THE STANDARD SPECIFICATIONS, SERIES 2012, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE SPECIAL PROVISIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

120049.01 DESCRIPTION.

A. Scope.
The work shall consist of detailing, furnishing, installing, monitoring and testing of ground improvements using rigid inclusion to the lines and grades designated on the project drawings and as specified herein. The installation of the rigid inclusion shall also include the removal and disposal of excavation spoils as a result of the installation process of the rigid inclusions. The excavated material is all assumed to be unsuitable and shall either be wasted or used in accordance with the Standard Specifications for unsuitable soils. The cost of installation of the rigid inclusions shall include the cost of hauling, stockpiling and disposal, of the excavated material.

B. List of Approved Rigid Inclusion Types and Vendor Information.

1. Controlled Modulus Column (CMC) by Menard (Phone: 1 800 326 6015) or their affiliate Nicholson Construction (Phone 1-800-388-2340).

3. Vibro Concrete Columns (VCC) by Hayward Baker (Phone: 1-800-456-6548).

5. Rigid Inclusions (RI) by Hayward Baker (Phone: 1-800-456-6548).

6. Geo-Concrete Columns (GCC) by Tensar- GEOPIER FOUNDATIONS (Phone 1-800-371-7470).

C. References.
The publications listed below form a part of this specification to the extent referenced. The publications are referred to by the basic designation only.

 e. ASTM D5261-10 Standard Method for Measuring Mass per Unit Area of Geotextiles

2. Geosynthetic Research Institute (GRI).
 GRI GT7-92 Standard Practice for Determination of Long-Term Design Strength of Geotextiles.

D. Definitions.

1. Rigid Inclusions: Rigid inclusions may consist of CMC, APGD, VCC, RI, GCC, or ORTD. The purpose of the rigid inclusions is to provide ground improvement and support for highway embankment fill.

2. Test (Demonstration) Rigid Inclusion: Test (Demonstration) Rigid Inclusion is a rigid inclusion that is installed at non-production rigid inclusion locations. These test rigid inclusion will be installed as demonstration to verify the installation technique, to assist in selecting location of load tests, develop installation criteria, and identify installation sequence. The rigid inclusions that will be selected for static load tests shall either be installed prior to production of rigid inclusion as verification load test, or during production installation to proof load test the rigid inclusions. Rigid inclusions installed prior to production rigid inclusion are to allow for selection, performance and evaluation of static load tests as well as developing of the installation criteria by the Engineer.

3. Load Transfer Pad: A load transfer pad will be constructed at the top of the rigid inclusions. The transfer pad shall consist of compacted granular fill with layers of high strength geotextile reinforcement as shown on the plans. The purpose of the pad is to transfer the majority of the embankment loads to the rigid inclusions, thereby providing adequate support above and between the rigid inclusions.

4. Monitoring for Strain Gauges on Rigid Inclusions during load test: The monitoring shall consist of monitoring the strain gauges during load testing of the rigid inclusions prior to construction of production rigid inclusions.

 After monitoring the strain gauges during load tests, the strain gauges cables or wires shall be routed through a buried schedule 80 PVC pipe and shall be connected to the real time monitoring system to be monitored during placement of embankment and delay period as defined in the Special Provisions for Instrumentation. Strain gauges shall be compatible with the real time monitoring system. The readings shall consist of real time monitoring with daily frequency and available online to the engineer.

5. Any strain gauge that malfunctions or becomes inoperable or unreadable during the load test shall be replaced including re-performing the load test by the contractor at no additional cost to the Iowa DOT.
6. Additional special provisions for instrumentation related to the grading works are included in the contract documents.

E. Subsurface Conditions.

1. Borings completed within the limits of the project encountered varying thicknesses of soft to medium stiff alluvial silt and clay. The explorations typically encountered medium dense to very dense alluvial sand and gravel with silt and clay below elevations shown in the plans.

2. Groundwater at the time of boring drilling was recorded between approximately 4 and 10 feet below the natural ground at the time of drilling, which was performed in November and December of 2010. It is anticipated that the groundwater level will rise during prolonged periods of precipitation or flooding, and perched groundwater may be present. For the purpose of installation, assume that the ground water is at the ground surface and make all necessary preparation to complete the installation under this condition at no additional cost to Iowa DOT.

3. Installation of the rigid inclusions to the minimum tip elevation will typically require penetration in the ±12 inch thick compacted granular fill layer that will be constructed at the ground surface to serve as a working pad and load transfer pad. Wide spread obstructions due to nested deposits of construction debris or wood are not anticipated.

F. Submittals.

1. Provide vibration study including estimated peak particle velocity, frequency, and its impact on fresh and curing concrete as it relates to the distance between the columns that can be installed successively without damaging the newly completed rigid inclusion during concrete or grout curing. This is required to establish realistic sequence of construction, ensure the integrity of the completed rigid inclusion(s), and that work can be completed successfully within schedule. The vibration study must be developed by well qualified vibration specialist, who has developed at least three similar studies within the past 7 years. Without such study, any of the techniques listed in Article 120049.01, B that are using impact or vibratory energy to advance the tool used to install the rigid inclusions cannot be accepted. If the technique is not using vibratory or impact energy, then a certification will need to be provided by the supplier that states that no such techniques are used in the installation and therefore the vibration study is not required.

2. For rigid inclusion installation techniques that utilize vibration, a minimum distance equal to three times the spacing or 8 hour time duration is required prior to installing adjacent rigid inclusions. If the vibration study referenced in Article 120049.01, F, 1, indicates larger spacing or greater time is needed, then such requirements shall be followed. Mobilize adequate number of rigs and utilize adequate work shifts to meet the schedule and special provision requirements.

3. The rigid inclusion equipment must be equipped with installation monitoring capabilities include the following as a minimum: a) applied torque or applied vibration amplitude, b) applied static down pressure and c) advance rate foot per minute.

4. Shop drawings that include spacing, diameter, installation procedure and sequence of construction with sufficient details including transitions areas, planned cut off and tip elevations, material, proposed equipment, and mix design. The design shall conform to the criteria in Subsection G of this Article.

5. Install 80 test (demonstration) rigid inclusions at non-production locations throughout the site to select the locations of the rigid inclusions that will be load tested and to be used in the development of the production installation criteria. These test (demonstration) rigid inclusions
shall be included before the load tests and before installation of production rigid inclusions. The demonstration rigid inclusion shall be paid at the same unit rate as the production rigid inclusion and no separate mobilization or additional cost shall be borne by Iowa DOT.

6. Submit a load testing program to verify the design in accordance with the requirements of this special provision. The submittal shall include the following:
 a. The load test program shall be performed prior and during production of rigid inclusions.
 b. The rigid inclusion production shall only start upon completion of four load tests and after the Engineer issues the final tip elevation, installation criteria, and spacing of the rigid inclusions.
 c. A total of eight single load tests shall be performed on rigid inclusions in accordance with ASTM D 1143 four of which shall be performed as verification load tests prior to the start of the production rigid inclusion to maximum load test of 300% of the design load. The remaining four load tests shall be proof load tests that will be conducted during the production rigid inclusion installation at locations and times and locations selected by the engineer to maximum load test of 150% of design load. The location of the test rigid inclusions will be selected by the Engineer with input from the Contractor and depending on the work and traffic control sequence. The Contractor shall accommodate in his schedule the performance of the eight load tests, evaluation time, and issuance of installation criteria by the Engineer.
 d. The design load shall meet or exceed the values shown for the approved techniques in Article 120049.01, G, 1, a.
 e. Submit design calculations for the load test reaction piles including diameter, type, reinforcement, depth as well as the reaction frame and beams. All details and supporting calculations shall be submitted for review by the Engineer. Design the reaction piles and frame for minimum two times the maximum test load. All shop drawings and supporting shop drawings calculations shall be signed and sealed by a Professional Engineer registered in the State of Iowa.
 f. At least 7 days prior to performing the load testing, submit calibration records for load cells, hydraulic jacks, pumps and pressure gauges.
 g. Submit a complete load test report within 3 days of completion of each test. The Engineer shall evaluate the results of the load tests and within 14 days from the receipt of the last load test report, shall issue the final tip elevations and planned spacing for the production rigid inclusions.
 h. The test rigid inclusions shall be instrumented with five levels of strain gauges; the strain gauges shall be Geokon GK-401 model or approved equivalent. The strain gauges shall be compatible with the real time monitoring system. The test rigid inclusions shall include a rebar to facilitate installation of the strain gauges. Preliminary strain gauges level elevations are provided in the Table 120049-1. Strain Gauges final elevation shall be adjusted by the Engineer on site based on the confirmation borings and length of the rigid inclusion.

<table>
<thead>
<tr>
<th>Approximate Depth (feet)</th>
<th>Approximate Elevation (feet)*</th>
<th>Sub-surface Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>972.0</td>
<td>Medium Stiff to Stiff Fat Clay</td>
</tr>
<tr>
<td>14.0</td>
<td>964.0</td>
<td>Very Soft to Soft Fat Clay</td>
</tr>
<tr>
<td>24.0</td>
<td>954.0</td>
<td>Very Soft to Soft Fat Clay</td>
</tr>
<tr>
<td>30.0</td>
<td>940.0</td>
<td>Loose to Medium Dense Sand/Silty Sand</td>
</tr>
<tr>
<td>40.0</td>
<td>938.0</td>
<td>Medium Dense Sand/Silty Sand</td>
</tr>
</tbody>
</table>

 * Approximate elevations for strain gauges are based on an approximate ground surface elevation of 978 feet.
 i. The Engineer shall develop production rigid inclusion installation criteria within 14 calendar days of the receipt of the last load test report of the first three preproduction load tests.
7. Shop Drawings: Furnish shop drawings and any supporting calculations at least 15 days prior to start of the installation of the production rigid inclusions. Each rigid inclusion shall receive a reference number, which will be indicated on the shop drawings. The shop drawing submittal shall also show cutoff elevations, typical sections and detail drawings as required.

8. Submit as-built plans for the installed rigid inclusions with the transfer pad based on actual locations and tip elevations. The surveyed locations shall be sealed and signed by a licensed surveyor and tip elevations shall be certified by the Contractor’s Professional Engineer registered in the State of Iowa.

9. Submit rigid inclusion installation records as specified in Article 120049.03, G, 2, b. Installation records shall include all recordable information including applied torque or applied vibration amplitude, applied static down pressure and advance rate foot per minute.

10. Work Plan: Submit to the Engineer for review, details of the equipment, sequence, and method of installation. The submittal should include a detailed narrative of the Quality Control Plan and how the work plan will comply with all requirements of the Project Safety Plan.

11. Materials: Provide documentation for all imported materials including pertinent laboratory test results prior to delivery on site.
 a. Granular Material for use in the load transfer pad: Provide the material source and results of recent gradation testing. Deliver a representative 5 gallon bucket sample of the product to the Engineer a minimum 10 days prior to delivery on site. This is not required if the Contractor intends to use granular material from the Optional Iowa DOT Borrow 32 as specified in Article 120049.02, A, 1.
 b. Geotextile for use in the load transfer pad: Provide the manufacturer’s specifications and material source. Deliver samples of the product to the Engineer a minimum of 10 days prior to delivery on site.

12. Qualifications: Documentation of the Contractor’s qualifications shall show that he/she has been engaged in successful design and installation of deep ground improvements for at least five years, and designed and constructed a minimum of five similar projects in similar scope utilizing the deep ground improvement method proposed for the subject project. A list of previous projects including name, description, relative size and contact person with phone number shall be provided. Resumes of the Contractor’s site superintendent and/or foreman shall also be provided. Qualifications of the firm that will be performing the pile integrity tests shall also be provided.

G. Design and Performance Criteria.

1. Installation Criteria: The Contractor shall be responsible for the shop drawings of the deep ground improvement system, with the following constraints:
 a. The rigid inclusions may consist of CMC, APGD, VCC, RI, GCC, or ORTD. No other substitute shall be accepted. The design shall conform to the requirements summarized in the contract documents.
 b. The load transfer pad shall be as shown on the plan documents and as specified herein.

2. Design Criteria: The Contractor shall be responsible for the design of the single load tests reaction frames and reaction piles.

120049.02 MATERIALS.

A. Load Transfer Pad.

1. The granular material used to construct the load transfer pad shall generally conform to the requirements of Section 4133 of the Standard Specifications with less than 5% fines.
2. The granular material for the load transfer pad shall be compacted with moisture control in accordance with the Standard Specifications.

3. High Strength Geotextile Reinforcement: Shall conform to the following requirements:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass/Unit Area</td>
<td>22 oz/sq.yd</td>
<td>ASTM D5261</td>
</tr>
<tr>
<td>Tensile Strength (both directions)</td>
<td>1142 lb/in</td>
<td>ASTM D4595</td>
</tr>
<tr>
<td>Tensile Strength at 5%</td>
<td>514 lb/in</td>
<td>ASTM D4595</td>
</tr>
<tr>
<td>Elongation at Break</td>
<td>10%</td>
<td>ASTM D4595</td>
</tr>
<tr>
<td>Apparent Opening Size</td>
<td>No. 40 US Sieve</td>
<td>ASTM D4751</td>
</tr>
<tr>
<td>Long-Term Design Strength (Sand)</td>
<td>490 lb/in</td>
<td>GRI-GT7</td>
</tr>
</tbody>
</table>

B. Grout.
For CMC, RI, APGD, or ORTD, meet the following grout requirements.

1. Portland Cement.
 Shall conform to requirements of Article 4101.01, A of the Standard Specifications
 a. Type I or Type II.
 b. Cement shall be from an approved source per Materials I.M. 401. If the brand or type of cement is changed during the course of the project, additional grout mix tests shall be conducted to ensure consistency of quality and performance.

2. Fly Ash shall meet requirements of Section 4108 of the Standard Specifications.

3. Sand shall meet the requirements of Section 4110 of the Standard Specifications.

4. Water Reducer shall meet the requirements Materials I.M. 403

5. Fluidifier.
 • Specrete-IP Incorporated; Intrusion-Aid SCX.
 • Specrete-IP Incorporated; Intrusion-Aid FG.
 • Grace Concrete Products; WRDA 35.
 • Grace Concrete Products; ZYLA 640.
 b. Retardant.
 • Specrete-IP Incorporated; Flo-Aid XR.
 • Grace Concrete Products; Recover.

 Shall conform to requirements of Section 4102 of the Standard Specifications

7. Grout Mix.
 a. Proportion by weight to produce a grout capable of being satisfactorily pumped and of penetrating and filling all voids.
 b. Minimum Compressive Strength:
 • 4,000 psi at 28 days.
 • 2,000 psi at 7 days as required prior to pile integrity testing.
 d. Slump: 6 to 8 inches.
e. The grout mix shall be designed utilizing fluidifiers as needed to maintain the range of acceptable fluid consistency (flow cone rate) for a period of at least 2 hours.

8. A ready mix truck shall be supplied from an approved ready mix plant with certified plant inspection according to Articles 2001.20 and 2001.21 of the Standard Specifications and Materials I.M. 528. An Iowa DOT ticket per Materials I.M. 528 shall be prepared and provided to the Engineer.

C. Concrete for VCC or GCC Construction.

1. All materials, proportioning, air entraining, mixing, slump, and transporting of PCC shall be according to Section 2403 of the Standard Specifications, except as modified herein.

2. Water/cement ratio: not to exceed 0.45.

3. Use Class D PCC mixture with a slump of 6 inches ±1.5 inches.

4. Portland cement: meet the requirements of ASTM C 150 Type I / II and Section 4101 of the Standard Specifications.

5. Fly Ash shall meet requirements of Section 4108 of the Standard Specifications.

6. Sand shall meet the requirements of Section 4110 of the Standard Specifications.

7. Water Reducer shall meet the requirements of Materials I.M. 403.

9. Retarder is required according to Materials I.M. 403 to maintain workable concrete.

10. Do not use GGBFS.

11. Minimum Compressive Strength:
 • 4,000 psi at 28 days.
 • 2,000 psi at 7 days as required prior to pile integrity testing.

12. A ready mix truck shall be supplied from an approved ready mix plant with certified plant inspection according to Articles 2001.20 and 2001.21 of the Standard Specifications and Materials I.M. 528. An Iowa DOT ticket per Materials I.M. 528 shall be prepared and provided to the Engineer.
3. The equipment shall be of sufficient size and capacity, and be capable of installing rigid
inclusions to the minimum depths shown in the plans or the depth required by the design,
whichever is deeper.

4. The equipment shall be capable of installing rigid inclusions in the presence of very dense
granular soils and/or obstructions, where encountered.

C. Site Preparation.
Inspect the site prior to the start of operations to verify the deep ground improvements can be
constructed using the proposed equipment.

D. Rigid Inclusion Construction.

1. Provide adequate number of drilling rigs to meet the project schedule considering all facets of
the project including but not limited to preproduction load testing, waiting periods, integrity
testing, reporting, and preparing as-built plans.

2. Evaluate the site and subsurface conditions and assess any need for working platforms that
facilitate his installation. Such platforms or preparatory work, or stone needed is considered
part of the means and methods and no additional payment or time will be granted toward
such work.

3. Performance of Load Tests: Perform four test elements prior to the start of rigid inclusion
production. The load test results will be signed and sealed by the Contractor’s Professional
Engineer and submitted to the Engineer. No payment shall be made for load tests which were
unsatisfactorily performed as determined by the Contractor and/or the Engineer.

4. Layout and Tolerances.
 a. Surveying: Prior to installation of the rigid inclusions, each rigid inclusion location shall be
 surveyed by an licensed surveyor. Provide all survey layouts, maintain utility clearances
 and provide any required coordination with the Engineer and any other local, state, and
 federal agencies having jurisdiction, prior to the start of construction. The location of each
 rigid inclusion shall be marked using a numbered utility flag.
 b. Plan position: The center of the completed rigid inclusion shall be within 3 inches of the
 plan location.
 c. Verticality: The axis of the completed rigid inclusion shall not deviate more than 2% from
 vertical. The verticality of the mast of the rig shall be checked by the operator before start
 of the installation for each rigid inclusion. The operator shall indicate on the daily drilling
 log for each rigid inclusion that verticality was within tolerance by checking the
 appropriate box on the installation log.
 d. Diameter: The completed rigid inclusion diameter shall not deviate more than 10% from
 the plan diameter.

5. Rejection: Rigid inclusions improperly located or installed beyond the maximum allowable
tolerances or reported to be defective as a result of pile integrity testing, shall be abandoned
and replaced with new rigid inclusions unless the Contractor and the Contractor’s designer
propose a remedial measure which is acceptable to the Engineer, either of which will be done
at no additional cost to the Iowa DOT.

6. Schedule: Mobilize and maintain sufficient equipment, materials, and personnel to complete
the work in accordance with project milestones and shall coordinate operations with all other
aspects of the project.

7. Installation Sequence: Install the rigid inclusions in accordance with the sequence detailed in
the approved work plan. If adjacent rigid inclusions are observed to be influenced by the
installation of a neighboring rigid inclusion, the installation sequence shall be modified to
prevent disturbance of rigid inclusions. Any required modifications to the sequence, or mitigation of rigid inclusions deemed unusable due to disturbance, shall be completed at no additional cost to the Iowa DOT or extension in the project schedule.

8. Depth: Install the rigid inclusions through the first layer of the load transfer pad to the minimum tip elevation, or deeper as required to found the rigid inclusions in a suitable bearing stratum, as determined by the Engineer.

9. Obstructions: Subsurface obstructions may include but are not limited to boulders, timbers, concrete, bricks, utility lines, foundations, slabs, etc. that prevent rigid inclusions to be installed to the required depth. In the event that obstructions are encountered during installation of a rigid inclusion that cannot be penetrated with reasonable effort, one or more of the following procedures will be used:
 - Position the element a short distance not more 1.5 feet away from the original position.
 - Pre-drill the obstruction.
 - Install additional elements to bridge over the obstruction.
Any change made to the design or rigid inclusion layout because of obstructions shall be approved by the Engineer. Provide to the Engineer an as-built submittal no later than 7 calendar days after the modification has been performed on site. This submittal shall be signed and sealed by the Registered Professional Engineer responsible to the Contractor and having stamped the design submittals. All elements that are abandoned due to obstructions or equipment malfunction shall be completely backfilled with grout. Excavation or removal of defective element will not be permitted within the levee critical zone as defined on the plans. The cost for obstruction shall be compensated for per the unit cost per linear foot of rigid inclusion, no additional compensation or time shall be awarded to the contractor for delay, waiting, or moving between the obstruction location and the relocated position of the rigid inclusion.

10. Cut-off Elevation: Cutoff the rigid inclusions to the top elevation of the first layer of the load transfer pad, or slightly higher to allow any required trimming or removal of low strength material at the butt of the rigid inclusion. The cut-off elevation of each rigid inclusion shall be established with an accuracy of +/- 0.1 feet.

11. Protection of Rigid Inclusions: Perform excavation for the load transfer pad, rigid inclusion installation, and embankment construction in such a way to prevent the damage to the rigid inclusions or disturbance of the soil matrix between the rigid inclusions.

12. Load Testing: Following a cure time (if applicable) to achieve the design strength, perform axial load tests on selected rigid inclusions. At the test location, excavate to the bottom of the load transfer pad elevation. Perform the excavation, load test setup, load testing, and backfill the excavation, in a single shift.

E. Excavation.

1. Cure time: Embankment construction shall not begin in any area until the rigid inclusion design strength has been reached. If any rigid inclusion is broken or otherwise damaged during embankment construction, propose a remediation solution within 2 days and resume construction only if all parties are in agreement with the remediation solution and the remediation has taken place.

2. Load Test Evaluation: Excavation for the load transfer pad shall not begin until the results of the load testing program on rigid inclusions has been submitted and approved by the Engineer.

3. Excavation: The final excavation for the load transfer pad shall be made using an excavator equipped with a smooth-edged bucket to minimize disturbance to the in-situ soils. The prepared subgrade shall consist of in-situ soils compacted to moisture content within +/- 2%
of optimum moisture content. If compaction is not practical due to natural moisture water contents far above optimum and/or wet weather conditions, the in-situ soils shall be over excavated to a depth of 12 inches and replaced with compacted granular fill as defined in Article 120049.02, A, 1. Any organic-rich or otherwise unsuitable soils shall be removed and replaced with compacted granular fill.

4. Operations on earthwork shall be suspended at any time when satisfactory results cannot be obtained because of rain, freezing, or other unsatisfactory conditions in the field. Drag, blade, or slope the embankment to provide proper surface drainage. In wet weather conditions, dewater as required to prevent the accumulation of ponded water in excavations for embankment construction, and the earthwork should be done in sections to minimize the need for such dewatering.

5. Disposal of Excavation Spoils: Stockpile all spoil material, including any topsoil and spoils generated by rigid inclusion installation, at the locations designated on the soil erosion plan. Handling and disposal of spoils shall be performed at no additional cost to the Iowa DOT.

F. Load Transfer Pad Construction.

1. Prior to construction of the load transfer pad, the existing ground shall be excavated and stripped of topsoil and other unsuitable material as specified in Article 120049.03, E, 3.

2. Place and compact with moisture control the first layer of the granular fill for the load transfer pad until the layer is 1 foot in thickness. Install the rigid inclusions after the installation of the first 1 foot of the pad. Place the first layer of the geotextile on top of the granular fill layer and elements with appropriate overlap and then place the next lift of granular fill. Place the second layer of geotextile after the installation of an additional 3 feet of the pad. Continue this sequence until the required numbers of layers as shown in the plans are placed. The top of the completed load transfer pad shall be a minimum of 2 feet above the last layer of geotextile placed.

3. Any rutting or pumping of the load transfer pad that occurs during installation of the rigid inclusions should be measured and the Engineer notified. If practical, reroute construction traffic to avoid further damage to the underlying in-situ soils, or remove and replace the pumping material with compacted granular fill.

4. Following installation and curing of the rigid inclusions, proof-roll the first 1 foot of the load transfer pad using a fully loaded dump truck. Where deflections more than 1/4 inch are observed under the wheel loads of the dump truck, remove the fill, over excavate 12 inches per Article 120049.03, E, 3, and reconstruct the load transfer pad. The excavation shall be performed so as to avoid impacting the rigid inclusions.

5. Place geotextile layers at appropriate intervals to the dimensions shown on the plans, specified in Article 120049.03, F, 2; and overlapping in accordance with the manufacturer’s specifications and the Contractor’s Design Submittal.

G. Contractor Quality Control.

1. Field Quality Control.
The following describes the minimum inspection and testing required in the Contractor's Quality Control (CQC) Plan and Program for the work of this section and is for CQC only. The implementation of the Contractor Quality Control Program does not relieve the Contractor from the responsibility to provide the work in accordance with the contract documents, applicable codes, regulations, and governing authorities.
 a. The Contractor shall have an onsite field engineer to manage all of the QC activities on the project including pile integrity testing, grout sampling (if applicable) and other testing at frequencies defined in the Design Submittal and approved by the Engineer. Monitoring, recording of the data and evaluation of load tests, and inspection and recording of data for production rigid inclusion construction, subgrade preparation and the construction of the load transfer pad shall be done under the direct supervision of a Professional geotechnical Engineer registered in the State of Iowa on the staff of the Contractor or a sub-consultant to the Contractor. The geotechnical engineer shall have supervised a minimum of five similar deep ground improvement projects.

 b. Records:
 1) An accurate record shall be kept for all rigid inclusions as installed. The record shall indicate the rigid inclusion location, length, cut-off elevation, date and time of construction, applied torque or applied vibration amplitude, applied static down pressure, advance rate foot per minute and any other pertinent installation details as indicated in the Design Submittal and approved by the Engineer. Immediately report any unusual conditions encountered during installation. Any corrective measures shall also be recorded. Daily records shall be signed by the Contractor’s superintendent and by the inspector. A complete tabulation of all records pertaining to approved rigid inclusion installation shall be certified by the Contractor’s engineer and shall be delivered to the Engineer no later than 14 days after the completion of the rigid inclusion work. All testing and inspection documents shall be reviewed and approved by the Contractor’s engineer certifying the rigid inclusions and load transfer were installed based on the construction and installation criteria.

 2) Granular Fill: Perform a gradation sieve analysis at the beginning of the job and for every change in source and/or type of material. Perform proof-rolling of the top of the load transfer pad prior to and following completion of the rigid inclusion installation. The proof-rolling shall cover the entire work area, and the wheel pass spacing shall be equal to the axle length of the dump truck. All required testing will be completed to the satisfaction of the Engineer at no additional cost to the Iowa DOT.

 3) Concrete and Grout: Conduct strength testing of the concrete in accordance with ASTM C 39 and Articles 2001.20 & 2001.21 of the Standard Specifications and Materials I.M. 528. Furnish a sufficient quantity of molded and cured cylinders measuring 3 inches in diameter by 6 inches high for required strength tests on concrete. For testing grout, furnish a sufficient quantity of cubes with 2 inch sides. Provide molds, and a curing environment conforming to the requirements of ASTM C 39. At a minimum, prepare a set of four test cylinders or cubes for each 50 cubic yards of concrete or grout placed or a minimum of two sets of four cylinders or cubes each per day (whichever is greater). One cylinder or cube from each set shall be tested for strength at 1, 2, 7, and 28 days. Provide certified strength test results to the Engineer for acceptance. Submit the grout mix design intended for use on the project to the Engineer for review. Only the mix design approved by the Engineer shall be used. Any subsequent mix design changes will have to get additional approval from the Engineer prior to use on the project.

 4) Pile Integrity Testing: Pile Integrity Testing (PIT) shall be performed on all test elements and approximately up to 300 of the rigid inclusions. The PIT shall be performed in accordance with ASTM D5882 - 07 Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations. The production elements selected for the PIT shall be at the discretion of the Engineer based on daily records indicate likelihood of anomalies in the inclusions. The PIT shall be performed by a
firm qualified to do such testing. Documentation of the firm’s qualifications shall show that he/she has successfully performed PIT testing for at least 5 years, and for a minimum of five similar projects. A list of previous projects including name, description, relative size and contact person with phone number shall be provided. A report of the test results shall be provided to the Engineer within 48 hours of test completion.

5) Strain Gauges Readings: Take initial readings 24 hours after completing installation and testing of each strain gauge. For the Strain Gauges, readings shall consist of a minimum of two readings surveys per 24 hours using real time remote and automated monitoring operations for each strain gauge.

After monitoring the strain gauges during load tests, the strain gauges will continue to be monitored as defined in the Special Provision for Instrumentation.

120049.04 METHOD OF MEASUREMENT.

A. Installation of Rigid Inclusion will be measured from cut off elevation to tip elevation to the nearest vertical foot for payment in place at the locations shown on the plans, including test (demonstration) rigid inclusions. The measurement shall include performance of PIT testing at 300 production rigid test inclusions. PIT shall be performed for each location, including performance of the test, developing a report either for single location or multiple locations but no more than ten PIT testing shall be included in one report unless approved by the Engineer.

B. Load Test on Single Inclusions will be paid on a per test basis. Test rigid inclusions will include four verification load tests prior to production installation and four proof load tests after production installation. PIT testing will be performed for all load test rigid inclusions.

C. Construction of the load transfer pad will be measured for payment in place to the nearest cubic yard at the locations shown on the plans.

D. High Strength Geotextile shall be measured for payment in place to the nearest square yard at the locations shown on the plans.

120049.05 BASIS OF PAYMENT.

A. Payment for Rigid Inclusion will be made at the Unit Price Bid per linear vertical foot and will constitute full compensation for providing all labor, material, and equipment, including design, site preparation, test pile installation, production installation, handling and disposal of cuttings, and any associated inspection, PIT, or laboratory testing services.

B. Payment for Load Test on Single Inclusions will be made on a per test basis and will constitute full compensation for providing all labor, material and equipment and any associated installation, inspection, testing, and monitoring, including PIT and strain gauges.

C. Payment for construction of the load transfer pad, including granular fill, subgrade preparation and any associated inspection or laboratory testing, will be measured for payment in place to the nearest cubic yard at the locations shown on the plans and will be included in the payment for the Class 10 Excavation and Compaction with Moisture Control.

D. Payment for the High Strength Geotextile will be made at the Unit Price Bid per square yard and will constitute full compensation for providing all material, labor, equipment and any associated installation, inspection and testing, including any quantity needed for overlap.