QIOWADOT

SPECIAL PROVISIONS
FOR
TESTING AND QUALITY CONTROL

Linn County
HDP-100-1(73)--71-57

Effective Date
November 21, 2017

Abstract

THE STANDARD SPECIFICATIONS, SERIES 2015, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE SPECIAL PROVISIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

PART 1 GENERAL

1.1 - Section Includes

A. Testing and Quality Control

1.2 - Description of Work

A. Testing and Quality Control - This item includes the furnishing of material samples and testing of the Work as set forth in the contract documents. This includes, but is not limited to, samples and testing pertaining to pipe bedding, trench backfill, pipe leakage, turbidity and bacteriological tests, pipe deflection, pipe liners, asphalt density, asphalt mix composition, concrete strength, and pavement basecompaction.

1.3 - Special Requirements

A. Testing performed by the Contractor or by the Engineer indicating acceptable results does not relieve the Contractor of the responsibility to construct the Work in accordance with the contract documents or responsibility to correct any defects that are present.
B. The test results submitted by the Contractor must meet the minimum requirements as established by the contract documents. If test results do not indicate compliance with the contract documents, additional tests in the area following the Contractor's re-work will be provided to the Engineer at the Contractor's expense.
C. The Contractor shall give the Engineer 24 hours notice prior to performing assurance testing.

PART 2 PRODUCTS

2.1 - Water Main

A. Disinfection Agent - Chlorine

1. Meet requirements for
a. Calcium Hypochlorite Granules, per ANSI/AWWA B300, approximately 65\% available chlorine by weight.
b. Liquid Chlorine, per ANSI/AWWA B301, 100\% available chlorine.
c. Sodium Hypochlorite Solution, approximately 5% to 15% available chlorine by weight.
2. Chlorine containers must have AWWA stamp.

2.2 - Low Pressure Air Exfiltration Tests

A. Equipment used shall meet the following minimum requirements:

1. Pneumatic plugs shall have a sealing length equal to or greater than the diameter of the pipe to be inspected.
2. Pneumatic plugs shall resist internal test pressure without requiring external bracing or blocking.
3. All air used shall pass through a single control panel.
4. Three individual hoses shall be used for the following connections:
a. From control panel to pneumatic plugs for inflation.
b. From control panel to sealed line for introducing the low pressure air.
c. From sealed line to control panel for continually monitoring the air pressure rise in the sealed line.
5. Gauges for registering air pressure shall be clearly graduated in one-half pound increments.

2.3 - Sanitary and Storm Sewer Deflection Tests

A. Mandrel for deflection test shall be a 9 arm device, stamped for the appropriate ASTM Specification, size of pipe, and maximum allowable deflection from ASTM average inside diameter.
B. "Pin-type" sled device as manufactured by Quality Test Products, 4400 Wildwood Drive, Crystal Lake, IL 60014.
C. Electronic deflectometer.

PART 3 EXECUTION

3.1 - Testing and Quality Control - General

A. The Contractor shall be responsible to perform quality assurance testing in accordance with the contract documents. The intent of the testing is to provide an indication of the effectiveness of the means and methods being employed by the Contractor.
B. Samples shall be tested in a State Certified Laboratory.
C. For water main extensions or service lines 3 inch in diameter or larger that are connected to the City of Cedar Rapids Water Distribution System all valves shall be operated by Water Division personnel. All flushing and filling operations shall be managed and overseen by City of Cedar Rapids Distribution System inspectors and all samples shall be taken by City of Cedar Rapids Distribution System inspectors.

3.2 - Geotechnical Testing

A. A licensed civil Engineer with geotechnical experience shall certify the sampling and testing methods meet the requirements of the contract documents.
B. The following assurance testing shall be required as a minimum:

1. Trench backfill shall be tested for compaction. A minimum of three tests at varying depths shall be provided every 400 feet.
2. For moisture and density control of subgrade under paved areas, a minimum of one test every 100 feet per lane shall be provided.
C. The Engineer may select the locations for the test.
D. The Engineer may conduct assurance testing. The Contractor shall provide access and materials as may be required by the Engineer to conduct the desiredtesting.
E. The Contractor may choose to perform additional quality assurance testing over and above testing required by the contract documents. The Contractor shall submit proctor data and compaction tests for all testing performed. The results shall include horizontal and vertical location of the test, depth of the test, type of material tested, and corresponding proctor information, in-place density, moisture content, dry density and percent compaction.
F. The testing technician shall provide to the Engineer preliminary test results prior to leaving the Site. A copy of the signed field report shall be submitted to the Engineer within 48 hours of the test.
G. A certified written record of testing results shall be submitted to the Engineer prior to placement of pavement.
H. Compaction testing shall be in accordance with ASTM D698 unless noted otherwise in the contract documents.

3.3 - Subgrade Preparation Testing

A. In addition to the proof roll testing of this paragraph, the Contractor shall perform tests required by paragraph 3.2.
B. Following the completion of subgrade preparation and prior to the placement of granular subbase, the Contractor shall provide a loaded tandem dump truck, with a gross weight of 20 tons, for use in proof rolling the subgrade. The Contractor shall proof roll the subgrade area as directed by the Engineer. The subgrade shall be free of excessive rutting, pumping and unstable areas.
C. Any defective areas found during the proof rolling operation, as determined by the Engineer, shall be corrected as set forth in subgrade stabilization.

3.4 - Water Main Testing

A. Tests shall be performed by the Contractor.
B. Scheduling

1. Notify Engineer one working day in advance of testing or disinfection operations to coordinate the operations.
2. Engineer or designated representative must be in attendance during testing or disinfection.
C. Regulatory Requirements: Comply with requirements of Iowa Environmental Protection Commission (IAC 567, Chapters 40 thru 43) and 'Recommended Standards for Water Works (Ten States).
Sequence of Operation
3. Perform operations in the following sequence:
a. Remove any debris from within pipe. Clean and swab out pipe if required.
b. Secure any unrestrained pipe ends against uncontrolled movement.
c. Fill the main and add chlorine.
d. Wait 24 hours to check the chlorine content. Must be over $25 \mathrm{mg} / \mathrm{L}$.
e. Dispose of highly chlorinated water.
f. Wait 24 hours for bacteriological testing and turbidity testing.
g. Perform pressure and leak testing.
h. Make taps after passing all tests.
4. Successfully complete each operation before commencing to the next operation.
5. Jurisdiction will provide reasonable quantities of water for flushing and testing.
D. Method of Chlorination
6. Chlorination will be accomplished in accordance with AWWA C651. The preferred method from that standard is the method utilizing calcium hypochlorite (HTH) granules placed in the water main as it is being installed and then filling the main with potable water when installation is complete.
7. To utilize this method, pipes and appurtenances must be kept clean and dry during construction.
8. During construction, HTH shall be placed at the upstream end of the first section of pipe, at the upstream end of the first pipe of each branch main and at approximately 60 -foot intervals in all new pipe as they are laid. Quantities of HTH granules used shall be as shown in Table 1 for various pipe sizes.

Table 1. Ounces of Calcium Hypochlorite Granules to Be Placed at Beginning of Main, Beginning of Each Branch, and at Each 60-Foot Interval of Pipe.											
Pipe Diameter (inches)	6	8	10	12	16	20	24	30	36	42	48
HTH Granules (oz.)	1	1.5	2.5	3.5	6	9	13	21	29	44	56

4. The quantities of calcium hypochlorite granules listed in Table 1 will result in initial chlorine concentrations of $45-55 \mathrm{mg} / \mathrm{L}$.
E. Filling and Initial Flushing
5. When installation is completed, the main shall be slowly filled by opening the inlet valve just enough turns to start the water running. Air release valves and fire hydrants shall be opened to release air pockets at the high points of the line. Check all interconnecting valves to the existing system to be sure they are completely closed. Contractor personnel are permitted to operate valves and hydrants internal to the new main only. Valves which separate the existing City distribution system from the new main are to be operated only by the Jurisdictional Water Department.
6. The chlorinated water shall remain in the pipe for at least 24 hours, during which time all valves and hydrants in the section treated shall be operated in order to disinfect the appurtenances. At the end of this 24-hour period, the disinfecting solution shall have a residual of not less than $25 \mathrm{mg} / \mathrm{L}$ as free chlorine.
7. After the completion of the 24 -hour period, the heavily chlorinated water shall be flushed from the main until the chlorine concentration is less than $4 \mathrm{mg} / \mathrm{L}$. A chlorine residual determination shall be made to ascertain that the chlorine concentration of the water in the new main is compatible with that in the City distribution system.
8. The Contractor shall furnish and install all hoses, equipment, and appurtenances necessary to direct the flushing water to the proper discharge point.
9. Highly chlorinated water shall be discharged to sanitary sewers. If sanitary sewers are not available in the area, the highly chlorinated water shall be trucked to a sanitary sewer, or neutralized by treating with one of the chemicals listed in Appendix B of AWWA C651. The rate of discharge to sanitary sewers shall be controlled to prevent surcharging the sewer. The Jurisdictional Sewer Department shall be contacted a minimum of 48 hours prior to discharge into the sanitary sewer.
F. Final Flushing
10. Once the chlorine content of the flushing water has declined to less than $4 \mathrm{mg} / \mathrm{L}$ as determined by the Jurisdictional Water Department, the water shall be directed to natural waterways or storm sewer intakes. The Contractor is responsible to direct the flushing water away from the Site in a safe and non-destructive manner. The Contractor shall continue flushing to remove debris and sediment from the new main until preliminary grab samples indicate turbidity has been reduced sufficiently to warrant taking samples for laboratory testing. In addition to the end of the new main, hydrants at intermediate points along the main and all blowoffs on branches shall be opened and flushed.
11. Where the water system consists of looped water mains, the Contractor shall develop a plan, subject to prior approval of the Engineer, for closing valves and flushing the loop to ensure that all parts of the loop are flushed completely.
12. The flushing velocity for mains 16 inches in diameter and smaller shall be 2.5 feet per second. For larger mains, flow shall be as required by the Jurisdictional Engineer. The rate of flow required to produce a velocity of 2.5 fps is shown in Table 2 along with required openings at 40 psi residual pressure to produce this flow.

Table 2. Required Openings to Flush Pipelines (40 psi residual pressure)

Pipe Size (inches)	Flow Required for 2.5 fps Velocity (gpm)	Orifice Size (inches)	Number	Hydrant Nozzle Size (inches)
4	100	$1-5 / 16$	1	$21 / 2$
6	220	$1-3 / 8$	1	$21 / 2$
8	390	$1-7 / 8$	1	$21 / 2$
10	610	$2-5 / 16$	1	$21 / 2$
12	880	$2-13 / 16$	1	$21 / 2$
16	1,565	$3-5 / 8$	2	$21 / 2$

4. With 40 psi residual pressure, one $21 / 2$ inch hydrant nozzle will discharge approximately 1000 gpm . A $41 / 2$ inch hydrant nozzle will discharge approximately 2500 gpm.

G. Sampling Procedure

1. Once preliminary samples indicate turbidity has been reduced sufficiently to warrant laboratory testing, samples shall be collected from blowoffs and hydrants at the end of the main, and at intermediate branches and hydrants. In the case of looped mains, valves shall be operated to insure samples are drawn from all parts of the new main. Samples shall be collected by Jurisdictional Water Department personnel in sterile bottles treated with sodium thiosulfate as required by Standard Methods and in accordance with AWWA C651. No hose shall be used in the collection of samples.
H. Special Conditions
2. If, during construction, trench water has entered the main, or if in the opinion of the Engineer, excessive quantities of dirt or debris have entered the main, bacteriological samples shall be taken at intervals of approximately 200 feet and shall be identified as to location. Samples shall be taken of water that has stood in the main for at least 16 hours after final flushing has been completed.
I. Turbidity and Bacteriological Testing
3. Samples shall be tested by the Department for turbidity and bacteriological quality in accordance with Standard Methods procedures. Turbidity shall be 1.0 ftu or less, and bacteriological tests shall show the absence of coliform organisms. A standard plate count may be required at the option of the Engineer.
4. If satisfactory turbidity and bacteriological test results are obtained from the initial disinfection process, no further disinfection is required and the Contractor may proceed with pressure testing of the main.
5. If the test results are not satisfactory, further flushing and testing of the main is required.

J. Redisinfection

1. If the initial disinfection fails to produce satisfactory bacteriological samples, the main shall be reflushed and resampled. If check samples show the presence of coliform organisms, then the main shall be rechlorinated by the continuous feed or slug method of chlorination until satisfactory results are obtained.

K. Pressure and Leak Testing

1. Isolate new piping from the existing watersystem.
2. Fill and flush all new piping with potable water. Ensure that all trapped air is removed.
3. Pressurize the new pipe to the test pressure at the highest point in the isolated system. Do not pressurize to more than 5 psi over the test pressure at the highest point in the isolated system.
4. Test the completed piping system at $11 / 2$ times the system working pressure or 150 psi, whichever is greater, for two hours.
5. Monitor the pressure in the line for a period of not less than two hours.
6. If at any time during the test the pressure drops to five psi below the test pressure, repressurize the pipe by pumping in potable water in sufficient quantity to bring the pressure back to the original testpressure.
7. Accurately measure the amount of water required to repressurize the system to the test pressure.

Table 3. Maximum Allowable Leakage Rate - 150 PSI Test												
Pipe Diameter (inches)	4	6	8	10	12	14	16	18	20	24	30	36
Maximum Allowable Leakage Rate (gal/hr per 1000 ft of pipe	0.33	0.50	0.66	0.83	0.99	1.16	1.32	1.49	1.66	1.99	2.48	2.98

NOTE: For unusual conditions or for waterlines shorter than 500 feet, consult Jurisdictional Engineer for allowable leakage rate. The following formula shall apply:

$$
\begin{aligned}
& L=\frac{(S)(D)(P)^{1 / 2}}{148,000} \\
& \text { 148,000 } \\
& \text { Where: } L=\text { leakage, allowable, in gallons } \\
& S=\text { length of pipe test section, in } \\
& \text { feet } \\
& D=\text { pipe diameter, in inches } \\
& P=\text { average test pressure, psig }
\end{aligned}
$$

8. If the average measured leakage per hour exceeds the maximum allowable leakage rate, repair and retest the water line.
9. Repair all visible leaks regardless of the amount of leakage.
L. Continuous Feed Method of Chlorination
10. Prepare a chlorine-water solution by dissolving granules of calcium hypochlorite in water in the proportion required for desired concentration. A 1\% chlorine solution requires approximately one pound of calcium hypochlorite in eight gallons of water.
11. The chlorine solution shall be applied to the water main with a pump suitable for pumping chlorine solutions and the head conditions at the point of application. The point of application shall be through a tap in the new main within 10 feet downstream of the valve to be used for turning water into the new pipe. Water from the existing distribution system shall be turned into the new pipe at a constant measured rate. The rate may be measured with a hydrant meter mounted on the discharge outlet. The chlorine solution shall be fed at a rate to produce a chlorine concentration in the pipe of at least $25 \mathrm{mg} / \mathrm{L}$ free chlorine. Table 4 shows the minimum rate of chlorine solution to feed to obtain a $25 \mathrm{mg} / \mathrm{L}$ chlorine residual at various water flow rates. Feed rates may need to be adjusted upward to compensate for ammonia content of the water.

Table 4. Minimum Feed Rates for 1\% Chlorine Solutions to Obtain $\mathbf{2 5 ~ m g / L}$ Chlorine Concentration	
Water Flow Rate in Water Main (gpm)	1.0% Chlorine Solution Feed Rate (gpm)
100	0.25
200	0.50
300	0.75
400 (max. for meter)	1.00

3. During application of the chlorine, valves shall be positioned to prevent the strong chlorine solution from contacting water in the existing distribution system. Chlorine application shall not cease until the main is completely filled with the chlorine solution. The chlorine solution shall remain in the main for at least 24 hours, during which period all valves and hydrants in the section being treated shall be operated in order to disinfect the appurtenances. At the end of this 24 hour period, the treated water in all parts of the main shall have a residual of not less than $10 \mathrm{mg} / \mathrm{L}$ free chlorine.
4. After the applicable retention period, the heavily chlorinated water shall be flushed from the main as specified above.
M. Disinfection Procedures When Cutting into or Repairing Existing Mains
5. The following procedures apply primarily when mains are wholly or partially dewatered. After the appropriate procedures have been completed, the main may be returned to service prior to completion of bacteriological testing in order to minimize the time customers are out of water.
6. Leaks or breaks repaired with clamping devices while the mains remain full of water under pressure present little danger of contamination and require nodisinfection.
a. Trench Treatment
i. When an old main is opened, either by accident or design, the excavation will likely be wet and may be badly contaminated from nearby sewers. Liberal quantities of hypochlorite applied to open trench areas will lessen the danger from such pollution. Tablets have the advantage in such a situation because they dissolve slowly and continue to release hypochlorite as water is pumped from the excavation.
b. Swabbing with Hypochlorite Solution
i. The interior of all pipe and fittings used in making the repair (particularly couplings and sleeves) shall be swabbed or sprayed with a one percent hypochlorite solution before they areinstalled.
c. Flushing
i. Thorough flushing is the most practical means of removing contamination introduced during repairs. If valve and hydrant locations permit, flushing toward the Work location from both directions is recommended. Flushing shall be started as soon as the repairs are completed and shall be continued until discolored water is eliminated.
N. Putting Water Main in Service
7. Obtain Engineer's approval to put the completed water system in service.

3.5 - Sanitary Sewer Tests

A. Tests shall be performed by the Contractor and at the Contractor's expense. Tests will be required for all sections between manholes, including services within the public right-ofway. Sanitary sewer services shall be in place prior to air tests. The Contractor shall furnish water and air for the tests. The Engineer shall determine the testmethod.
B. If, in the opinion of the Engineer, damage or excess infiltration exists in a new section of sewer, the Engineer may require the Contractor to televise all sewer sections being installed under the Contract. If damage or excess infiltration is found, televising shall be at

Contractor's expense. If damage or excess infiltration is not found, televising shall be at Owner's expense.
C. The sanitary sewer pipe, joints, and manholes shall be watertight to the extent that infiltration and exfiltration shall not exceed 100 gallons per mile of pipe per 24 hours per inch of pipe diameter during the maintenance period covered by this Contract. Where infiltration tests are not practical because of low groundwater conditions, as determined by the Engineer, the Contractor shall perform exfiltration tests. The allowable leakage is based on an average head of water, in the upstream manhole of the section of line being tested, two feet above the crown of the pipe.
D. The Engineer shall decide whether the Contractor shall use the infiltration, exfiltration, or air test on any length of sewer. If one test is not satisfactory, an additional test may be ordered. The Contractor shall be aware that all new sanitary sewer construction will be tested, and that such Work shall be considered incidental to the new sewer pipe.
E. For repair or replacement Projects, televised inspection may be allowed in lieu of infiltration, exfiltration, or air test, subject to Engineer's approval. Video camera shall be a pan-and-tilt 3- lux color camera.
F. Water Testing for Exfiltration

1. Exfiltration tests shall be performed as soon as the section of sewer together with its laterals connected thereto have been constructed between manholes, and the manholes have been completed. A suitable plug manufactured for that purpose shall be inserted in the lower manhole and the section filled with water to a head of 10 feet measured from the mid-diameter of the pipe.
2. The exfiltration test shall be conducted by the use of a standpipe assembly or a manhole.
3. If a standpipe assembly is used, a tapped plug is inserted and tightened in the inlet pipe of the downstream manhole to which the water supply connection is made for filling the pipe. The upper manhole is plugged and securely tightened for connection to the standpipe. The standpipe must be of sufficient length to handle 10 feet of water head. Water is then supplied into the line at the downstream manhole until the standpipe in the upstream manhole has been completely filled. By filling the line from the lower level, the air in the line is easily pushed ahead and finally dispelled through the standpipe at the upper end of the test section. The rate of drop in the standpipe may be quite rapid until all the air has been expelled. After the line is filled, it should be allowed to stand for five minutes, thus allowing the system to stabilize. After the stabilization period check the level in the standpipe and add water if necessary. At the time, the water level is brought to the required head (10 feet) the test should begin. The drop in the standpipe is to be measured and recorded over a 15 minute period. This result should be verified by a second 15 minute test following the same procedure. The measured drop in the standpipe can then be converted to leakage rates in terms of gallons per inch diameter per mile per day.
The chart below gives conversions for various sizes of pipe or manhole to equivalent capacity of gallons per inch drop.

Standpipe or Manhole Diameter (inches)	3	4	6	8	42	48
Gallons per Inch Drop in Sandpipe	0.031	0.54	0.122	0.218	6.00	7.83
NOTE: Use figures for 42 inch pipe for a 48 inch manhole and tapered top section.						

The actual rate of exfiltration can then be determined by the following procedure:
a. (A) Measured Drop $x(B)$ Equivalent gal/inch drop $=(C)$ gals $/ 15 \mathrm{~min}$
b. (C) $\times 4 \times 24=(\mathrm{D})$ gals/day
c. (D) $\times 5280 \mathrm{ft} / \mathrm{mile}=(\mathrm{F})$ gals/mile/day (F)
(G) Pipe Diameter $\quad=(\mathrm{H})$ gals/inch diameter/mile/day
4. If a manhole is to be used to conduct the test, the test procedure is exactly the same as for a standpipe; however, the test period should last at least 30 minutes. In determining the rate of exfiltration for manholes, adjust the " 4 " in line b. above as required to obtain gals/day (i.e., use 2 for a 30-minutetest).
Caution shall be exercised during the performance of exfiltration tests on sewer lines on steep grades. On exfiltration testing the maximum internal pressure should not exceed 25 feet of head or 10.84 psi. The water level, in such cases, will have to be adjusted in the standpipe.
5. Should any test on any section of pipeline disclose an exfiltration rate greater than 100 gallons per inch of pipe diameter per mile per day, the Contractor shall, at his own expense, locate and repair defective joints or pipes until the exfiltration is within specified allowances.
G. Low Pressure Air Exfiltration Tests

1. The sewer mains and/or laterals shall be tested for leakage by the use of low pressure air as specified hereinafter. Each section between manholes will be tested separately as the construction progresses, before trench surface restoration, and preferably with not more than four manhole runs constructed ahead of testing. Air testing of the sewer mains and/or laterals shall be allowed in lieu of water testing.
2. All pneumatic plugs shall be seal tested before being used in the actual test installation. One length of pipe shall be laid on the ground and sealed at both ends with the pneumatic plugs to be checked. Air shall be introduced into the plugs to 25 psig. The sealed pipe shall be pressurized to 5.0 psig. The plugs must hold against this pressure without having to be braced.
3. After a reach of pipe has been backfilled and cleaned, and the pneumatic plugs are checked by the above procedure, the plugs shall be placed in the line at each manhole and inflated to 25 psig. Low pressure air shall be introduced into this sealed line until the internal air pressure reaches 4.0 psig greater than the average back pressure of any groundwater that may be over the pipe. At least two minutes shall be allowed for the air pressure to stabilize.
4. After the stabilization period (3.5 psig minimum pressure in the pipe), the air hose from the control panel to the air supply shall be disconnected. The portion of line being tested shall be termed "Acceptable" if the time required in minutes for the pressure to decrease from 3.5 to 2.5 psig (greater than the average back pressure of any groundwater that may be over the pipe) shall not be less than the time shown for the given diameters in Table 5.
5. In areas where groundwater is known to exist, the Contractor shall install a $1 / 2$ inch diameter capped pipe nipple, approximately 10 inches long, through the manhole wall on top of one of the sewer lines entering the manhole. This shall be done at the time the sewer line is installed. Immediately prior to the performance of the line acceptance test, the ground water shall be determined by removing the pipe cap, blowing air through the pipe nipple into the ground so as to clear it, and then connecting a clear plastic tube to the nipple. The plastic tube shall be held vertically and a measurement of the height in feet of water over the invert of the pipe shall be taken after the water has stopped rising in this plastic tube. The height in feet shall be divided by 2.3 to establish the pounds of pressure that will be added to all readings. (For example, if the height of water is 11.5 feet, then the added pressure will be 5.0 psig. This increases the 3.5 psig to 8.5 psig , and the 2.5 psig to 7.5 psig. The allowable drop of one pound and the timing remain the same.)
6. The air test may be dangerous if, because of ignorance or carelessness, a line is improperly prepared. It is extremely important that the various plugs be installed and braced in such a way as to prevent blowouts. Inasmuch as a force of 250 pounds is exerted on an 8 inch plug by an internal pipe pressure of 5.0 psi , it should be realized
that sudden expulsion of a poorly installed plug or of a plug that is partially deflated before the pipe pressure is released can be dangerous.
7. As a safety precaution, pressurizing equipment should include a regulator set at perhaps 9.0 psi to avoid over pressurizing and damaging an otherwise acceptable line. No one shall be allowed in the manholes during testing.
8. The test requirements shall be met for every section (between manholes) of pipe; they are not a cumulative average over several sections of pipe.

Table 5. TIME REQUIRED FOR A 1.0 PSIG PRESSURE DROP FOR SIZE AND LENGTH OF PIPE INDICATED FOR Q = 0.0015 (Applicable to PVC, PVC Truss, DIP, and ESVCP Materials)

Pipe	Minimum Time (min:sec)	Length for Min. Time (ft)	Time for Longer Length (sec)	Specification Time for Length (L) Shown (min:sec)							
Diameter (in)				100 ft	150 ft	200 ft	250 ft	300 ft	350 ft	400 ft	450 ft
4	3:46	597	0.380L	3:46	3:46	3:46	3:46	3:46	3:46	3:46	3:46
6	5:40	398	0.854L	5:40	5:40	5:40	5:40	5:40	5:40	5:42	6:24
8	7:34	298	1.520L	7:34	7:34	7:34	7:34	7:36	8:52	10:08	11:24
10	9:26	239	2.374L	9:26	9:26	9:26	9:53	11:52	13:51	15:49	17:48
12	11:20	199	3.418L	11:20	11:20	11:24	14:15	17:05	19:56	22:47	25:38
15	14:10	159	5.342L	14:10	14:10	17:48	22:15	26:42	31:09	35:36	40:04
18	17:00	133	7.692L	17:00	19:13	25:38	32:03	38:27	44:52	51:16	57:41
21	19:50	114	10.470L	19:50	26:10	34:54	43:37	52:21	61:00	69:48	78:31
24	22:40	99	13.574L	22:47	34:11	45:34	56:56	58:22	79.46	91:10	102:33
27	25:30	88	17.306L	28:51	43:16	57:41	72:07	86:32	100:57	115:22	129:48
30	28:20	80	21.356L	35:37	53:25	71:13	89:02	105:50	124:38	142:26	150:15
33	31:10	72	25.852L	43:05	64:38	86:10	107:43	129:16	150:43	172:21	193:53
36	34:00	66	30.768L	51:17	75:55	102:34	128:12	153:50	179:29	205:07	230:46

H. Infiltration Tests (generally to be used for sanitary sewer sections submerged in groundwater)

1. Plug the upper section of line.
2. Rates of infiltration shall be determined by means of V-notch weirs or pipe spigot in an approved manner and at such times and locations as may be directed by the Engineer during the progress and at the completion of the Work. The Contractor shall provide and install weir plates or other materials required and at such times and locations as may be directed by the Engineer.
3. The maximum allowable amount of infiltration measured by test shall be at a rate of not greater than 100 gallons per inch of pipe diameter per mile per day.
4. Should any test on any section of pipeline disclose an infiltration rate greater than that permitted, the Contractor shall, at Contractor expense, locate and repair defective joints or pipes until infiltration is within specified allowances.
I. The deflection of PVC pipe, including truss pipe, shall be not greater than five percent of the diameter within one year of construction.
J. Deflection Testing for PVC and PVC Truss Pipe
5. The Contractor shall be required to measure such vertical interior deflection, no earlier than 30 days after installation, in the presence of the Engineer.
6. Maximum allowable vertical ring deflection of the inside pipe diameter shall be five percent.
7. Sewers must be cleaned before testing with a "Go-No GO" device. With the Pin-Type device the unit can be pulled through without the pin-gage installed to determine the gage in a deflected area.
8. Recommendations of the pipe and/or testing device manufacturers shall be followed in the deflection testing procedures. The testing device shall be hand-pulled by one person. Use of winches or other mechanical means is not permitted.
9. Sections of sewer line not passing the pipe deflection test shall be repaired or replaced by the Contractor at no additional cost.
10. Deflection mandrel diameters are as follows:

Pipe Diameter (inches)	Solid PVC ASTM D3034	Composite ASTM D2680	Solid ABS ASTM D2751	Corrugated PVC ASTM F949
	5%	5%	5%	5%
6	$5.59 "$	$5.46^{\prime \prime}$	5.75 "	$5.61 "$
8	$7.49^{\prime \prime}$	$7.36^{\prime \prime}$		$7.48^{\prime \prime}$
10	$9.37 "$	$9.26^{\prime \prime}$		$9.35^{\prime \prime}$
12		$11.16^{\prime \prime}$		
15		$14.01 "$		

K. Televising of Lines: Owner may televise any line at Owner's cost, except as provided in 3.05

3.6 - Storm Sewer Pipe Tests

A. All sewer pipe delivered to the construction Site shall be free from spalls and other defects. Any pipe found to have defects will be marked by the Inspector and must be removed from the Site.
B. Pipe furnished under Specifications shall be produced in a plant where both the manufacturing methods and quality of product have been approved by the Engineer prior to the date of award of Contract. No manufacturing process of sewer pipe shall be approved that will not consistently produce pipe having accurate dimensions, sound construction, acceptable joints, and meeting all the requirements in the Specifications.
C. The Contractor may be required to provide the Engineer with experience and performance records of sewer pipe manufactured in a similar manner. The Contractor shall also furnish the Engineer with sufficient evidence that all pipe proposed to be used in the Project will meet the requirements as outlined herein. This may require periodic testing by an acceptable testing laboratory in which all costs shall be paid by the Contractor.
D. The Engineer may require tests of specimens, not to exceed 5% of the quantity of pipe to be furnished, to prove the acceptability of the pipe.
E. At Engineer's request, the manufacturer shall furnish a test of suitable design and construction to be located near the plant and approved by the Engineer. Strength tests will be made only on pipe that have been manufactured in the manner proposed for the regular production of pipe, and which is of a quality the manufacturer proposes as the minimum at which pipe will be delivered. In the event of winter operations or with the temperature below 50° F., concrete pipe shall be cured either in a steam room or another suitable building, which meets the conditions for curing outlined herein.
F. Materials used in the manufacture of the sewer pipe complying with these Specifications will be accepted from any approved source of supply, except that the Engineer reserves the right to reject the entire output of any source from which it is impossible to secure a continuous supply of satisfactory materials, or a source where conditions are such that the use of unfit materials can be prevented only by extraordinary methods. The Engineer may require the taking and testing of preliminary samples of materials from any source before that source is approved for the delivery of materials on any Contract. The Contractor shall notify the Engineer as to the sources from which the Contractor expects to obtain materials in order that efficient arrangements can be made for their inspection.
G. Deflection Testing for PVC, HDPE, and Other Plastic Pipe

1. Where deemed necessary to monitor vertical deflection of plastic pipe in place the Contractor shall be required to measure such vertical interior deflection, in the presence of the Engineer.
2. Maximum allowable vertical ring deflection of the inside pipe diameter shall be 5%. Flexible plastic pipe with stiffness below 46 psi should require 5% maximum deflection testing 30 days or later after installation.
3. Sewers must be cleaned before testing with a "Go-No Go" device. With this Pin-Type device the unit can be pulled through without the pin-gage installed to determine the gage in a deflected area.
4. Recommendations of the pipe and/or testing device manufacturers shall be followed in the deflection testing procedures.
5. Sections of sewer line not passing the pipe deflection test shall be repaired or replaced by the Contractor at no additional cost.
H. Televising of Lines: The Contracting Authority may televise any line at Contracting Authority's cost.

3.7 - Cured-in-Place Pipe Liner Testing

A. Where feasible, testing sample shall be obtained from existing host pipe after installation of liner. If not feasible to sample from host pipe, liner test sample shall be installed and cured under same conditions as host pipe.

1. Tensile Strength
a. Test in accordance with ASTM D638.
b. Specimens tested shall be actual thickness of fabricated liner.
c. Do not machine specimen on surface.
d. Tensile strength shall be average of five specimens tested.
2. Flexural Strength and Modulus of Elasticity
a. Test in accordance with ASTM D790.
b. Specimens tested shall be actual thickness of fabricated liner.
c. Do not modify specimen in any way prior totesting.
d. Make test with smooth (inner) face in compression using five specimens.
