

SPECIAL PROVISIONS FOR DEWATERING

Pottawattamie County IMN-029-3(198)55--0E-78

Effective Date February 21, 2017

THE STANDARD SPECIFICATIONS, SERIES 2015, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE SPECIAL PROVISIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

150229.01 SCOPE OF WORK.

A. The work of this Section includes site dewatering necessary to lower and control groundwater levels and hydrostatic pressure to permit excavation and construction to be performed properly under dry conditions.

The groundwater shall be lowered and maintained to an absolute minimum of 3 feet or lower below the lowest excavation for the trench at all times during construction.

- **B.** Dewatering operations shall be adequate to assure the integrity of the finished project. The responsibility for conducting the dewatering operation in a manner which will protect adjacent structures and facilities rests solely with the Contractor. The cost of repairing any damage to adjacent structures and restoration of facilities shall be the responsibility of the Contractor.
- **C.** The Contractor shall bear the sole responsibility for the design, installation, operation, monitoring, removal, and abandonment of the dewatering system to comply with the requirements of this section and any applicable regulatory agencies. The Contractor shall be required to install additional dewatering equipment as may be required throughout the duration of the project to maintain groundwater level as described in Article 150229.01, A.
- D. The Contractor shall be responsible for submitting the applications and obtaining the required permits for the well construction including obtaining approval from the Council Bluffs Department of Public Health and the Pottawattamie County Office of Planning and Development. Copies of these guidelines are available from the respective agencies. The Contractor shall also be responsible for filing a Field Office Notification (FON) with the lowa Department of Natural Resources (IDNR) and developing a Well Water Pollution Prevention Plan for the discharge of wastewater from well construction activities per the IDNR NPDES General Permit #6. Copies of these guidelines and blank forms are available from the IDNR.

E. The Contracting Authority will notify the Contractor of any demands brought upon the project by the IDNR. The Contractor shall cooperate with the Contracting Authority in its efforts to comply with the site-specific guidelines provided by the IDNR, including the possibility of adjusting the dewatering system if the discharge exceeds limits imposed by the IDNR. The Contractor shall be responsible for the costs of sampling and testing required by the IDNR. The required sampling and testing parameters, frequencies, and locations are provided in Appendix B.

150229.02 SCHEDULE AND PLAN.

- **A.** Prior to commencement of construction, the Contractor shall submit a detailed dewatering plan as a supplement to the Emergency Action Plan. Contractor shall allow for 9 weeks review by the City of Council Bluffs and the USACE. Submittal shall include:
 - Plan location of dewatering wells and piezometers including the distance from the levee centerline.
 - **2.** Well and piezometer construction details including the diameter, depth, screen size, screen location, filter pack location and gradation, list of equipment and estimated pumping rates.
 - 3. Discharge pipe location, size, and details. If a pipe will be run up and over the levee, then a ramp shall be detailed to allow access to be maintained along the crest of the levee. Pipe discharge will not be allowed on the bank. A plan view location of the ramp and discharge pipe shall be included along with a cross section for any levee crossing.
 - 4. Abandonment plan for both the dewatering wells and piezometers. At a minimum, cement bentonite grout backfill shall be used the full depth of the well or piezometer. The top 3 feet of casing below final grade should be cutoff and a 6-inch concrete cap placed over the cutoff casing. The backfill above the concrete cap shall consist of compacted backfill of similar classification as the surrounding soils. If the well casings and screens are removed, then bentonite grout backfill shall be used the full depth of the well or piezometer. Any granular annulus material shall be removed above Elevation 963 feet prior to the placement of bentonite grout backfill. The top 3 feet shall consist of compacted backfill of similar classification as the surrounding soils.
- **B.** Attached for the Contractor's information as Appendix A to these contract documents is geotechnical information collected for the project. Fluctuations of the groundwater level can occur due to seasonal variations in the amount of rainfall, runoff, stage level of the Missouri River, and other factors not evident at the time the borings were completed. The geotechnical information was prepared for design purposes only and may not be adequate for a Contractor to evaluate construction conditions or design the dewatering system. The Contractor should independently interpret the soil/groundwater conditions taking into consideration their intended means and methods of construction. The Contractor may perform additional exploration at their own expense as necessary for design of the dewatering system.
- **C.** Due to possible variations of soil conditions and groundwater levels between soil boring locations, the Contractor shall be responsible for changing or modifying the dewatering system to accommodate such variations.
- **D.** At completion of construction, the Contractor shall submit copies of the drilling logs, finished well construction diagrams, and well abandonment diagrams for the dewatering wells and piezometers. Coordinates for each well and piezometer shall be included with the submittal.

150229.03 CONTROL AND OBSERVATION.

A. Adequate control shall be maintained by the Contractor to ensure that the stability of excavated slopes are not adversely affected by water, that erosion is controlled and that flooding of excavation or damage to structures does not occur. The Contractor is solely responsible for site excavation safety and compliance with OSHA regulations, in particular Standard 29 CFR, part number 1926.

The Engineer assumes no responsibility for site safety; the above information is provided for consideration by the Contractor only.

- **B.** The Contractor shall install piezometers to determine if the groundwater is at the acceptable absolute minimum level or lower as defined in Article 150229.01, A. The USACE Standard Operating Procedure for Piezometers is attached as Appendix C.
 - 1. Piezometers shall be installed at 50 foot intervals along the length of the pipe excavation.
 - **2.** The elevation of the top of the piezometer shall be verified by the surveyor.
 - 3. The Contractor shall monitor the groundwater at each active piezometer on a daily basis by measuring from the top of the piezometer to the groundwater surface and maintain the information in a log that shall be provided to the Engineer upon request. The Contractor shall notify the Engineer immediately if the groundwater surface exceeds the required 3 foot minimum clearance.
 - **4.** When observation of the groundwater level is complete, the piezometer shall be properly abandoned by a licensed well driller.

150229.04 INSPECTION.

- **A.** During or after any trench excavation, if Contractor observes sufficient soil instability present that may prevent proper installation of pipe bedding, pipelines, backfill or compaction, then Contractor shall call for inspection of conditions by the Engineer. The Engineer will inspect the conditions and determine if they are unacceptable for pipe installation.
- **B.** If after dewatering has lowered the groundwater level as specified and unacceptable trench conditions are found by the Engineer, then the Contractor may be directed to increase dewatering pumping rates or install additional wells to lower the groundwater to an acceptable level lower than that defined in Article 150229.01, A. If more extensive dewatering is required, the Contractor must achieve the revised acceptable groundwater level before construction may continue.

150229.05 **EXECUTION.**

- **A.** The Contractor shall furnish, install, and operate pumps, pipes, appliances, and equipment of sufficient capability to maintain the absolute minimum or lower groundwater elevation described in Article 150229.01, A within the trench excavation limits until the trench is backfilled, unless otherwise authorized by the Engineer. Installed equipment shall be operated continuously 24 hours a day, 7 days a week.
- **B.** The Contractor shall provide any temporary ground surface piping necessary to convey dewatering well water discharge to an acceptable storm sewer intake or waterway with the capacity to convey said discharge. Any rerouting of temporary ground surface piping, necessary to complete the project, will be provided by the Contractor. Discharge directly onto the ground surface shall not be allowed. The Contractor shall supply a clean tapping device at each well location to allow easy discharge water sampling by the Engineer.
- C. If the dewatering system shuts down or if pumping is suspended, the groundwater levels shall be lowered to the required level and verified by the Engineer before continuing any construction, including excavation or backfilling. The Engineer will also require any compaction, moisture and/or other soils testing, as determined necessary, of any backfill that is prematurely subjected to groundwater to verify said soils stability prior to placement of additional backfill. If said soils are determined to be unacceptable, the Contractor will be required to remove and replace damaged soils at their own expense.

If the Contractor cannot maintain the required groundwater levels, the Contractor will be required to backfill the excavation until the required groundwater levels are achieved.

- **D.** Dewatering shall at all times be conducted in such a manner as to preserve the undisturbed bearing capacity of subgrade soils at the bottom of the proposed excavation.
- E. Diversion ditches and dikes shall be used, where necessary, to prevent surface water from entering the excavation.

150229.06 METHOD OF MEASUREMENT AND BASIS OF PAYMENT.

The measurement and payment for all work covered under this section will be made at the contract lump sum price for Dewatering which shall constitute full compensation for obtaining any necessary permits and furnishing all equipment, labor, and materials to install, operate, maintain, monitor, and remove the dewatering system in accordance with all applicable regulations.

- **A.** No payment will be made to the Contractor until copies of the permits are supplied to the Contracting Authority.
- **B.** The cost of piezometers sufficient to meet the requirements stated in Article 150229.03, C shall be considered incidental to the lump sum pay item Dewatering. If any additional piezometers are requested by the Engineer or the Contracting Authority, the Contractor will be paid for said piezometers according to Article 11.09.03, B of the Standard Specifications. If the additional piezometers are needed as a direct result of the Contractor's actions or negligence they will be done at the sole expense of the Contractor.
- **C.** The cost of sampling and testing the discharge water according to Article 150229.01, E shall be considered incidental to the lump sum pay item Dewatering.
- **D.** The Contractor is required to submit a schedule of values to the Engineer to explain the breakdown of the lump sum price. This schedule of values will only be used to determine the appropriate amount of the lump sum to be attributed to each progress payment. The following list contains items that should be used, at a minimum, for the schedule of values:
 - Obtaining permits and complying with permit requirements.
 - Drilling the wells and piezometers.
 - Installing the pumps.
 - Installing power supply.
 - Discharge and/or manifold piping.
 - · Sampling and testing the discharge water.
 - Removal and abandonment.

APPENDIX A Geotechnical Information

WA	TER LEVEL	OBSERV	ATIONS		PROJECT		DRILL	ER	LOGO	SER		OB NO		G LO	_
	During Dri	lling	21.0'	28 th St. Sto	rm Sewer Pur	np Station	Gap	ра	Gorh	am	12	155.0	0	6/12/2	012
E	End of Dri	lling	N/E	THE STATE OF	LOCATION		DR	ILLING M	ETHO	0	DF	RILL RI	G I	BORING	NO
	Cave Ir	1	22.0'	28 th St. &	I-29, Council I	Bluffs, IA		3.25" H	SA		C	ME 55	5	B-1	
	94. 34	1112-24		100 000 0000	ATION OF BORI		TY	PE OF SU	RFAC	E	The state of the	EVATIO		DEPT	н
bo	oring backt	filled with	grout	see B	oring Locatio 1	Plan		gras	s		9	84.48		50'	
		31105	The second second	AL/MANUAL D	ESCRIPTION			_	LE DA	TA	_	BORAT	_		
OEP (ft.)	COLOR	MOIST.	CONSIST	SOIL	GEOLOGIC ORIGIN	REMAR	RKS	NO. & TYPE	SPT	REC (in.)	MC (%)	γ _d (pcf)	q _u (tsf)	Towns !	DE (ft.
-	brown	dry	hard	lean clay	fill	minor co	ncrete								
-	dark brown		soft	silt				U-1		12	8.5	102.0			-
1	brown	dry	loose	poorly	alluvium	iron and o									_
8-				graded sand w/ silt		stain	S	S-2	3 2		7.3			P200= 10.0% SP-SM	-
	gray	very moist	soft	fat clay		iron and c stain		S-3	2 1 3		42.0			LL=67 PI=42 CH	
				lean clay				U-4		8	38.9	83.1	0.27	LL=30 Pl=9 CL P200= 99.5%	- - - - -
		wet		Silt		iron and co		S-5	2 1 2		37.0			P200= 81.0% ML	- - - - 2
1		WCL													-
-			loose	poorly graded sand				S-6	2 1 6		21.4			P200= 5.0% SP	-

WA	TER LEVEL		ech Ind		PROJECT		DRILL	ER	LOGO	SER		OB NO		G LC	_
	During Dri		21.0'	28 th St. Sto	orm Sewer Pum		Gapp		Gorh	200000000000000000000000000000000000000	_	155.0	_	6/12/20	_
	End of Dri		N/E		LOCATION	HERVEY E		ILLING M		107-101-111	_	RILL RI	_	BORING	
	Cave Ir		22.0'	28 th St. &	I-29, Council B	lluffs, IA		3.25" H	IAS		C	ME 55	-	B-1 co	
					CATION OF BORIN		TYF	PE OF SU		E	EL	EVATIO	N	DEPT	н
bo	oring backt	illed with	grout	see B	oring Location i	Plan		gras	s		9	84.48		50'	
			VISU	AL/MANUAL D	ESCRIPTION			SAMP	LE DA	TA	LA	BORAT	ORY	DATA	
DEP (ft.)	COLOR	MOIST.	CONSIST	SOIL TYPE	GEOLOGIC ORIGIN	REMARKS	3	NO. & TYPE		REC (In.)	MC (%)	Y _d (pcf)	q _u (tsf)	LL/PI CLASS	DEI (ft.)
-	gray	wet	loose	poorly graded sand	alluvium										-
-			dense	poorly											-
0 -				graded sand w/ silt				S-7	5 12 21		19.3			P200= 8.7% SP-SM	- 3
			medium			_		S-8	13						
5			delise					3-6	13 15						- 3
				silty					_						
)				sand				S-9	8 9 11		25.2			P200= 13.6% SM	- 4
-								S-10	5 8 10						- - - 4
1 1 1															-
-			dense					S-11	6 12						-

WA	TER LEVEL	OBSERVA	ATIONS		PROJECT		DRIL	LER	LOGO	BER	J	OB NO		DATI	
[During Dri	lling	15.0'	28th St. Sto	rm Sewer Pun	np Station	Epl	ey	Gorh	am	_	155.0		6/12/20	012
	End of Dri		18.0'		LOCATION			RILLING M	ETHO	D	-	RILL RI	_	BORING	
	Cave Ir		23.7'	28 th St. &	I-29, Council E	Bluffs, IA		3.25" H	ISA	-	-	ME 5	_	B-2	
001110					ATION OF BORI		TY	PE OF SU		E	-	EVATIO		DEPT	-
bo	oring backt	filled with o	arout	see Bo	oring Location	Plan		gras			-	84.53	_	50'	
585				AL/MANUAL D				_	LE DA	TA	_	BORAT			
DEP	Jacob Nice	10000	exercity.			The Control			T						DE
ft.)	COLOR	MOIST.	CONSIST	ITPE	GEOLOGIC ORIGIN	REMAR		NO. & TYPE	SPT (bpf)	REC (In.)	MC (%)	Yd (pcf)	q _u (tsf)	LL/PI CLASS	(ft.
+	brown	moist	hard	lean clay	fill	minor g	ravel				_		- 277	-	-
	light brown	slightly moist	medium dense	graded	alluvium		2010	U-1		12					E
4	brown		lance	sand w/ clay											
-	brown		loose			minor iro	n and	288	2					P200=	-
		,				carbon		S-2	2		10.7			10.3%	-
									3					SP-SM	_
-															_
-								8							Ė
1	gray	very	soft	fat clay											_
+		moist						S-3	2		40.1			LL=95 PI=69	_
╝						le .			3		ARTESIA			СН	_ 1
+														P200=	2
+														99.2%	-,5
1															
4															-
\dashv			ili Ni												_
	grayish					S1			2		-//				
4	brown							S-4	2		42.3				_
4									2	-			_		_ 1
1											1				-
															-
-															_
+	.											I			-
1	gray	wet		lean clay											_
\dashv														LL=37	_
+								U-5		6	34.7	86.8	0.41	PI=16 CL	- 2
										$\neg \uparrow$				P200=	
-														98.2%	-
-															
-			medium	silty											
+			dense	sand					5		22.0			P200=	_
-								S-6	8 2		22.9	1		14.8% SM	. 2

WA	TER LEVEL	OBSERV	ATIONS		PROJECT		DRILL	ER	LOGG	ER	J	OB NO		DAT	E
	During Dri	lling	15.0'	28 th St. Ste	orm Sewer Pun	np Station	Eple	ev	Gorh	am	12	155.0	0	6/12/20	_
_	nd of Dri		18.0'		LOCATION			ILLING M			-	RILL RI		BORING	_
	Cave Ir	-	23.7'	28 th St. 8	I-29, Council E	Bluffs. IA		3.25" H			-	ME 55	_	B-2 cc	00.1-00.00
	A0000 0000 000 0000 A000 A000 A000 A00				CATION OF BORI		TY	PE OF SU		E	_	EVATIO		DEPT	
bo	oring backt	filled with	arout	see E	Soring Location	Plan		grass			+	84.53		50'	_
			-	Peril Commence of the State of	DESCRIPTION		NE S	SAMP		TA		BORAT	_		
EP		0.00	L. Calles	000	GEOLOGIC			NO. &	SPT	REC	MC				DE
ft.)	COLOR	MOIST.	CONSIST	TYPE	ORIGIN	REMARK	(S	TYPE	(bpf)	(ln.)	(%)	Yd (pcf)	(tsf)	LL/PI CLASS	(ft.
- 1 - 1 -	gray	wet	medium dense	silty sand	alluvium										-
, -			dense			carbon sta	ains	S-7	8 15 19						-
															-
-			loose	poorly graded											
5				sand				S-8	3 2 4		18.2			P200= 3.2% SP	-
-			medium dense			carbon sta	ains	S-9	4 11 14						-
-									14						
				poorly graded sand				_	5					Daca-	
-				w/ silt				S-10	5 10		19.8			P200= 6.5% SP-SM	- ,
															-
-						Bottom of boring		S-11	3 6 11						_

WA	TER LEVEL	OBSERV	ATIONS		PROJECT		DRILL	ER	LOGO	SER		OB NO		G LO	
]	During Dri	lling	24.0'	28 th St. Sto	rm Sewer Pur	mp Station	Eple	ev	Gorh	-	-	155.0	_	6/13/20	-
	End of Dri		17.1'		LOCATION	(46)		ILLING N			-	RILL RI		BORING	_
	Cave Ir		17.6'	28 th St. &	I-29, Council	Bluffs IA		3.25" H			+	ME 55		B-3	-
- 25					ATION OF BORI		TY	PE OF SU	Annual Inch		-	EVATIO	_	DEPT	_
bo	oring backt	filled with	arout		oring Location			gras			-	86.38	-	50'	
130				AL/MANUAL D		, run			LE DA	TA	_	BORAT	_		
EP		Parket.	THE REAL PROPERTY.	Charles and C							B0774/77/5*	of pursuit			DE
(ft.)	COLOR	MOIST.	CONSIST	TYPE	GEOLOGIC	REMAR		NO. & TYPE	SPT (bpf)	REC (In.)	MC (%)	γ _d (pcf)	q _u (tsf)	LL/PI CLASS	
	brown	dry	hard	lean clay	fill	minor cor	ncrete								-
-						roots	5	U-1		12					-
															E
+								-	3		-		-	P200=	-
			and the same of th					S-2	4		7.4			13.8%	-
\exists	brown	dry	loose	clayey sand	alluvium				3			_		sc	_
+															_
						6									
+	gray	very	soft	fat clay		iron and c	orhon		2						-
7		1110151				stains		S-3	2		35.6			LL=56 PI=32	Ŀ
7									2					СН	1
]							*								
=															-
4			firm			iron and ca		U-4		12	36.6	83.0	0.80	LL=69 PI=44	-
-						Stants	,	0-4		12	30.0	65.0	0.00	CH P200=	1
-														99.6%	-
-		wet													-
]	orownish		soft	lean clay					2	-				LL=34	•
+	gray brown							S-5	2 2		31.8			PI=11 CL	
-															-
-															51 5
+	gray		medium	silty					7			_		P200=	_
\neg	,		dense	sand				S-6	11		23.7	- 1		23.9%	-

WA	TER LEVEL		TIONS		PROJECT		DRILLE	R	LOGO	BER	_	OB NO	-	G LC	
	During Dri		24.0'	28 th St. Sto	orm Sewer Pum		Epley		Gorh	Children I	_	155.0	-	6/13/20	_
	End of Dri		17.1'		LOCATION	ALTO THE PER		LING M			+	RILL RI	_	BORING	
	Cave Ir	1	17.6'	28 th St. &	I-29, Council B	luffs, IA	3	3.25" H	AS		С	ME 55	_	B-3 co	_
10.11	48				CATION OF BORIN		TYPE	OF SU	RFAC	E	-	EVATIO		DEPT	
bo	oring backt	filled with	grout	see B	oring Location I	Plan	1404	grass	S		9	86.38		50'	
		To Bank	VISUA	AL/MANUAL D	DESCRIPTION			SAMP	LE DA	TA	LAI	BORAT	ORY I	DATA	
OEP (ft.)	COLOR	MOIST.	CONSIST	SOIL TYPE	GEOLOGIC ORIGIN	REMARKS		NO. & TYPE	SPT (bpf)	REC (ln.)	MC (%)	Y _d (pcf)	q _u (tsf)	LL/PI CLASS	(ft.)
-	gray	wet	medium dense	silty sand	alluvium										-
								S-7	5 11						
-					<u> </u>	_			13						3
				poorly graded sand				- VE	3				_	P200=	
-								S-8	5		16.6		-	3.6% SP	- - - -
								10 7	5					P200=	
-								S-9	11 13		17.3			3.5% SP	- - 4 -
									3						
-							+	S-10	7 10						- 4
									•						
-					Je	Bottom of boring @		S-11	8 10 10						- 5

Well Construction Diagram

DRILLING INFORMATION

Well No.: B-1

No Scale

PROJECT INFORMATION

PROJECT: 12155.00

SITE LOCATION: 28th St. Storm Sewer Pump Stn.

JOB NO.: S. 28th St. & I-29, Council Bluffs, IA

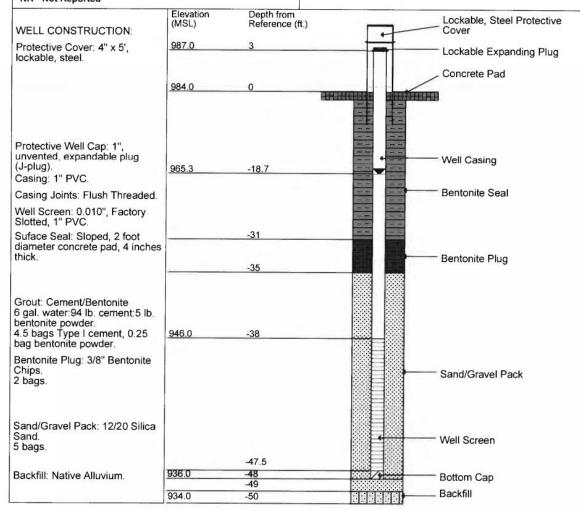
LOGGED BY: Gorham
DATE/TIME DRILLED: 6/12/12
DATE/TIME INSTALLED: 6/12/12

LATITUDE/NORTHING: N41.274818 - N/R LONGITUDE/EASTING: W95.889159 - N/R

■ - Static Water Level (From Ground Surface)

NR - Not Reported

DRILLING CO.: Thiele Geotech, Inc.

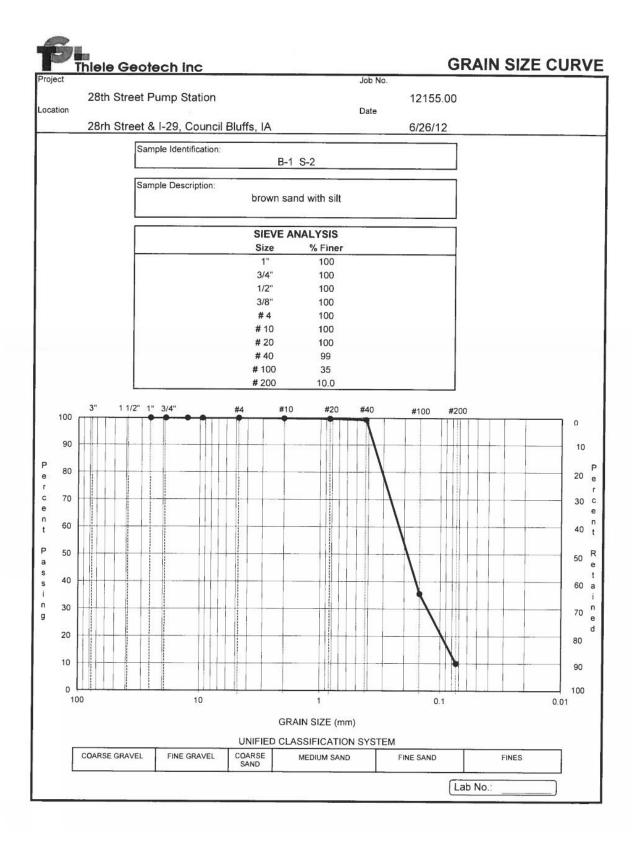

DRILLER: Gappa LICENSE NO.: 6537 RIG TYPE: CME 55HT

DRILLING METHOD: 3.25-inch ID HSA

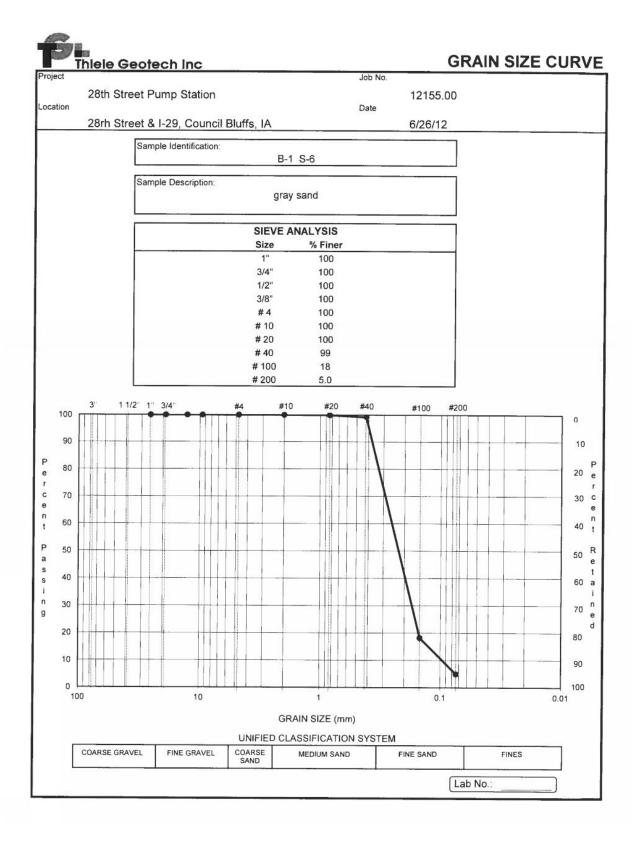
SAMPLING METHOD: 2 in. OD x 2.5' Split Barrel

BOREHOLE DIAMETER: 7.25 inches

DRILLING ADDITIVES:Water BOREHOLE CASING: None

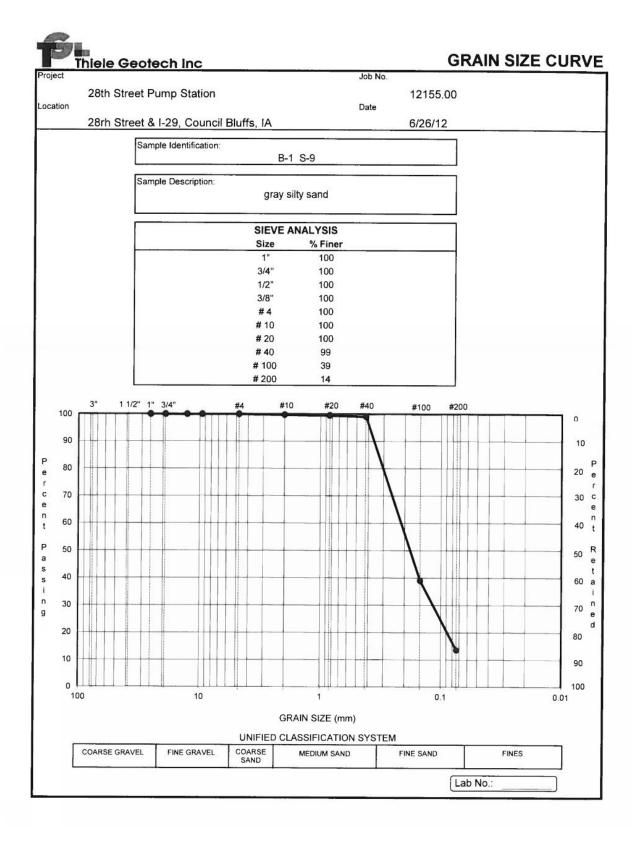

roject			ech In							Job No.						MAR
	28th St	reet Pu	mp Stat	ion							12	155.	00			
ocation										Date						
	28th St	reet & I	-29, Co	uncil Bluff							6/2	5/20	12			
		T LIE			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NIT		200000	100000000000000000000000000000000000000	ONFINED		-	Service Street	SSIFICAT	ON	
NO.	SAMPLE NO.	SAMPLE DEPTH	SAMPLE DIA.	MOISTURE		IGHT	VOID	SAT.		RESSION		TERBE		PASS		REMARK
NO.	NO.	(ft.)	(in.)	CONTENT (%)	WET (pcf)	DRY (pcf)	RATIO (e)	(%)	q _u (tsf)	STRAIN (%)	LL	PL	Pi	#200		
B-1	U-1	0.5-2	1	8.5	110.6	102.0	0.652	35								
	S-2	3.5-5		7.3	ļ	Į į	1				1			10.0	SP-SM	
	S-3	8.5-10	0.05	42.0					1727-2227	000	67	25	42	8508000	СН	
	U-4	13.5-15	2.85	38.9	115.4	83.1	1.027	100	0.27	5.8	30	21	9	99.5	CL	
	S-5	18.5-20		37.0	1									81.0	ML	
	S-6	23.5-25		21.4					l	1				5.0	SP	
	S-7	28.5-30	i i	19.3					1	1				8.7	SP-SM	
	S-8	33.5-35		05.0								1			220000	
	S-9	38.5-40		25.2	1									13.6	SM	
	S-10	43.5-45												1		
	S-11	48.5-50										- 4				
B-2	U-1	0.5-2						-								
	S-2	3.5-5		10.7						9				10.3	SP-SM	
	S-3	8.5-10		40.1							95	26	69	99.2	СН	
	S-4	13.5-15		42.3												
	U-5	18.5-20	2.85	34.7	116.9	86.8	0.940	100	0.41	1.5	37	21	16	98.2	CL	
	S-6	23.5-25		22.9					15					14.8	SM	
	S-7	28.5-30														
	S-8	33.5-35		18.2										3.2	SP	
1	S-9	38.5-40								1						
	S-10	43.5-45		19.8	1									6.5	SP-SM	
	S-11	48.5-50						3								
B-3	U-1	0.5-2														
1,100	S-2	3.5-5		7.4										13.8	sc	
	S-3	8.5-10		35.6							56	24	32	7.5	СН	
	U-4	13.5-15	2.85	36.6	113.4	83.0	1.030	96	0.80	1.4	69	25	44	99.6	СН	
	S-5	18.5-20		31.8	0.0000000			1500000	Victoria II	13735340	34	23	11		CL	
	S-6	23.5-25		23.7								1,500	7.0	23.9	SM	
	S-7	28.5-30														
- 1	S-8	33.5-35		16.6										3.6	SP	
	S-9	38.5-40		17.3										3.5	SP	
	S-10	43.5-45		1313456050			. 1						ı			
	S-11	48.5-50														
									1							
				Jr.												
														1		
			- 1		1											

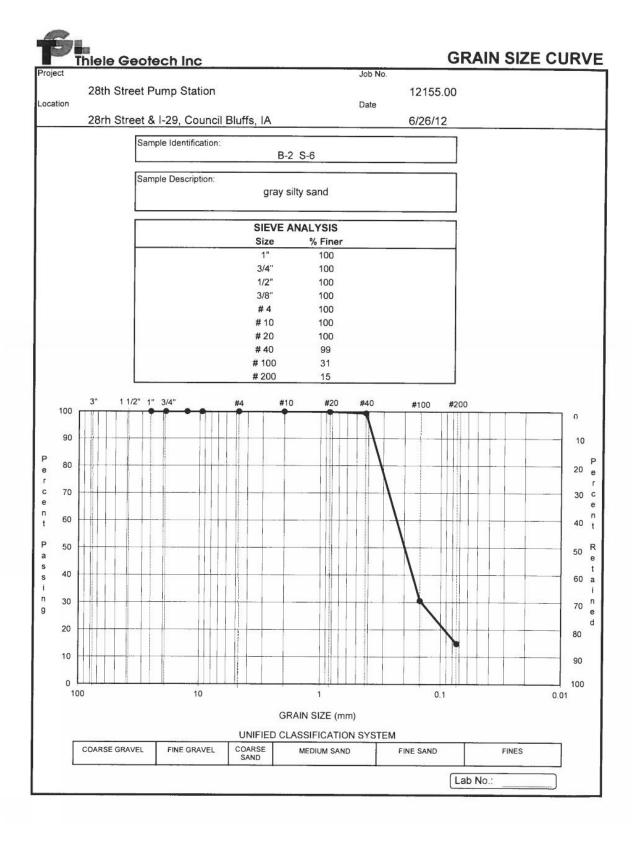
	hiele Ge	eotech Inc			HYDROME	TER ANALYSIS
Project Location	28th stree	et Pump Ststion		Job No. Date	12155.00	
	28th Stre	et & I-29, Council Bl	uffs, IA		6/26/2012	
		Sample Identification:	B-1 U-4			
		Sample Description:				
}		Sample Bescription.	gray lean clay			
	SIE	VE ANALYSIS			HYDROMETE	R ANALYSIS
	Sieve Size	% FINER			D(mm)	% FINER
	3/8"	100.0			0.0317	54.9
	#4 #20	100.0 99.8			0.0209 0.0124	43.1 33.3
	#40	99.8			0.0089	29.4
	#100	99.8			0.0064	25.5
	#200	95.5			0.0052	23.5
	Specifi	c gravity of sample:	2.65 (assum	ed)	0.0045 0.0032	23.5 23.5
				,	0.0013	21.6
1	3/8"	#10		#200		
100.u						
90.0	-			$\Box $		+++++++++++++++++++++++++++++++++++++++
80.0	+++-					
70.0						
9 60.0						
50.0					4	
ERCENT PASSING 0.09 0.09						
30.0						
20.0						• • • • • • • • • • • • • • • • • • • •
10.0						
10.0						
0.0	0.000	1.000	0.1	100	0.010	0.001
			GRAIN S	SIZE (mm)		
	Lab No.				T4	
					rest conducted a	ccording to ASTM D 422-63

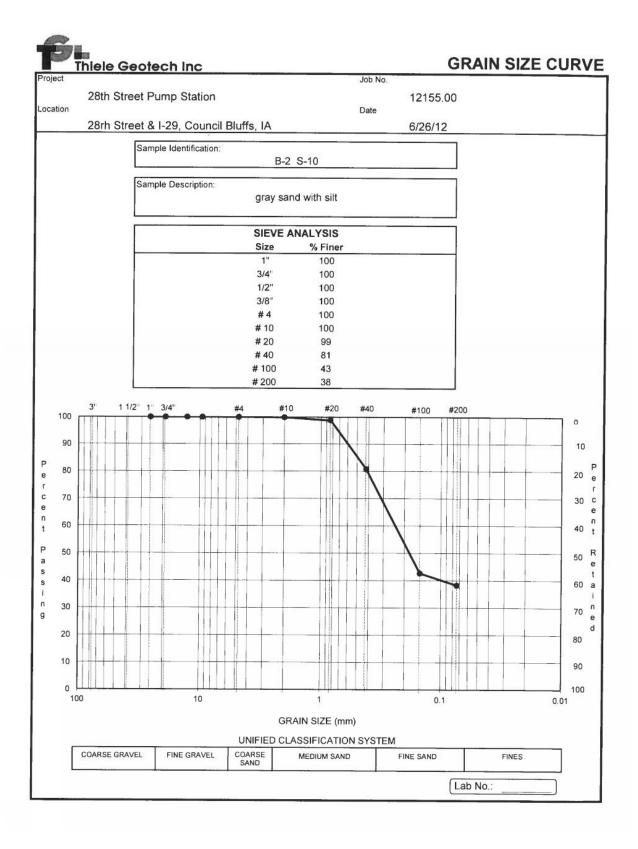

	hiele Geo	otech Inc			HYDROME	TER ANALYS
roject	28th street	Pump Ststion		Job No.	12155.00	
cation	28th Street	& I-29, Council Bluf	fs, IA	Date	6/26/2012	
	S	ample Identification:	B-2 S-5			
	E	ample Description:				
		ample Description.	gray fat clay			
	SIEVI	E ANALYSIS			HYDROMETE	R ANALYSIS
	Sieve Size	% FINER			D(mm)	% FINER
	3/8" #4	100.0 100.0			0.0271 0.0173	97.7 95.6
	#20	100.0			0.0173	91.5
	#40	99.8			0.0073	89.4
	#100	99.4			0.0052	85.2
	#200	99.2			0.0043	81.1
	0:6:-				0.0038	79.0
	Specific	gravity of sample:	2.65 (assume	d)	0.0027	74.9
					0.0012	64.5
100.0	3/8"	#10		#200		
90.0						
80.0						
70.0		1 1 1 1 1 1 1				
60.0						
50.0			+			
60.0 50.0 40.0						
30.0	-					
20.0						
10.0						
0.0	0.000	1.000	0.10	1	0.010	0.00
			GRAIN SI	ZE (mm)		
	Lab No.					
					Test conducted a	according to ASTM D 422

T	hiele Ge	eotech Inc	499		HYDROM	ETER ANALYS
oject				Job No.	3773	
cation	28th stree	et Pump Ststion		Date	12155.00	
	28th Stre	et & I-29, Council Blu	ıffs, IA		6/26/2012	
		Sample Identification:	B-2 U-5			
		Sample Description:				
			gray lean clay	444		
	SIE	VE ANALYSIS			HYDROMET	TER ANALYSIS
	Sieve Size				D(mm)	% FINER
	3/8"	100.0			0.0303	67.1
	#4	100.0			0.0205	49.4
	#20 #40	99.8			0.0123	37.5
	#40 #100	99.4 99.0			0.0088	33.6
	#200	98.2			0.0063 0.0052	29.6 27.6
	#200	30.2			0.0032	27.6
	Specifi	c gravity of sample:	2.65 (assum	ed)	0.0032	25.7
	****			/	0.0013	21.7
100.u	3/8"	#10		#200	т т	
90.0						
80.0						
70.0				III N		
60.0						
60.0 50.0 40.0						
40.0						
30.0					` A.	

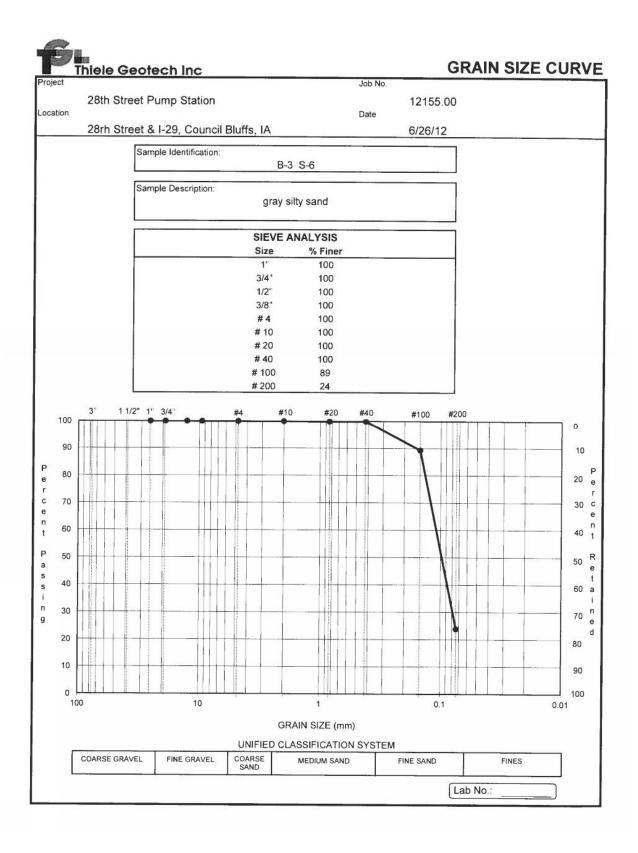
20.0						
10.0						
0.0	.000	1.000	0.1	00	0.010	0.00
			GRAIN S	SIZE (mm)		
	Lab No.					d according to ASTM D 422


	hiele Ge	eotech Inc			HYDROME	TER ANALYSIS
Project Location	28th stree	et Pump Ststion		Job No. Date	12155.00	
	28th Stre	et & I-29, Council Blu		46/16/2	6/26/2012	
		Sample Identification:	B-3 U-4			
		Sample Description:	gray fat clay			
	SIE	VE ANALYSIS			HYDROMETE	ER ANALYSIS
	Sieve Size				D(mm)	% FINER
	3/8"	100.0			0.0263	96.4
	#4 #20	100.0 99.8			0.0168	94.4
	#40	99.8			0.0101 0.0073	86.7 80.9
	#100	99.8			0.0053	75.2
	#200	99.6			0.0044	71.3
	Cnasifi	c gravity of sample:	265 (222		0.0039	67.5
	Specifi	c gravity of sample:	2.65 (assumed)		0.0028 0.0012	63.6 54.0
	0.1011	#10			0.0012	04.0
100.υ	3/8"	#10	#2	00 177-7		
90.0						
80.0	-					
70.0	1					
9 60.0						
PASS 50.0						
PERCENT PASSING 0.09 0.07						
30.0						
20.0						
10.0						
0.0						
	.000	1.000	0.100 GRAIN SIZE	(mm)	0.010	0.001
	Lab No.		SIAM SIZE	(11111)		
					Test conducted	according to ASTM D 422-63

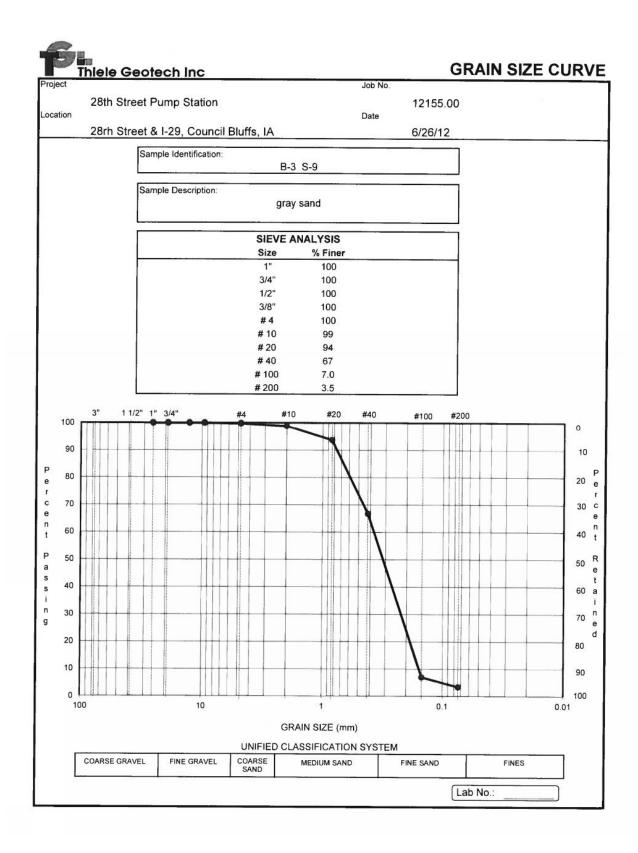

ct	hiele	Geot	ech inc	<u> </u>				Job No.		GRA	IN SIZ	E CUR
	28th S	treet P	ump Stat	ion				JOD NO.	12155	5.00		
ion	29rh C	troot P	130 00	unoil	Dluffo IA			Date	6/06/4	2		
	201113		l-29, Co	183.55	Diulis, IA				6/26/1			
		Sam	ple Identific	ation:		B-1 S-	5					
						D-1 3-	J					
		Sam	ple Descrip	tion:		gray sil	t	-				
		Grann							-			
						VE ANAI						
		\vdash			Siz 1"		% Finer			_		
					3/4		100 100			h		
					1/2		100					
					3/8		100					
					# 4		100					
					# 1		100 100					
					# 4		99					
					# 10		91					
					# 20	00	82					
	3"	1 1/2" 1"	3/4"		#4	#10	#20	#40	#400	#200		
100	ППП		•			11.0	191	77	#100	#200		
90						Î						
50												
80	+	1	-							7		
70											+	- 3
60					1 1							
												4
50		+++		++++				+				
					1							
40												6
30		1-11				_					1	. 7
												'
20		111										8
10												
												9
0 1			1	Щ	444	+	444					10
10	U		1)			1		0.	.1		0.01
						GRAIN	SIZE (mr	n)				
_	74274-100-100-100-100-100-100-100-100-100-10		I			D CLASSI						
	COARSE G	RAVEL	FINE GRA	VEL	COARSE SAND	MEI	DIUM SAND)	FINE SAND		FINES	
		0.6277	1000									



t	Thiele Geot		-0.0		Job No.	12155.00	
on					Date		
200	28rh Street 8	& I-29, Council	Bluffs, IA			6/26/12	
	San	nple Identification:		15 to 1984			
		300		B-1 S-7	1000		
	San	nple Description:			148.0		
			gray	sand with silt			
			SIEV	E ANALYSIS			
			Size	% Finer			
			1" 3/4"	100		ļ.	
			1/2"	100 100		1	
	1		3/8"	100			
			# 4	100			
			# 10	100			
			# 20 # 40	100 99			
			# 100				
			# 200				
	3" 1 1/2" 1						
00		- A	#4	#10 #20	#40	#100 #200)
					1		
90							
80		_			$\perp \parallel \lambda \parallel$		
					111		
70		1 111		 	++-\		++++++
60							
						\	
50		1		1		\	
						\	
						1	
10			11	1 1111		I N	
				1 1			
30							
40 30 20							
30							
0							
10	0	10		1		0.1	0.
0	0	10		1 GRAIN SIZE (mr	n)	0.1	0.0
30	0	10	UNIFIED				0.0
30	0 COARSE GRAVEL	10 FINE GRAVEL		GRAIN SIZE (mr	N SYSTEM		O.I



	in Thiele Ge	otech Inc				GF	RAIN SIZE CUI	R۷
ject		310011110			Job No.			
		et Pump Station				12155.00		
ation					Date			
	28rh Stree	et & I-29, Council	Bluffs, IA			6/26/12		
		Sample Identification:						
		oumpio ruominioution.		B-2 S-2		ľ		
	,							
		Sample Description:	brou	m gond with allt		1		
			word	n sand wity silt				
	L							
				VE ANALYSIS				
	-	1117.00011	Size	A-1				
	1		1" 3/4'	100				
			1/2"					
			3/8"					
			#4					
			# 10			1		
			# 20					
			# 40					
			# 100 # 200			i		
	L		# 20	0 10				
400	3" 1 1/2	" 1" 3/4"	#4	#10 #20	#40	#100 #200	0	
100								0
90					$\perp \Lambda$			10
					\			
80					++1			20
						\		
70						1		30
60								40
1.5.50						\		40
50					+ $+$ $+$ $+$	$-\Lambda$		50
								•
40						1		60
30								
30								70
20						X		80
						N.		OU
10					+		 	90
ايا								
0 1	00	10		1		0.1	0.01	100
				CDAIN CIZE		7/1	2.01	
				GRAIN SIZE (mm				
_				CLASSIFICATION	SYSTE			
	COARSE GRAVE	EL FINE GRAVEL	COARSE SAND	MEDIUM SAND		FINE SAND	FINES	
_	15 (/)(1)		-					
						La	ab No.:	



	Thiele Geo	tech Inc				GF	RAIN SIZE C	URVE
Project	0011 0:	0			Job No.			
Location	28th Street I	Pump Station			Date	12155.00		
	28rh Street	& I-29, Council E	Bluffs, IA			6/26/12		
	Sar	mple Identification:	-					
				B-3 S-2				
	Sar	mple Description:			-107			
			brow	n clayey sand				
			SIF	E ANALYSIS				
			Size					
			1"	100	700			
	ļ.		3/4" 1/2"	100 100				
	1		3/8"	100				
			# 4	100				
	1		# 10 # 20			ļ		
			# 40	99				
	J.		# 100			l,		
		2000 200	# 200) 14	1,10			
100	3" 1 1/2" 1	l" 3/4"	#4	#10 #20	#40	#100 #200	1	→ 16323
								0
90								10
P 80					+			20 e
r c 70								r
е								30 c
n t 60						\cdots		40 t
P 50								En R
a s					1	\		50 е
s 40						\	 	60 a
n 30			4 -					70 n
9						1 1 11		/ e
20								80
10			1		1			90
0								20.000
	00	10	il .	1	1	0.1	0	J 100 .01
				GRAIN SIZE (mr	n)			
9 <u>%.</u>			UNIFIED	CLASSIFICATIO	N SYSTE	М		
	COARSE GRAVEL	FINE GRAVEL	COARSE SAND	MEDIUM SANE		FINE SAND	FINES	1
L							L NI-	_
						La	b No.:	

Sample Identification: B-3 S-8 Sample Identification: B-3 S-8 Sample Identification: B-3 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 S-8 Sample Identification: B-3 S-8 Sample Identification: B-3 S-8 S-8 Sample Identi		Thiele Ge	otech Inc				GR	AIN SIZE C	URVE
28th Street & I-29, Council Bluffs, IA Sample Identification: B-3 S-8 Sample Description: gray sand SIEVE ANALYSIS Size % Finer 1' 100 3/4" 100 1/2" 100 3/8" 99 # 4 96 # 10 93 # 20 62 # 40 22 # 100 6.7 # 200 6.	Project	1000 1000 1000 1000 1000 1000 1000 100	150.1 100.100	40 Te		Job No.	12155.00		
B-3 S-8 Sample Description: Gray Sand		28rh Stree	et & I-29, Council	Bluffs, IA			6/26/12		
Sample Description: Gray sand			Sample Identification:						
SIEVE ANALYSIS Size		l.		10	B-3 S-8				
Size % Finer 1" 100 3/4" 100 1/2" 100 3/8" 99 99 144 98 160 170			Sample Description:		gray sand				
1" 100 3/4" 100 3/8" 99 # 4 98 # 100 62 # 400 22 # 1100 6.7 # 2200 3.6 100 90 90 P 80 1 1/2" 1" 3/4" # 4 # 10 # 20 # 40 # 100 # 200 10									
1/2" 100 3/6" 99 #4 98 #10 93 #20 62 #40 22 #100 6.7 #200 3.6 #200 3.6 P 80 P 80 P 80 F 70 F 80 F 8		ł							
3/8" 99 # 4 98 # 10 93 # 20 62 # 40 22 # 100 6.7 # 200 3.6 # 200 3.0 # 200 3					100		ľ		
# 4 98 #10 93 #20 62 #40 22 #100 6.7 #200 3.6 #200 3.0 #200 3.6 #200 3.0 #200 3.6 #200 3.0 #200 3.6 #200 3.6 #200 3.0 #200 3.6 #200 3.0 #2							1		
# 10 93 # 20 62 # 40 22 # 100 6.7 # 200 3.6 P 80									
# 40									
# 100 6.7 # 200 3.6 100									
# 200 3.6 100 3" 11/2" 1" 3/4" #4 #10 #20 #40 #100 #200 10 90 10 10 10 10 10 10 10 10 10 10 10 10 10									
100 90 10 10 10 10 10 10 10 10 10 10 10 10 10									
100 90 10 10 10 10 10 10 10 10 10 10 10 10 10		211 4 4 72							
90	100	3 11/2	1 3/4	#4	#10 #20	#40	#100 #200		7 0
P 80 10 10 10 10 10 10 10 10 10 10 10 10 10	00				4				
20 e 7 70 1 60 1 60 2 70 2 80 3 0 0 0 4 0 1 5 0 R 6 0 a 1 1 7 0 0 e 2 0 4 0 1 7 0 0 e 2 0 0 1 7 0 0 e 2 0 0 1 8 0 0 1									10
C T T T T T T T T T	8n				+				- 00
COARSE GRAVEL FINE GRAVEL COARSE SAND MEDIUM SAND FINE SAND FINES SOURCE SAND SOURCE SAND SAND SAND FINE SAND FINES SAND SAND FINES SAND SAND FINES SAND FINE	r								
## COARSE GRAVEL FINE GRAVEL COARSE SAND MEDIUM SAND FINE SAND FINES ### A0 n									200.00
P 50 a 50 R 60 a i 70 P 60 a i					1				n
a s 40 s 4	2								1 0 1
grain size (mm) UNIFIED CLASSIFICATION SYSTEM COARSE GRAVEL FINE GRAVEL COARSE SAND MEDIUM SAND FINE SAND FINES	50				1 1 N				30
GRAIN SIZE (mm) UNIFIED CLASSIFICATION SYSTEM COARSE GRAVEL FINE GRAVEL COARSE SAND MEDIUM SAND FINE SAND FINES	40				\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				t
9 20 70 80 80 90 100 10 1 0.1 0.01 100 100 100 100 100	i					N II I			60 а і
20 10 10 10 10 10 10 10 100 100 100 100	50				1 1111	1		+++	70
GRAIN SIZE (mm) UNIFIED CLASSIFICATION SYSTEM COARSE GRAVEL FINE GRAVEL COARSE SAND MEDIUM SAND FINE SAND FINES	20					X			d
0 100 10 1 0.1 100 100 100 100 100 100 1	25983								80
100 1 0.1 0.01	10				1 11111	++++		++	90
100 1 0.1 0.01	0			1					100
UNIFIED CLASSIFICATION SYSTEM COARSE GRAVEL FINE GRAVEL COARSE SAND MEDIUM SAND FINE SAND FINES		00	10		1	N.C.	0.1	0.	
COARSE GRAVEL FINE GRAVEL COARSE MEDIUM SAND FINE SAND FINES					GRAIN SIZE (mn	1)			
COARSE GRAVEL FINE GRAVEL COARSE MEDIUM SAND FINE SAND FINES				UNIFIED	CLASSIFICATIO	N SYSTEM	1		
	Γ	COARSE GRAVE	EL FINE GRAVEL	COARSE				FINES	1 I
Lab No.:	L			JANU					,
		-500					Lab	No.:	l

APPENDIX B
City of Council Bluffs Dewatering Discharge
Sampling and Testing Requirements

13478 Chandler Road Omaha, Nebraska 68138-3716 402.556.2171 Fax 402.556.7831 www.thielegeotech.com

May 17, 2010

Mr. Jeff Krist Public Works Department City of Council Bluffs 209 Pearl Street Council Bluffs, IA 51503

RE: PROPOSED ENVIRONMENTAL SCREENING POLICY FOR MONITORING THE DISCHARGE OF GROUND WATER FROM DEWATERING ACTIVITIES

TG# 08017.06

Dear Mr. Krist:

This letter outlines a proposed environmental screening policy related to dewatering projects conducted by the City of Council Bluffs. This screening policy has resulted from the recent request from Kirk Mathis of IDNR for the City of Council Bluffs to oversee dewatering activities that occur in the City of Council Bluffs via the City's storm water discharge permit (NPDES General Permit MS4).

Previously the IDNR field office has provided guidance for a schedule of sampling activities to monitor the quality of the discharge waters entering the City's storm sewer during dewatering activities. These monitoring events have taken place on a daily to weekly basis and tested pH, iron content, total dissolved solids, and total suspended solids. If there was potential for a LUST site to be influenced, then select constituents of petroleum hydrocarbons would also be included in the testing regime.

Below is a proposed monitoring plan for a dewatering site. If there is an active LUST site within 1,000 feet of the dewatering well, then the relevant additional parameters should also be included in the sampling events.

PARAMETER	LIMIT	SAMPLING FREQUENCY	LOCATION	
Volume of water discharged	NA	Record daily	Prior to discharge to storm sewer	
pН	6.0-9.0 SU (Standard Units)	Day 1, 4, & 7 the first week then weekly thereafter	Prior to discharge to storm sewer/outfall	
Total suspended solids	45 mg/L	Day 1, 4, & 7 the first week then weekly thereafter	Prior to discharge to storm sewer/outfall	
Total iron	August through April: 15 mg/L May through July: 25 mg/L	Day 1, 4, & 7 the first week then weekly thereafter	Prior to discharge to storm sewer/outfall	

Proposed Environmental Screening TG# 08017.06 May 17, 2010 Page 2 of 2

LUST with gasoline release			
BTEX (OA-1)	Benzene: 5.0 ug/L Toluene: 1,000 ug/L Ethylbenzene: 700 ug/L Xylenes: 10,000 ug/L	Day 1, 4, & 7 the first week then weekly thereafter	Prior to discharge to storm sewer/outfall
LUST with diesel/waste oil release			
Total Extractable Hydrocarbons (OA-2)	Diesel: 1,200 ug/L Waste Oil: 400 ug/L	Day 1, 4, & 7 the first week then weekly thereafter	Prior to discharge to storm sewer

The intent of this environmental screening policy is to broaden the knowledge of the potential impact upon the storm sewer fallout locations from ground water releases to the City's storm sewer system from dewatering events.

We look forward to receiving your advice on this matter. If you have any questions, or if there is any additional information that we can provide, please feel free to contact us.

Respectfully submitted, Thiele Geotech, Inc.

Prepared by,

Donna S. Matlock, C.P.G., CHMM

Senior Geologist

APPENDIX C USACE Standard Operating Procedure Open Tube Piezometer Installation

SOP #5: Open Tube Piezometer Installation

1 GENERAL

This Standard Operation Procedure (SOP) outlines the general requirements, methodology, and documentation required for this task. Site-specific requirements for the number, location, and other specific information or considerations are specified in Appendix A of this Scope of Work.

2 REQUIREMENTS

Installation includes the entire designed length of the open tube piezometer's screen, riser, filter pack, and annular seals along with surface completion. The open tube piezometer is to be fully installed, developed, and response tested (if required) as designed.

The Contractor is responsible for obtaining all equipment, supplies, and personnel required to complete successful installation of all components of the open tube piezometer(s). The Contractor shall review the open-tube piezometer design criteria (provided in the site-specific section of this SOW [Appendix A]) and become familiar with the location and level of effort required to fulfill all components of the installation process. All work completed under this SOP shall be detailed in the Contractor's final work plan prior to initiation of any field efforts.

For this task, the Contractor shall adhere to all provisions outlined in the Scope of Work (SOW), this SOP, the site-specific requirements detailed in **Appendix A**, and the most recent revision of the following reference materials, as applicable.

PUBLICATIONS

ER 1110-1-1807. U.S. Army Corps of Engineers, Engineering Regulation (ER) 1110-1-1807, Procedures for Drilling in Earth Embankments.

EM 1110-1-1804. U.S. Army Corps of Engineers, Engineering Manual (EM) 1110-1-1804, Geotechnical Investigations.

ASTM D 1586. American Society for Testing and Materials (ASTM) D 1586, Penetration Test and Split-Barrel Sampling of Soils.

ASTM D 1587. American Society for Testing and Materials (ASTM) D 1587, Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes.

ASTM D 2488. American Society for Testing and Materials (ASTM) D 2488, Standard Practice for Description and Identification of Soils (Visual Manual Procedure).

FORMS

ENG FORM 1836/1836A. U.S. Army Corps of Engineers, Engineering Form 1836 and/or 1836A, Drill Log Form.

ENG FORM 1742. U.S. Army Corps of Engineers, Engineering Form 1742, Sampling Labels (Example)

1

SOP #5: Open Tube Piezometer Installation

MRO (NWO) FORM 1241. U.S. Army Corps of Engineers, Omaha District Form 1241, Sample Transmittal Form (Example)

Piezometer Construction Diagram Form (Example)

Open Tube Piezometer Development Log (Example)

3 PROCEDURES

3.1 Field Activities

Outlined below are the field activities for open tube piezometer drilling and sampling, installation, and development. If required, the response testing shall be preformed using SOP #5: Response Testing. Restoring the site to acceptable pre-work conditions after completion of all work efforts shall also be the responsibility of the Contractor. Procedures used shall be thoroughly described in the Contractor's work plan.

3.1.1 Drilling, Logging, and Sampling

Borings shall be drilled with 3 ¼-inch (or larger) inner diameter hollow stem augers to produce a boring of sufficient diameter and depth to meet design requirements of the open tube piezometer as set forth in Appendix A. The drilling method shall be such as to maintain borehole stability and keep the drill string free of heaving formation materials, thereby allowing proper placement of the screen and riser and the subsequent installation of the filter pack and other annular seals. It should be noted that a single boring from which logging and sampling requirements can be fully completed that meets design requirements of the piezometer (i.e., diameter and depth) is acceptable. The drilling method shall allow the open tube piezometer, to include the borehole wall and adjacent formation, filter pack, and screen, to be developed to provide maximum hydraulic connection between the piezometer's screen and the monitoring zone's groundwater.

Soils shall be logged, classified, and sampled in accordance with SOP #4 and Appendix A.

3.1.2 Open Tube Piezometer Installation

The open tube piezometer shall be installed immediately after each boring is complete to the design depth specified in the site-specific section of the SOW (Appendix A). Generally, the open tube piezometer shall be constructed of 2-inch nominal diameter, schedule-40, PVC casing with 0.010-inch-slot, continuous wrap screen, with 20-40 gradation clean silica sand filter pack, with specific details supplied in Appendix A. Criteria for the anticipated screen placement shall be identified in the Contractor's Work Plan; however, the actual screen placement shall be confirmed with the USACE- Primary Technical POC (or the USACE- Dam Safety Engineer) prior to installation. If the design screen length is not factory standard or custom manufactures, it can be custom fitted in the field from screen (meeting same construction material type/slot width and type as designed) to meet the design length to reflect the zone targeted for monitoring. The entire length of the open tube piezometer shall be installed centrally and straight in the borehole to allow the required thickness of filter pack to be tremied into place surrounding the well screen, as well as efficiently allowing all other annular seals to be properly placed. All seals shall be placed by tremie methods. Filter pack shall extend 1-foot below the bottom of the

screen and 2-feet above the top of the screen unless otherwise specified in Appendix A. A 3-foot-thick layer of ½ to ½-inch diameter, bentonite pellets will be placed above the filter pack sand and allowed to hydrate before the remaining borehole annulus is filled with a cement-bentonite grout. The grout will be injected through a tremie pipe to within 1-foot of the ground surface and allowed to settle. After settlement has occurred, the grout will be topped off to 1-foot of the ground surface. Natural soil will be mounded at the ground surface to promote water drainage away from the piezometer. Grout will be a mixture of one bag (94 pounds) of Portland cement, 7 gallons of water, and 3 percent by weight bentonite powder. Grouts shall be placed using a side-discharge tremie pipe that remains submerged in the grout during the grouting process. The remaining borehole annular space and surface completion shall be completed as specified in Appendix A. Filter pack gradation, screen slot opening width, screen type, annular seals, and surface completion materials (concrete pad, protective casing, protective posts, lock) planned to be used during installation shall be specified in the Contractor's work plan and be based on design criteria presented in Appendix A. An Open Tube Piezometer Installation form shall be completed (Attachment 4).

3.1.3 Open Tube Piezometer Development

The water level, depth, and diameter shall be measured and recorded on Attachment 5. The piezometer shall be surged with an appropriately functioning surge block supporting a relief valve. Then the water and any sediment in the piezometer shall be evacuated by use of a pumping method (e.g., airlift, etc.) capable of removing water and sediment from the piezometer. Alternating surging and pumping efforts shall continue until all sediment is removed from the piezometer and the water is clear. The Open Tube Piezometer Development Log (Attachment 5) shall be fully completed for all development activities and results. A labeled photograph of pre- and post-development water placed in a clear glass jar shall be taken.

3.1.4 Open Tube Piezometer Disinfection

At completion of the rising-head response test (if performed), the piezometer shall be disinfected with a bleach solution. However, if the piezometer's screened zone is in impermeable materials (such as may be found in the embankment and potentially the foundation) the piezometer shall not be disinfected. The amount of bleach solution added to the piezometer shall be two times the static water volume in the piezometer or to a maximum level within 10 feet of the ground surface (if the two times static water volume is greater than 10 feet below the ground surface). The bleach solution shall be ratio of 1:250, 1 gallon of 5% bleach to 250 gallons of water (approximately 3 teaspoons of 5% bleach per 1 gallon of water). The bleach solution shall be added to the piezometer and allowed to infiltrate naturally. This effort shall be documented in the "COMMENTS" block on Attachment 5.

4 DOCUMENTATION AND REPORTING

The Contractor shall be responsible for recording, maintaining and submitting all documentation and reports associated with this SOP and the site-specific information provided in Appendix A. The following list includes documents and reports that shall be submitted to the Corps of Engineers per this SOP. This submittal list is not inclusive of all submittals required under the SOW. Submittal format requirements, reporting and planning requirements, and submittal deadlines are specified in the main body of the SOW. At a minimum, these include the following:

- Daily Quality Control Report (per SOP #1)
- Drill Log Form (including photo attachments)
 Sample Labels
- Sample Transmittal Record

- Open Tube Piezometer Installation Form
 Open Tube Piezometer Development Log including photo-documentation.
 Photographs at each piezometer location documenting all work efforts and pre-installation and post-installation site conditions

DR	ILI	11	٧G	L	00	3 [DIVIS	IDN							INSTAL	LATIC	IN						HOLE	E NUMB
.PROJECT											10.S	IZE A	ND TY	PE OF	BIT							SH	EET	SH
-LOCATIO	N (Coor	dinates	or St	ation)						11.D	ATUM	FOR E	LEVAT	ION S	HOWN	ITBM o	- MS	L)					OF
DRILL IN	G AGENC	Y									12.M	IANUF A	CTURE	R'S D	ESIGN	ATION	OF DR	ILL						
.HOLE NO	. (As s	hown or	drawi	ing ti	†le						13.1	OTAL	ND. D	F OVE	R-			\neg	D	ISTUR	BED	\top	UNDI	STURB
.NAME OF			ilder /								14.TOTAL NUMBER CORE BOXES													
.DIRECTI	חו חב וו	01.5									15.8	LEVAT	ION C	ROUND	WATER	?								
	VERTICAL		INCLINE	ED				DEG.	FROM	VERT.	16.0	ATE H	OLE			S	TARTE)			C	OMPLE	TED	
.THICKNE	SS OF O	VERBURG	EN								17.E	LEVAT	ION T	OP OF	HOLE									
DEPTH D			ск								18.T	OTAL (CORE F	RECOVE	RY F	OR BOR	RING							
TOTAL D	EPTH OF	HOLE									19.5	IGNATI	URE OF	INS	PECTOR	₹								
LOCAT	10N :	SKETO	CH/CI	ОММЕ	NTS						1							1	SCAL	.E				
,	;,-	;	-,	;					<i>.</i>		,	,	;		;		,		,			,	;	
;	; ;	;		; 	<u>.</u>	: :			; ;	<u>:</u>	; ;				: :	: : :				: :	<u>;</u> ;			
		:		<u>.</u>						: :									: :	: :				
:		:	:	:	:	:	:	:	:	:	:		:	:	:	:	: :		:	:	: :			: :
		;																			: :			
		:		÷	; ·				: :	:	; :		:	:	:	: : :	:		:	: :			;	
		🛊		<u>:</u>	<u>.</u>				; ;	<u>.</u>	ļ										<u>.</u>			
: .	:	:	:	;	:	:				:			:				:			:	: :			
;	: ::	:	:	:	:					:	:	:	:	:	:	:	: : : :			:	: :			
;			÷ · ·						; :	:	; :		:		:		:		:		:		:	
		:	-:	į	<u>.</u>			:		<u>:</u>	: :		:		: :		:		:		<u> </u>		:	
;	·;.	;	.;	; ;	<u>.</u>				;	: :	, ;								: :		<u>.</u>		;	
																					:			
		;	:	:					:	:	:								:		: :			
			÷ · ·	·			:		; :	· · ·	; · · ·		; :				:	٠.	· · · ·		:		:	:
		:		<u> </u>		: :			· 	<u>.</u>	:						: :		<u>:</u> 	· 	: <u>:</u>		:	
		:	.:	:																	: :		:	
:			:														:				: :			. :
			÷ · ·	:					: :	:	· · · ·				:				:		(****)	;	:	
	::-	🗄	-:	:	:		: :	:	:	:	:				:		:		:		::	:	:	: :
		;	- <u>:</u>	<u>;</u> 	<u>.</u>		: :		; ;		: :											:	:	
		:																						
:			:	:																		:		
	:	• • ‡ • •	÷ · ·	<u> </u>	÷ :			:	; :	:	: :								:		{···}	: :	:	: :
		:	-:	<u>:</u>			:	: :	: :		:				:				:		::	:	:	: :
		;	.;	<u>.</u> 																				
		:	:	:						:											: :		:	. :
:	: ::	:	-:	:	: :		: :	:	· · · ·	:	:	:			:		:		:	:	:	:	:	: :
;			-:	<u> </u>			; :	:	; :		:											• • • •	}	::
				,													. :				. ;			

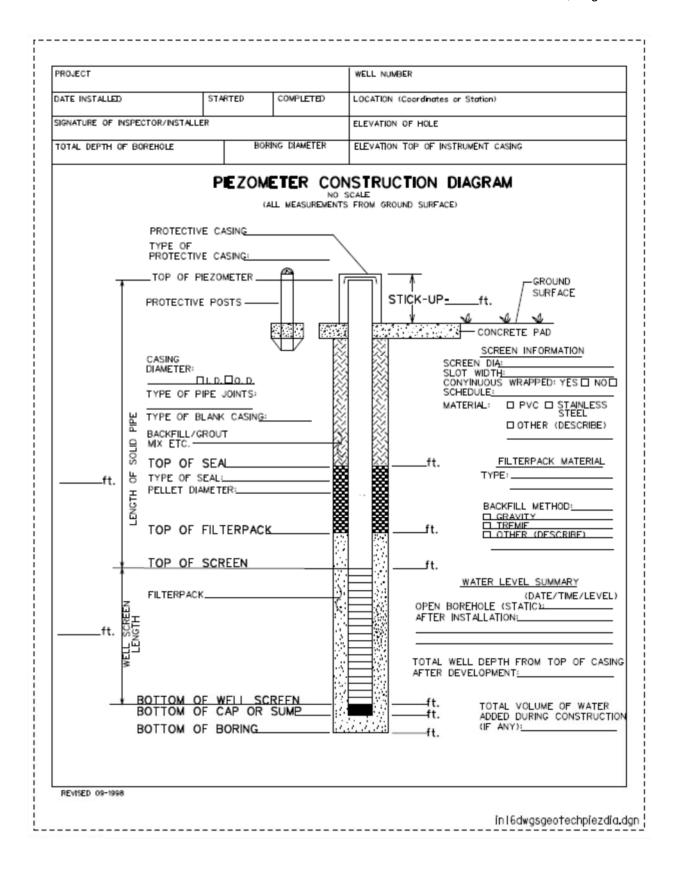
DRILLI	NG L	OG (CONT SHEET)	ATION TOP OF HOLE			HOLE NUMBER
ROJECT		INSTALLATION				SHEET
ELEV. DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (DESCRIPTION) (d)	% CORE RECOVERY (e)	BOX OR SAMPLE NO.	REMARKS (Dritting time, water to weathering, etc., if (g))	OF SHEETS
NC FORM 1836			PROJECT		HOLE NO	

	PROJECT	LOCAT	ION
	HOLE NO.	DEPTH: FROM-	TO-
		ELEVATION	
	SAMPLE NO.	CLASSIFICATION	
	J-	TYPE: D DISTURBE	D UNDISTURBED
	REMARKS		
FROM	REMARKS DATE	INSPECTOR	
R O M		INSPECTOR BAG JAR	OF

П	PROJECT	LOCATION	
	HOLE NO.	DEPTH: FROM-	TO-
		ELEVATION	
	SAMPLE NO.	CLASSIFICATION	
	J-	TYPE: D DISTURBED	☐ UNDISTURBED
	REMARKS		
FROM	DATE	INSPECTOR	

	PROJECT	LOCATION	·
	HOLE NO.	DEPTH: FROM-	TO-
	111.14.16	ELEVATION	
	SAMPLE NO.	CLASSIFICATION	
	J-	TYPE: D DISTURBED	UNDISTURBED
	REMARKS		
F R O	DATE	INSPECTOR	
EN	NG FORM	□BAG	et c
1 J	AN 49 1742	☐ JAR	OF

	PROJECT	LOCATION	
	HOLE NO.	DEPTH: FROM-	TO-
		ELEVATION	
	SAMPLE NO.	CLASSIFICATION	
	J-	TYPE: D DISTURBED	☐ UNDISTURBED
	REMARKS		
FROM	DATE	INSPECTOR	
EN	IG FORM	□BAG	


	PROJECT	LOCATION	4					
	HOLE NO.	DEPTH: FROM- TO-						
		ELEVATION						
	SAMPLE NO.	CLASSIFICATON						
	J-	TYPE: DISTURBED UNDISTURBED						
	REMARKS	34						
FROM	DATE	INSPECTOR						
EI	NG FORM	□ BAG □ JAR OF						

	PROJECT	LOCATION	LOCATION					
	HOLE NO.	DEPTH: FROM-	TO-					
		ELEVATION						
	SAMPLE NO.	CLASSIFICATON						
	J-	TYPE: DISTURBED DUNDISTURB						
	REMARKS							
	I							
H R O 2	DATE	INSPECTOR						
ROM	DATE NG FORM	INSPECTOR □ BAG						

00BD0 0E	ENCINE		AMPL	ETRA	NSMITT	AL RECORD				
PROJECT	ENGINEE	no.		HOLE NO.						
						TOP ELEVATION				
LOCATION	PLAN									
SAMPLING	METHOD			INSPECTOR						
DATE SAMPLED	0175	SAMPLE	NO	LAB. SER.NO.	DEPTH IN FEET	FIELD LOG AND REMARKS				
SAMPLED	SIZE	TYPE	NO.	SER.NO.	FEET	FIELD LOG AND REMARKS				
				,						
SAMPLE RE	CEIVED	BY:				DATE:				

MRO FORM 1241 1 NOV 65

(Formerly MRD Form 0193, Which may be used.)

				OPEN TU	BE PIEZOME	TE	R DEVEL	OPMENT L	oG		
PROJE	CT N	AME:									
PIEZO	METE	ER NU	MBER								
OPENED: DATE TIME							CLOSED:	DATE		TIME	
Water Level (TOC) ft						ft	Water Leve	el (TOC)		3	f
							Piezometer Depth (TOC)				
Design I							Design Depth (TOC)				
Est. Sed							Est. Sed. In Piezometer				
					SURGING/I			TA			
TIME SURGING PUMPING		GAL RMVD	WATER CLARITY		REM	ARKS (Amt.	/Type of	Sediment	t, etc.)		
PUMPIN	NG M	ETHOI	D:		CONTINUOUS	SP	UMPING I	DATA			
TIME GAL TURB. (NTU)			PEMARKS								
				_							
* =	١.,										
COMM			r remov	ed during !	surging and bail	ing.					

INSPECTOR:

Page 2 of 2

PROJECT NAME:							
PIEZOMETER NUMBER:							
TIME	GAL. RMVD.	TURB. (NTU)	REMARKS				
7							
7							
-							
COMME	NTS:						
COMMI							
INSPECTOR:							