Erosion Control, applies to projects not identified as erosion control or landscaping and containing at least one of the following items:
 - Stabilizing crop seeding and fertilizing: 1 acre (0.4 ha) or more,
 - Stabilizing crop seeding and fertilizing (urban): 1 acre (0.4 ha) or more,
 - Silt fence: 250 feet (75 m) or more, or
 - Silt fence for ditch checks: 250 feet (75 m) or more.

2. Only one mobilization will be paid for each stage of work described in the ECIP. Within the scope of work defined for each single mobilization described in the ECIP, additional movement due to weather delays or at the option of the Contractor will not be counted as a mobilization.

3. Separate mobilizations needed for different crews performing work such as silt fence, seeding, or ditch checks will be counted, however, multiple mobilizations will not be paid for a single crew performing different items of erosion control work.

4. Payment for mobilization applies to contract items from Sections 2601 and 2602, excluding watering, mowing, debris pickup, monitoring well, or removal items.

5. Additional mobilizations not outlined in the ECIP must be approved by the Engineer.

6. Payment for mobilization to correct items not properly installed will not be approved. Payment for mobilization will also not be approved if labor, equipment, and materials to perform erosion control are used for other non-erosion control work onsite.

7. Mobilize with sufficient labor, equipment, and materials to perform erosion control included in ECIP or as ordered or approved by Engineer. Failure to mobilize when erosion control work is needed to comply with the ECIP or PPP, will result in the Engineer, by written order, direct mobilization within 72 hours of a written order.

8. Failure to mobilize within such time period, will result in a deduction of $750.00 per calendar day from payment due under the contract, except when Engineer extends such time period.

9. Mobilizations, Erosion Control, will not include work provided under the item of Mobilizations, Emergency Erosion Control.
M. Mobilizations, Emergency Erosion Control.
An emergency will be considered to be a sudden occurrence of a serious and urgent nature which is beyond normal maintenance of erosion control items. Emergency work requires immediate mobilization and movement of necessary labor, equipment, and materials to the emergency site, followed by immediate installation of temporary erosion control measures.

1. Mobilize with sufficient labor, equipment, and materials on job site within eight hours of Engineer's written order to install temporary erosion control items on an emergency basis. Engineer's written order will include a description of required work. Only one mobilization will be paid for work described in the written order.

2. Failure to mobilize within eight hours of written order, will result in a deduction of $1500.00 per calendar day from payment due under the contract, except when Engineer extends such time period.

2602.04, Method of Measurement.

Add the Articles

J. Mobilizations, Erosion Control.
By count for each mobilization in the accepted ECIP and acceptably performed, as well as additional mobilizations ordered or approved by Engineer and acceptably performed.

K. Mobilizations, Emergency Erosion Control.
By count for each mobilization directed in writing by Engineer and acceptably performed.

2602.05, Basis of Payment.

Renumber Articles, B, C, and D and Add the Article:

B. Payment for Mobilizations, Erosion Control, and Mobilizations, Emergency Erosion Control, will be at unit prices stipulated in the proposal. If bid items are not included in the proposal then mobilizations for erosion control will paid at unit prices stipulated below. Mobilization for Erosion Control costs are not included as part of the contract item for "Mobilization" described in Section 2533.

1. Mobilizations, Erosion Control.
The quantity will be paid for at the unit price of $500.00 each for Mobilizations, Erosion Control, which is full compensation for staged movement of labor, equipment, and materials; and labor, tools, equipment, and incidentals necessary to complete the movement.

The quantity will be paid for at the unit price of $1000.00 each for Mobilizations, Emergency Erosion Control, which is full compensation for movement of labor, equipment and materials; and for labor, tools, equipment, and incidentals necessary to complete the movement.

C. When it is necessary for the Contractor to clean out, repair, or reconstruct a silt ditch, dike, or basin, the additional payment will be 100% of the contract unit price for construction of that item. When applicable bid items are not in the contract documents, payment for clean out, repair, or reconstruction will be according to Article 1109.03, B.

D. If water control measures are required due to the Contractor's negligence, carelessness, or failure to install the controls as a part of the work as scheduled, and are ordered by the Engineer, perform this work at no additional cost to the Contracting Authority.

E. All water pollution control features are to be in functional condition before final acceptance of the contract.
Section 2610

2610.03, C, Pruning.

Replace the Article:

1. General.
 a. Complete Prune pruning prior to wrapping throughout establishment period.
 b. Perform all pruning to retain the natural shape of the plant. Unless removing dead or damaged material, do not top plants. Prune back dead, broken, and damaged branches to the closest outward growing bud on healthy sound wood. Remove rubbing branches and suckers. Remove all suckers and stubs. Remove all debris resulting from pruning from the right-of-way according to Article 1104.08.

2. Deciduous Trees.
 a. Remove all broken, damaged, or otherwise defective branches, as well as all branches which may not develop properly. In addition, eliminate narrow crotches or competing leaders.
 b. Prune trees to develop an upright leader which will best promote the symmetry of the tree. Prune flowering or specimen trees to develop their natural form.

3. Evergreen Trees and Shrubs.
 Remove dead and broken branches.

4. Deciduous Shrubs.
 Remove dead or irregular branches.

5. Vines and Ground Cover.
 Remove broken, damaged, or dead portions from vines and ground cover plants.

Section 2611

2611.03, Construction.

Add the Article:

H. Pruning.
Prune according to Article 2610.03, C.

Division 41. Construction Materials.

Section 4100

4100.08, Concrete Compression Test Specimens.

Replace the Article:

A. Cast concrete compression test specimens may be cast:
 - A according to Materials I.M. 315, or unless otherwise specified in the contract documents.
 - Horizontally in molds with a diameter of 4 1/2 inches (114.3 mm) and length of 9 inches (228.6 mm) or a diameter of 6 inches (152.4 mm) and length of 12 inches (304.8 mm).

B. When compressive strength is a specification requirement, use of horizontal molds is subject to agreement of the Contractor.

Section 4101

4101.01, B, ASTM C 595 Cements.

Add the Article:

5. Meet the requirements of Materials I.M. 401 for initial approval of Type IL cement.
4101.01, C, Cement Type Usage.

Replace Articles 2 and 3:

2. Type IP, or Type IS, or Type IL cement may be furnished at the Contractor's option when Type I or Type II cement is specified. Apply the limitations of the following articles:
 - 2301.02. B.
 - 2403.02. B.
 - 2407.02.
 - 2412.02.
 - 2413.02.
 - 2424.02.
 - 2426.02.
 - 2507.02.
 - 2513.02.
 - 2529.02.
 - 2530.02.
 - 2539.02.

3. Use the same unit volume of Type IP, or Type IS, or Type IL cement in the concrete that is specified for Type I or Type II cement.

Section 4112

4112, Intermediate Aggregate for Portland Cement Concrete.

Replace the Section:

4112.01 DESCRIPTION.

A. Crushed carbonate stone chips or pea gravel from approved sources as described in Materials I.M. 409. Coarse natural sand resulting from disintegration of rock through erosional processes, without addition of crushed over-sized material may be used in place of the intermediate and fine aggregate.

B. For crushed limestone or dolomite chips, meet the durability class required for the coarse aggregate. Acquire uncrushed pea gravel or coarse sand from any PCC approved durability class gravel. When the gravel durability is lower than the coarse aggregate durability requirements, the pea gravel is not to exceed 15% of total aggregate in the mix. Aggregate meeting the requirements of Section 4117 will be considered coarse sand.

4112.02 GRADATION.

A. Intermediate Aggregate.
 For gradations, intermediate aggregate is considered coarse aggregate. Meet the following gradation limits:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 inch (12.5 mm)</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8 (2.38 mm)</td>
<td>0-40</td>
</tr>
</tbody>
</table>

B. Coarse Sand.
 Meet the following gradation limits:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 inch (12.5 mm)</td>
<td>100</td>
</tr>
<tr>
<td>3/8 inch (9.5 mm)</td>
<td>90-100</td>
</tr>
<tr>
<td>No. 4 (4.75 mm)</td>
<td>75-95</td>
</tr>
<tr>
<td>No. 8 (2.36 mm)</td>
<td>60-90</td>
</tr>
<tr>
<td>No. 30 (600 μm)</td>
<td>10-60</td>
</tr>
<tr>
<td>No. 200 (75 μm)</td>
<td>0-1.5</td>
</tr>
</tbody>
</table>

Intermediate aggregate shall meet the requirements for gradation No. 2 of the Aggregate Gradation Table, Article 4109.02.
4112.03 QUALITY.

A. Intermediate Crushed Stone.
 Meet the requirements of Table 4112.03-1:

<table>
<thead>
<tr>
<th>Aggregate Quality</th>
<th>Maximum Percent Allowed</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina(a)</td>
<td>0.5</td>
<td>Office of Materials Test Method No. Iowa 222</td>
</tr>
<tr>
<td>A Freeze</td>
<td>6</td>
<td>Office of Materials Test Method No. Iowa 211, Method A</td>
</tr>
<tr>
<td>Clay Lumps and Friable Particles</td>
<td>0.5</td>
<td>Materials I.M. 368</td>
</tr>
</tbody>
</table>

 (a) If the Alumina value fails, determine the A Freeze value for specification compliance.

B. Pea Gravel and Coarse Sand.

 1. For the portion of coarse sand passing the No. 4 (4.75 mm) sieve, meet the quality requirements of Section 4110.

 2. For pea gravel and the portion of coarse sand retained on the No. 4 (4.75 mm) sieve, meet the quality requirements of Table 4112.03-2:

<table>
<thead>
<tr>
<th>Objectionable Materials</th>
<th>Maximum Percent Allowed</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal and carbonaceous shale</td>
<td>0.5</td>
<td>AASHTO T 113</td>
</tr>
<tr>
<td>Total of all shale, similar objectionable materials, coal and iron combined</td>
<td>1.0</td>
<td>AASHTO T 113</td>
</tr>
<tr>
<td>Organic Materials, except coal</td>
<td>0.01</td>
<td>Office of Materials Test Method No. Iowa 215</td>
</tr>
<tr>
<td>Unsound chert particles retained on 3/8 inch (9.5 mm) sieve (Nonstructural concrete)</td>
<td>3.0</td>
<td>Materials I.M. 372</td>
</tr>
<tr>
<td>Unsound chert particles retained on 3/8 inch (9.5 mm) sieve (Structural concrete)</td>
<td>2.0</td>
<td>Materials I.M. 372</td>
</tr>
</tbody>
</table>

 Note: Chert particle which break into three or more pieces when subjected to the freezing and thawing test will be considered unsound.

 Chert in aggregate produced from limestone sources is defined as unsound when any of the fractions of the crushed or uncrushed chert do not meet the soundness requirements.

Section 4118

4118, Pipe Bedding Material.

Add the Section:

Section 4118. Pipe Bedding Material.

4118.01 DESCRIPTION.

 Gravel or crushed stone. Crushed PCC may be used if approved by the Engineer.

 Aggregate of the following types:
 - Crushed Stone
 - Gravels for which 75% or more of the particles retained on the 3/8 inch (9.5 mm) sieve have at least one fractured face as defined in Materials I.M. 305 (the fractured face requirement shall only apply to bedding material placed under Primary or Interstate roadways), or
 - Crushed PCC, if approved by the Engineer.

4118.02 GRADATION.
Meet the requirements for Gradation No. 3 of the Aggregate Gradation Table, Article 4109.02 (Appendix). Restrictions on the No. 200 sieve do not apply.

4118.03 QUALITY.
The requirements of Table 4118.03-1 apply to individual virgin aggregates:

<table>
<thead>
<tr>
<th>Coarse Aggregate Quality</th>
<th>Maximum Percent Allowed</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion</td>
<td>50</td>
<td>AASHTO T 96</td>
</tr>
<tr>
<td>C - Freeze</td>
<td>15</td>
<td>Iowa 211, Method C</td>
</tr>
</tbody>
</table>

For crushed PCC, meet requirements of Materials I.M. 210.

Section 4119

4119, Pipe Backfill Material Under Interstate and Primary Roadways.

Add the Section:

Section 4119. Pipe Backfill Material Under Interstate and Primary Roadways.

4119.01 DESCRIPTION.
Aggregate of the following types:
- Crushed Stone,
- Gravels for which 75% or more of the particles retained on the 3/8 inch (9.5 mm) sieve have at least one fractured face as defined in Materials I.M. 305, or
- Crushed PCC, if approved by the Engineer.

4119.02 CRUSHED STONE.
Meet the requirements of Article 4120.04.

4119.03 CRUSHED GRAVEL.
Meet the requirements of Article 4120.03.

4119.04 CRUSHED PCC.
Meet the requirements of Materials I.M. 210 and for Gradation No. 11 of the Aggregate Gradation Table, Article 4109.02 (Appendix).

Section 4145

4145.03, Materials.

Replace the Article:
Comply with the applicable requirements of Division 41. Apply Section 2419.

Section 4149

4149.04, J, 1, Chimney Seal.

Rename and Replace the Article:
1. Chimney Seal Infiltration Barrier.
 a. External Rubber Chimney Seal.
 1) Rubber Sleeve and Extension.
 a) Corrugated; minimum thickness of 3/16 inches (5mm), according to ASTM C 923/C 923M.
 b) Minimum allowable vertical expansion of at least 2 inches (50 mm).
 2) Compression Bands.
 a) One-piece band assembly to compress sleeve or extension against manhole and casting surfaces.
 b) 16 gage ASTM A 240/A 240M, Type 304 stainless steel, minimum 1 inch (25 mm) width, minimum adjustment range of 4 inches (100 mm) more than the manhole outside diameter.
 c) For standard two-piece castings, shape top band to lock sleeve to manhole frame's base flange. For three-piece adjustable castings, shape top band to lock sleeve to upper piece of adjustable frame.
d) Stainless steel fasteners complying with ASTM F 593 and ASTM F 594, Type 304.

b. Internal Rubber Chimney Seal.
 1) Rubber Sleeve and Extension.
 a) Double pleated, minimum thickness 3/16 inch (5 mm) thick, according to ASTM C 923/C 923M.
 b) Minimum allowable vertical expansion of at least 2 inches (50 mm).
 c) Integrally formed expansion band recess top and bottom with multiple sealing fins.
 2) Expansion Bands.
 a) One-piece band assembly to compress sleeve or extension against manhole and casting surfaces.
 b) 16 gage ASTM A 240/A 240M, Type 304 stainless steel, minimum 1 3/4 inch (45 mm) width, minimum adjustment range of 2 inches (50 mm) more than the manhole inside diameter.
 c) Stainless steel locking mechanism of studs and nuts complying with ASTM F 593 and ASTM F 594, Type 304.

c. Molded Shield.
 1) Barrier Shield.
 a) Medium Density polyethylene, according to ASTM D 1248.
 b) Certified for 40,000 pound (18,150 kg) proof-load according to AASHTO M 306.
 c) Diameter to match cone section and internal dimension of casting.
 2) Sealant.
 Butyl material according to AASHTO M 198.

Section 4153

4153.01, A.

Replace the first sentence of the Article:
Meet the requirements of ASTM A 688/A 688M, Class C for forgings, from which pins, rollers, trunnions, or other forged parts 7 inches (175 mm) or more in diameter are made.

4153.06, A, 3.

Replace the second sentence of the Article:
Fasteners may be mechanically galvanized to meet the requirements of ASTM B 695, Class 50 55 Type 1.

4153.06, B, 1, b.

Replace the Article:
For galvanized high strength fasteners, the fasteners meet the requirements of ASTM B 695, Class 50 55 Type I.

4153.07, D, 4.

Replace the Article:
Ensure the galvanized coating meets the requirements of ASTM F 2329.

4153.07, E, Lag Bolts.

Replace the Article:
Use lag bolts meeting the requirements of ANSI B18.2.1, galvanized according to ASTM F 2329.

Section 4169

4169.12, Perimeter and Slope Sediment Control Device.

Replace Articles A and B:
A. Wattles and Sediment Logs.
 Wood excelsior or straw contained in a tube of photodegradable open weave fabric (synthetic netting). Install according to manufacturer’s recommendations.
B. Filter Socks.
Continuous, tubular, knitted, photodegradable, synthetic mesh netting with a maximum 3/8 inch (10 mm) opening fabricated using 5 mil (0.125 mm) thickness photodegradable HDPE and filled with a compost/wood blend filter material consisting of compost from an approved source meeting Article 4169.08. Fill sock by blowing filter material into tube with a pneumatic blower truck or similar device. Hand filling will not be allowed. Install according to manufacturer's recommendations.

Section 4170

4170.02, Materials.

Add the Article:

C. Comply with rules and regulations of State Entomologist of Iowa relative to nursery inspection of Nursery Stock according to provisions set forth in Section 177A.5 of Iowa Crop Pest Act, Chapter 177A, Code of Iowa

4170.09, D, Mulch.

Replace the Article:

As specified in the contract documents.

1. Unless stated elsewhere on the contract documents, use material consisting of shredded bark or shredded wood, or a mixture containing no more than 50% wood chips. Allow Engineer to visually inspect material prior to application.

2. Comply with the following requirements:
 - Use tree bark and wood chips consisting of either hardwood or softwood as produced by a mechanical debarker or chipping machine.
 - Ensure mulch is reasonably free from leaves, twigs, dust, toxic substances, and other foreign materials.

3. Mulch material consistently delivered in excessively wet condition may be rejected by Engineer.

Section 4183

4183.06, A, Removable Marking Tape.

Rename and Replace the Article:

Wet, Retroreflective Removable Marking Tape Markings.
Comply with Materials I.M. 483.06 and meet the following requirements:

1. **Thickness.**
 - Average thickness of the film, including glass spheres, no less than 30 mils (0.76 mm) or more than 70 mils (1.78 mm).

2. **Retroreflectance.**
 - For white or yellow tapes, meet the following initial minimum retroreflectance values at 1.05 degree observation angle and 88.76 degree entrance angle, measured by a LTL 2000 retroreflectometer.
 - White
 - Yellow
 - Specific luminance, mcd/sq.ft./ft. cdl. (lux•m²) 550 325

1. Ensure film is free of lead, chrome, and other heavy metals as defined by the EPA.

2. Precoat markings with pressure sensitive adhesive capable of adhering to the pavement at temperatures as low as 50°F (10°C) in accordance with the manufacturer's recommendations.

3. **Retroreflectance.**
 a. Ensure white and yellow markings have initial expected retroreflectance values as shown in Table 4 4183.06-1 under dry, wet, and rainy conditions.
 b. Measure wet retroreflectance values under a "condition of wetness" according to ASTM E 2177. Test may be performed with marking installed on road. Perform laboratory measurements using a 3 to 5
degree lateral slope. Use wetting agent to improve wetting of pavement marking with water. Use of a 0.1% (by volume) liquid soap solution is recommended. Report measurements as an average for each roll tested, in a minimum of three locations.

c. Measure wet retroreflectance values under a “condition of continuous wetting” (simulated rain) according to ASTM E 2176, in a controlled laboratory environment while the marking is positioned with a 3 to 5 degree lateral slope. Use wetting agent to improve wetting of pavement marking with water. Use of a 0.1% (by volume) liquid soap solution is recommended. Report measurements as an average for each roll tested, in a minimum of three locations.

| Table 4183.06-1: Expected Initial R_L under dry, wet, and rainy conditions |
|-----------------------------|----------------------------------|
| **WHITE** | | **Yellow** | |
| Entrance Angle | 88.76 degrees | Entrance Angle | 88.76 degrees |
| Observation Angle | 1.05 degrees | Observation Angle | 1.05 degrees |
| Retroreflected Luminance R_L (mcd ft$^{-2}$ fc$^{-1}$) (R$_L$ [(mcd m$^{-2}$) lx$^{-1}$]) | 150 | Retroreflected Luminance R_L (mcd ft$^{-2}$ fc$^{-1}$) (R$_L$ [(mcd m$^{-2}$) lx$^{-1}$]) | 100 |

4. Removability.
Pavement markings shall be removable from the pavement intact or in large pieces, at temperatures above freezing without the use of heat, solvents, grinding, or blasting; and with no permanent scarring of the roadway surface.

5. Patchability.
Pavement marking material shall be capable of being patched in accordance with manufacturer’s instructions.

Section 4185

4185.02, B, 4.

Replace the Article:
If slip bases are furnished, furnish 1 inch by 4 1/2 inch (25 mm by 112 mm) bolts slip base plate that:
- Are high-strength bolts meeting the requirements of ASTM A 325, and
- Are fully mechanically galvanized to ASTM B 695, Class 50 55, Type I.

4185.02, B, 6.

Replace the third bullet:
Are galvanized according to the requirements of ASTM A-153 F 2329, Class C, or ASTM B 695, Class 50 55, Type I.

Section 4186

4186.03, A, 3.

Add the following line to the end of Table 4186.03-1:

| Type XI | A prismatic, very high intensity retro reflective sheeting having highest retro reflective characteristics at wide range of distances. |

Page 68
4186.03, B, 1, a.

Replace the Article:
Meet the following requirements:

1) Type III or IV sheeting is used for all signs with **yellow**, green, red, blue, or brown background, unless otherwise specified.

2) Type XI Fluorescent sheeting is used for signs with yellow or yellow-green background.

3) The legend on white and yellow signs is fabricated using black nonreflective sheeting that is applied directly, or by silk screening with black opaque ink.

4) The legend on green signs is fabricated using white Type III or IV sheeting that is applied directly.

5) The legend on red signs is fabricated using transparent red ink that is reverse silk screened on white Type III or IV sheeting, or is fabricated using white Type III or IV sheeting that is applied directly on a red Type III or IV sheeting background.

6) The legend on blue and brown signs is fabricated using transparent ink that is reverse silk screened on white Type III or IV sheeting, or white Type III or IV sheeting that is applied directly.

4186.10, B, 5.

Replace the Article:
Furnish bolts (including the entire length of the anchor bolts), nuts, and washers that are galvanized according to ASTM F 2329 or B 695 Class 50, Type 4 coating.

4186.10, Sign Posts.

Add the Article:

D. Perforated Square Steel Tube (PSST) Posts and Anchors

Use PSST posts and anchors on the approved list in Materials I.M. 486.10 and meet the following. When not specified elsewhere in the contract documents, the post and anchor system shall meet the minimum manufacturer’s size requirements for 90 mph (145 km/hr) wind load criteria and be approved by the Engineer.

1. PSST Posts.
 a. Provide PSST posts of the dimensions and gauge required by the contract documents.
 b. Posts shall be designated “crashworthy” as defined by NCHRP Report 350 Category 2, Level 3 or by AASHTO Manual for Assessing Safety Hardware (MASH) for post systems evaluated after January 1, 2011 and be FHWA accepted.
 c. Galvanized posts shall conform ASTM A 653, SS, Grade 50, Designation G-90 or greater.
 d. Cross section of post shall be a square tube roll formed and corner welded. Corner weld shall be zinc coated after scarfing operation.
 e. Pre-punch 7/16 inch (11 mm) holes on 1 inch (25 mm) centers on all sides, vertically aligned and centered horizontally.
 f. Furnished post shall be straight and have a smooth uniform finish. It must be possible to freely insert post into anchors and telescope consecutive sizes with a minimum amount of play.
 g. If post is to be field cut, cut ends shall be coated with zinc rich paint as required per specification.

2. PSST Post Anchors.
 a. Break-away, soil installation.
 42 inch (1065 mm) minimum length, 7 gauge (4.76 mm) heavy duty winged anchor.
 b. Break-away, concrete installation.
 Posts installed in a concrete island, use a 48 inch (1220 mm) minimum length, 7 gauge (4.76 mm) heavy duty anchor. Core an 8 inch (200 mm) diameter hole through pavement at least 8 inches (200 mm) deep. After placing anchor, fill hole with concrete mix approved by the Engineer and level off top of concrete.
 c. Triangular Slip Base Assembly.
 1) Ensure design is in accordance with the AASHTO Standards and Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, current edition and meets or exceeds NCHRP Report 350 or the AASHTO MASH criteria for any assembly system evaluated after January 1, 2011 and be FHWA accepted.
 2) Triangular Slip Base Assembly consists of four parts: one-piece anchor, top half slip base, hardware, and concrete foundation.
a) One-piece anchor shall meet the following requirements:
 - Anchor shall have a triangular slip plate (1 inch (25 mm) thick) welded directly to anchor leg.
 - Anchoring portion shall be 3 inches (75 mm) square 7 gauge (4.76 mm) material and 42 inches (1065 mm) long.
 - Galvanize by hot dip process, complying with ASTM A 123, grade 85.

b) Top-half slip base shall meet the following requirements:
 - Cast unit from Ductile Iron meeting ASTM A 536 Class 65-45-12.
 - Top half slip base shall have a triangular dimension to match 8 inch (200 mm) standard triangular slip plate, and shall receive 2.5 inch (63 mm) square sign support.

c) Hardware shall meet requirements of Article 4186.09.

d) Concrete Footings: Apply Section 2403.

Section 4187

4187, Materials for Support Structures.

Rename the Section:
 Materials for Sign Support Structures

4187.01, General Requirements.

Replace the first sentence of the Article:
 Furnish materials for aluminum alloy or galvanized overhead steel sign support structures meeting the following requirements:

4187.01, A, Material for Aluminum Alloy Superstructre.

Rename the Article:
 Materials for Aluminum Alloy Superstructures

4187.01, C, Fasteners for Aluminum Alloy and Galvanized Steel Superstructures and Anchor Bolts.

Replace the Article:

1. Material Fasteners for Aluminum Superstructures
 a. Stainless Steel Bolts and Studs.
 1) Use the size specified in the contract documents.
 2) Meet the requirements of Comply with ASTM A 320/A 320M Type 304 Class 1 Grade B8, Class 1A Grade B8A, or Class 2 Grade B8; or ASTM F 593 Alloy Group 1 Alloy 304 or 304L, Group 2 Alloy 316 or 316L, or Group 3 Alloy 321 or 347 meeting Condition A, CW1 or CW2.
 3) Use hexagonal bolt heads complying with ASTM A 320/A 320M Class 1. Threads are to comply with ANSI/ASME B1.1 for UNC thread series, Class 2A fit tolerance. Use the stress area to compute the tensile strength.
 b. Stainless Steel Nuts and Jam Nuts.
 1) Use the size specified in the contract documents.
 2) Meet the requirements of Comply with ASTM A 194/A 194M Grade 8, 8A, 8C, 8CA, 8M, 8MA, 8T, or 8TA; or ASTM F 594 Alloy Group 1 Alloy 304 or 304L, Group 2 Alloy 316 or 316L, or Group 3 Alloy 321 or 347 meeting Condition A, CW1 or CW2. Use same alloy properties (i.e. group, alloy, class and condition) as those of the bolts specified. Meet a minimum proof load of 75,000 psi (517MPa).
 3) Use hexagonal nuts and jam nuts complying with the requirements of ASTM F 594. Threads are to comply with ANSI/ASME B 1.1 for UNC thread series, Class 2B fit tolerance. In lieu of jam nuts, stainless steel lockwashers may be used.
 4) Unless otherwise specified, use dimensions in accordance with the requirements of ANSI/ASME B 18.22.2
 c. Stainless Steel Washers.
 1) Comply with ANSI B18.22.1 for the bolts specified.
 2) The Engineer may approve washers with dimensions other than those specified.
 3) Meet requirements of ASTM A 240/A 240M. Use same alloy properties (i.e. group, alloy, class and condition) as those of the bolts specified.
d. Stainless Steel U-Bolts.
 1) Use the size specified in the contract documents.
 2) Meet the requirements of Comply with ASTM A 320/A 320M Class 1 Grade B8, Class 1A Grade B8A, or Class 2 Grade B8; or ASTM F 593 Alloy Group 1 Alloy 304 or 304L, Group 2 Alloy 316 or 316L, or Group 3 Alloy 321 or 347 meeting Condition A, CW1 or CW2.
 3) Threads shall comply with ANSI/ASME B 1.1 for UNC thread series, Class 2A tolerance.
 4) Use nuts as specified in Article 4187.01, C, 1.b.
 5) Use washers as specified in Article 4187.01, C, 1.c.

2. Fasteners for Galvanized Steel Superstructures.
 a. Galvanized Steel High Strength Bolts.
 1) Use size specified in the contract documents.
 2) Galvanize according to requirements of ASTM B 695, Class 55 Type 1 or ASTM F 2329 with zinc bath temperature limited to 850°F (455°C).
 3) Bolts shall be ASTM A 325 Type 1 or ASTM A 449 Type 1.
 4) Threads are to comply with ANSI/ASME B 1.1 for UNC thread series, Class 2A tolerance.

 b. Galvanized Steel Nuts and Jam Nuts.
 1) Use size specified in the contract documents.
 2) Galvanize according to the requirements of ASTM B 695, Class 55 Type 1 or ASTM F 2329 with zinc bath temperature limited to 850°F (455°C).
 3) Regular nuts shall be ASTM A 563 Grade DH heavy hex.
 4) Jam nuts shall be ASTM A 563 Grade DH heavy hex.
 5) Threads are to comply with ANSI/ASME B 1.1 for UNC thread series, Class 2B tolerance.

 c. Galvanized Steel Washers.
 1) Comply with ANSI B18.22.1 for the bolts specified.
 2) Galvanize according to the requirements of ASTM B 695, Class 55 Type 1 or ASTM F 2329 with zinc bath temperature limited to 850°F (455°C).
 3) Washers shall be ASTM F 436 Type 1.

 d. Galvanized Steel U-Bolts.
 1) Use size specified in the contract documents.
 2) Galvanize according to the requirements of ASTM B 695, Class 55 Type 1 or ASTM F 2329 with zinc bath temperature limited to 850°F (455°C).
 3) U-bolts shall be ASTM A 449 Type 1, ASTM A 307 Grade B or ASTM F 1554, Grade 36 or 55.
 4) Threads are to comply with ANSI/ASME B 1.1 for UNC thread series, Class 2A tolerance.
 5) Bend and thread U-bolts prior to galvanizing.

 e. Stainless Steel U-Bolts.
 1) Use size specified in the contract documents.
 2) Comply with ASTM A 320/A 320M Class 1 Grade B8, Class 1A Grade B8A, or Class 2 Grade B8; or ASTM F 593 Alloy Group 1 Alloy 304 or 304L, Group 2 Alloy 316 or 316L, or Group 3 Alloy 321 or 347 meeting Condition A, CW1 or CW2.
 3) Threads are to comply with ANSI/ASME B 1.1 for UNC thread series, Class 2A tolerance.
 4) Use nuts as specified in Article 4187.01, C, 1.b.
 5) Use washers as specified in Article 4187.01, C, 1.c.

2 3. Anchor Bolts, Nuts, and Washers.
Use bolts, nuts, and washers galvanized according to the requirements of ASTM F 2329 or ASTM B 695, Class 50, Type I coating. Meet the following requirements:

 a. Anchor Bolts.
 1) Use full-length galvanized bolts.
 2) Comply with ASTM F 1554, Grade 55, S1 or Grade 105, S5 (724 MPa) as specified.
 3) Use Unified Coarse Thread Series Threads are to comply with ANSI/ASME B1.1 for UNC thread series, Class 2A tolerance.
 4) Use Class 2A tolerance.
 5) The end of each anchor bolt intended to project from the concrete is to be color coded in red to identify the grade.
 6) Do not bend or weld anchor bolts.

 b. Nuts.
 1) Comply with ASTM A 563, Grade DH.
 2) Use heavy hex.
3) Use ANSI/ASME B1.1 for UNC thread series, Class 2B tolerance.
3 4) Nuts may be over-tapped according to the allowance requirements of ASTM A 563.

c. Washers.
Comply with ASTM F 436 Type 1.

d. Galvanizing.
Galvanize entire anchor bolt assembly (anchor bolt, nuts and washers) according to the requirements of ASTM B 695, Class 55 Type 1 or ASTM F 2329 with zinc bath temperature limited to 850°F (455°C). Galvanize entire assembly by the same zinc-coating process, with no mixed processes in a lot of fastener assemblies.

Section 4188

4188, Traffic Control Devices.

Add the Article:

4188.05 Temporary LED Floodlighting Luminaires.
Furnish luminaires made for portable, mobile self contained, floodlights for temporary traffic control zones. Luminaires shall have IES LM-79-08 report from qualified independent laboratory verifying luminaire performance, including the following requirements:

- L70 @ 25°C of 70,000 hours.
- LED color temperature of 4,000 cct - 5,000 cct.
- LED light engines meet dust and moisture rating of IP-66.
- Designed and tested to comply with ANSI C136.31 2001 for 100,000 cycles at 3G acceleration for normal and bridge applications.
- Surge protection for LED driver and electronics - category C high (20kV, 10kA).
- Totally enclosed glass refractor lenses with type IV distribution.
- IES glare control rating of "full cut off".
- Minimum initial output rating of 7,200 lumens.
- Meets State of Iowa Energy Code requirements for LED roadway lighting (66 lm/W).
- Photocell controlled for dusk to dawn operation.
- Comply with Materials I.M. 488.06 for inspection and acceptance of Temporary LED Floodlighting Luminaires.
AGGREGATE GRADATION TABLE - ENGLISH

<table>
<thead>
<tr>
<th>Grad. No.</th>
<th>Section No.</th>
<th>Std. Sieve Sz.</th>
<th>Intended Use</th>
<th>1 1/2"</th>
<th>1.00"</th>
<th>3/4"</th>
<th>1/2"</th>
<th>3/8"</th>
<th>4</th>
<th>8</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4110, 4125, 4133, 4134</td>
<td>PCC FA, Cover Agg.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4112</td>
<td>PCC Intermediate</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4115 (57, 2-8), 4118</td>
<td>PCC CA</td>
<td>100</td>
<td>95-100</td>
<td>25-60</td>
<td>0-10</td>
<td>0-5</td>
<td>0-10</td>
<td>0-5</td>
<td>0-10</td>
<td>0-10</td>
<td>2, 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4115 (2-8)</td>
<td>PCC CA</td>
<td>100</td>
<td>50-100</td>
<td>30-100</td>
<td>20-75</td>
<td>5-55</td>
<td>0-10</td>
<td>0-5</td>
<td>0-10</td>
<td>0-10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4115 (67, 2-8)</td>
<td>PCC CA</td>
<td>100</td>
<td>90-100</td>
<td>20-55</td>
<td>0-10</td>
<td>0-5</td>
<td>0-10</td>
<td>0-10</td>
<td>0-10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4115.06 (Repair & Overlay)</td>
<td>PCC CA</td>
<td>100</td>
<td>97-100</td>
<td>40-90</td>
<td>0-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4117 (Class V)</td>
<td>PCC FA & CA</td>
<td>100</td>
<td></td>
<td>60-75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4117.03 (Class V)</td>
<td>Fine Limestone</td>
<td>100</td>
<td>90-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-30</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4119, 4120.02, 4120.03 (C gravel)</td>
<td>Granular Surface</td>
<td>100</td>
<td></td>
<td>50-80</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4119, 4120.02, 4120.04, 4120.05, 4120.07, (A, B Cr. St.)</td>
<td>Granular Surface & Shoulder</td>
<td>100</td>
<td>95-100</td>
<td>70-90</td>
<td>30-55</td>
<td>15-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-16</td>
</tr>
<tr>
<td>11</td>
<td>4119, 4120.02, 4120.04, 4120.05, 4120.07, (A, B Cr. St.)</td>
<td>Granular Surface & Shoulder</td>
<td>100</td>
<td>95-100</td>
<td>70-90</td>
<td>30-55</td>
<td>15-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-16</td>
</tr>
<tr>
<td>12a</td>
<td>4121 (Cr. St.)</td>
<td>Granular Subbase</td>
<td>100</td>
<td></td>
<td>5-25</td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>4121 (Cr. Gravel)</td>
<td>Granular Subbase</td>
<td>100</td>
<td></td>
<td>5-25</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4122.02 (Cr. St.)</td>
<td>Macadam St. Base</td>
<td></td>
<td>3" nominal maximum size screened over 3/4" or 1.00" screen.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4123</td>
<td>Modified Subbase</td>
<td>100</td>
<td>70-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4125 (1/2") Cr. Gr. or Cr. St.)</td>
<td>Cover Aggregate</td>
<td>100</td>
<td>97-100</td>
<td>40-90</td>
<td>0-30</td>
<td>0-15</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4125 (1/2") Scr. Gr.</td>
<td>Cover Aggregate</td>
<td>100</td>
<td>95-100</td>
<td>40-80</td>
<td>0-15</td>
<td>0-7</td>
<td>0-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4125 (3/8")</td>
<td>Cover Aggregate</td>
<td>100</td>
<td>90-100</td>
<td>10-55</td>
<td>0-20</td>
<td>0-7</td>
<td>0-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4124</td>
<td>Fine Slurry Mixture</td>
<td>100</td>
<td>85-100</td>
<td>40-95</td>
<td>20-60</td>
<td>14-35</td>
<td>10-25</td>
<td>5-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14-25</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4124 (Cr. St.)</td>
<td>Coarse Slurry Mixture</td>
<td>100</td>
<td>70-90</td>
<td>40-70</td>
<td>19-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-15</td>
<td></td>
</tr>
</tbody>
</table>

Replace the Aggregate Gradation Table - English.
Appendix

Replace the Aggregate Gradation Table- Metric:

<table>
<thead>
<tr>
<th>Grad. No.</th>
<th>Section No.</th>
<th>Intended Use</th>
<th>Std. Sieve Sz.</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4110, 4125, 4133, 4134</td>
<td>PCC FA, Cover Agg.</td>
<td>37.5mm</td>
<td>100 90-100 70-100 10-60 0-1.5 1</td>
</tr>
<tr>
<td>2</td>
<td>4112</td>
<td>PCC Intermediate</td>
<td>25mm</td>
<td>95-100 0-10</td>
</tr>
<tr>
<td>3</td>
<td>4115 (57, 2-8), 4118</td>
<td>PCC CA</td>
<td>19mm</td>
<td>100 95-100 25-60 0-10 0-5 0-1.5 2, 10</td>
</tr>
<tr>
<td>4</td>
<td>4115 (2-8)</td>
<td>PCC CA</td>
<td>12.5mm</td>
<td>100 50-100 30-100 20-75 5-55 0-10 0-5 0-1.5 10</td>
</tr>
<tr>
<td>5</td>
<td>4115 (67, 2-8)</td>
<td>PCC CA</td>
<td>9.5mm</td>
<td>100 90-100 20-55 0-10 0-5 0-1.5 10</td>
</tr>
<tr>
<td>6</td>
<td>4115.06 (Repair & Overlay)</td>
<td>PCC CA</td>
<td>4.75mm</td>
<td>100 97-100 40-90 0-30 0-1.5 10</td>
</tr>
<tr>
<td>7</td>
<td>4117 (Class V)</td>
<td>PCC FA & CA</td>
<td>2.36mm</td>
<td>80-92 60-75 20-40</td>
</tr>
</tbody>
</table>

Notes: (Gradations No. 2, 9, 15, 16, 17, 18, 24, 25, 26, 27, 28, 33, and 34 have been deleted)
1. For Section 4110, when the fine aggregate is sieved through the following numbered sieves - 4, 8, 16, 30, 50, and 100 - no more than 40% shall pass one sieve and be retained on the sieve with the next higher number.
2. When used in precast and prestressed concrete bridge beams, 100% shall pass the 1.00" sieve. When used for pipe bedding the No. 200 restriction does not apply.
3. When compaction of material is a specification requirement, the minimum percent passing the No. 200 sieve is 6%.
4. See specifications for combination of gravel and limestone.
5. Unwashed air dried samples of crushed composite material shall be tested for gradation compliance except that no gradation determination will be made for material passing the No. 200 sieve.
6. The gradation requirement for the No. 8 sieve shall be 5% to 20% when recycled material is supplied.
7. Gradation limitations for the 30, 50, and 100 sieves shall not apply when slurry mixture is applied by hand lutes, such as for slurry leveling.
8. Crushed stone shall have 100% passing the 1½" sieve.
9. Gradation limitations for the 30, 50, and 100 sieves shall not apply when slurry mixture is applied by hand lutes, such as for slurry leveling.
10. Maximum of 2.5% passing the No. 200 sieve allowed if generated from the parent material for crushed limestone or dolomite when documented production is 1% or less as determined by the Office of Materials.
11. When Producer gradation test results are used for acceptance, test results representing at least 90% of the material being produced shall be within the gradation limits and the average of all gradation results shall be within the gradation limits. Stockpiled material not meeting the criteria may, at the District Materials Engineer’s discretion, be resampled using Materials I.M. 301 procedures. One hundred percent of the stockpile quality control and verification test results shall be within the gradation limits.

AGGREGATE GRADATION TABLE - METRIC

<table>
<thead>
<tr>
<th>Grad. No.</th>
<th>Section No.</th>
<th>Intended Use</th>
<th>Std. Sieve Sz.</th>
<th>Percent Passing</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4110, 4125, 4133, 4134</td>
<td>PCC FA, Cover Agg.</td>
<td>37.5mm</td>
<td>100 90-100 70-100 10-60 0-1.5 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4112</td>
<td>PCC Intermediate</td>
<td>25mm</td>
<td>95-100 0-10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4115 (57, 2-8), 4118</td>
<td>PCC CA</td>
<td>19mm</td>
<td>100 95-100 25-60 0-10 0-5 0-1.5 2, 10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4115 (2-8)</td>
<td>PCC CA</td>
<td>12.5mm</td>
<td>100 50-100 30-100 20-75 5-55 0-10 0-5 0-1.5 10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4115 (67, 2-8)</td>
<td>PCC CA</td>
<td>9.5mm</td>
<td>100 90-100 20-55 0-10 0-5 0-1.5 10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4115.06 (Repair & Overlay)</td>
<td>PCC CA</td>
<td>4.75mm</td>
<td>100 97-100 40-90 0-30 0-1.5 10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4117 (Class V)</td>
<td>PCC FA & CA</td>
<td>2.36mm</td>
<td>80-92 60-75 20-40</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Section</td>
<td>Material Description</td>
<td>Gradation</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4117.03 (Class V)</td>
<td>Fine Limestone</td>
<td>100</td>
<td>90-100</td>
<td>0-30</td>
</tr>
<tr>
<td>10</td>
<td>4119, 4120.02, 4120.03 (Cr gravel)</td>
<td>Granular Surface</td>
<td>100</td>
<td>50-80</td>
<td>25-60</td>
</tr>
<tr>
<td>11</td>
<td>4119, 4120.02, 4120.04, 4120.05, 4120.07 (A, B Cr. St.)</td>
<td>Granular Surface & Shoulder</td>
<td>100</td>
<td>95-100</td>
<td>70-90</td>
</tr>
<tr>
<td>12a</td>
<td>4121 (Cr. St.)</td>
<td>Granular Subbase</td>
<td>100</td>
<td>40-80</td>
<td>5-25</td>
</tr>
<tr>
<td>12b</td>
<td>4121 (Cr. Gravel)</td>
<td>Granular Subbase</td>
<td>100</td>
<td>50-80</td>
<td>10-30</td>
</tr>
<tr>
<td>13</td>
<td>4122.02 (Cr. St.)</td>
<td>Macadam St. Base</td>
<td>75 mm nominal maximum size screened over 19 mm or 25 mm screen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4123</td>
<td>Modified Subbase</td>
<td>100</td>
<td>70-90</td>
<td>10-40</td>
</tr>
<tr>
<td>19</td>
<td>4125 (12.5mm Cr. or Cr. St.)</td>
<td>Cover Aggregate</td>
<td>100</td>
<td>97-100</td>
<td>40-90</td>
</tr>
<tr>
<td>20</td>
<td>4125 (12.5mm Scr. Gr.)</td>
<td>Cover Aggregate</td>
<td>100</td>
<td>95-100</td>
<td>40-80</td>
</tr>
<tr>
<td>21</td>
<td>4125 (9.5mm)</td>
<td>Cover Aggregate</td>
<td>100</td>
<td>90-100</td>
<td>10-55</td>
</tr>
<tr>
<td>22</td>
<td>4124.02B (Cr. St.)</td>
<td>Fine Slurry Mixture</td>
<td>100</td>
<td>85-100</td>
<td>40-95</td>
</tr>
<tr>
<td>23</td>
<td>4124.02B (Cr. St.)</td>
<td>Coarse Slurry Mixture</td>
<td>100</td>
<td>70-90</td>
<td>40-70</td>
</tr>
<tr>
<td>29</td>
<td>4131</td>
<td>Porous Backfill</td>
<td>100</td>
<td>95-100</td>
<td>50-100</td>
</tr>
<tr>
<td>30</td>
<td>4132.02 (Cr. St.)</td>
<td>Special Backfill</td>
<td>100</td>
<td>70-90</td>
<td>40-70</td>
</tr>
<tr>
<td>31</td>
<td>4132.03 (Gravel)</td>
<td>Special Backfill</td>
<td>100</td>
<td>95-100</td>
<td>50-100</td>
</tr>
<tr>
<td>32</td>
<td>4133 (Sand/Gr./Cr. St.)</td>
<td>Granular Backfill</td>
<td>100% passing the 76.2 mm screen</td>
<td>10-100</td>
<td>0-10</td>
</tr>
<tr>
<td>35</td>
<td>4134 (Natural Sand/Gr.)</td>
<td>Floodable Backfill</td>
<td>100</td>
<td>20-90</td>
<td>0-4</td>
</tr>
<tr>
<td>36</td>
<td>41334 (Natural Sand)</td>
<td>Floodable Backfill</td>
<td>100</td>
<td>20-90</td>
<td>0-2</td>
</tr>
</tbody>
</table>

Notes: (Gradations No. 2, 9, 15, 16, 17, 18, 24, 25, 26, 27, 28, 33, and 34 have been deleted)

1. For Section 4110, when the fine aggregate is sieved through the following numbered sieves - 4.75 mm, 2.36 mm, 1.18 mm, 600 μm, 300 μm, and 150 μm - not more than 40% shall pass one sieve and be retained on the sieve with the next higher number.
2. When used in precast and prestressed concrete bridge beams, 100% shall pass the 25 mm sieve. When used for pipe bedding the 75μm restriction does not apply.
3. When compaction of material is a specification requirement, the minimum percent passing the 75 μm sieve is 6%.
4. See specifications for combination of gravel and limestone.
5. Unwashed air dried samples of crushed composite material shall be tested for gradation compliance except that no gradation determination will be made for material passing the 75 μm sieve.
6. The gradation requirement for the 2.36 mm sieve shall be 5% to 20% when recycled material is supplied.
7. For Section 4121 gravel, one fractured face on 30% or more of the particles retained on the 9.5 mm sieve. For Section 4123 gravel, one fractured face on 75% or more of the particles retained on the 9.5 mm sieve.
8. Crushed stone shall have 100% passing the 37.5 mm sieve.
9. Gradation limitations for the (600 μm, 300 μm, and 150 μm) sieves shall not apply when slurry mixture is applied by hand lutes such as for slurry leveling.
10. Maximum of 2.5% passing the 75 μm sieve allowed if generated from the parent material for crushed limestone or dolomite when documented production is 1% or less as determined by the Office of Materials.
11. When Producer gradation test results are used for acceptance, test results representing at least 90% of the material being produced shall be within the gradation limits and the average of all gradation results shall be within the gradations limits. Stockpiled material not meeting the criteria may, at the District Materials Engineer’s discretion, be resampled using Materials I.M. 301 procedures. One hundred percent of the stockpile quality control and verification test results shall be within the gradation limits.