highway segments before ultimately ranking them against each other based upon a final composite rating. The original tool was then expanded to the entire primary highway system in Iowa.

ICE was used to evaluate the current condition of each candidate location. The segments that make up each location were analyzed using the seven criteria and the normalization and weighting processes that had already been established. This resulted in a composite ICE rating for each location. The process was completed for each individual candidate location.

Performance (INRIX Bottleneck Ranking tool)

As mentioned in the “Freight Mobility Issues Survey” section, INRIX has a tool that identifies and ranks bottleneck locations. This tool, with additional analysis using traffic data, was used to develop a draft list of highway locations with freight mobility issues. To determine the performance ranking of each project location, the number of annual bottleneck occurrences for each location was used.

VCAP matrix (final ranking and prioritization)

After each candidate location was assigned a Value, Condition, and Performance rating, each was ranked using those values for each of the three categories. The average of these three rankings was calculated and the candidate locations were assigned an overall priority rank. If two locations had the same average ranking, total truck traffic at the location was used as a tiebreak. See the figures and tables below for VCAP results and Iowa’s highway freight priority locations.

Summary of the prioritization process:

1. Freight Mobility Issues Survey
 - Populate initial improvement list
2. Iowa Travel Analysis Model (iTRAM)
 - Complete analysis and then rank each location
3. Infrastructure Condition Evaluation (ICE) tool
 - Complete analysis and then rank each location
4. INRIX Bottleneck Ranking tool
 - Complete analysis and then rank each location
5. Average the three rankings
6. Truck traffic counts
 - Tiebreaker if necessary

Location list (Freight Mobility Issues Survey)

Iowa DOT initially developed a draft list of highway locations with freight mobility issues. This was completed by analyzing INRIX traffic speed data that can, among other things, identify “bottleneck” locations in the state and the number of times each occurs throughout the year. This data was retrieved for 2014 and overlaid with Iowa DOT truck traffic count data. INRIX bottleneck locations that occurred in each quarter of the year and had either 30 percent truck traffic or more than 5,000 total trucks per day were flagged as locations with potential freight mobility issues.

This draft list was presented to the Iowa Freight Advisory Council (FAC) for input and was sent to the Iowa DOT Transportation District offices, Metropolitan Planning Organizations (MPOs), and Regional Planning Affiliations (RPAs). Each of these groups was asked to review the list, make necessary additions, and assign priority votes to each location. This was used to populate the initial candidate list.

Value (Iowa Travel Analysis Model - iTRAM)

iTRAM is a statewide travel demand model used in the evaluation of Iowa’s transportation system. The first generation was completed in 2009 and the focus of this model version was to accurately predict the number of automobiles and trucks on the current primary road network, and then project traffic in the future. The second generation of iTRAM builds upon the original statewide model architecture and incorporates two additional model components: passenger and freight movement on the rail system.

This tool is used to evaluate the value of each project location to the overall freight transportation network. A run of the model was completed first to show a base case scenario. Then, a second series of runs was completed that excluded each one of the candidate locations individually. After each run, the truck vehicle hours traveled (VHT) was compared to the base case and the difference was assigned as the value of the location. Higher priority was assigned to locations with larger VHT increases when excluded from the network. In other words, higher priority was assigned to locations that make the truck network more efficient from a VHT perspective.

Condition (Infrastructure Condition Evaluation – ICE)

The ICE tool was developed originally as a tool for evaluating the interstate highway system based on seven criteria: Pavement Condition Index (PCI), International Roughness Index (IRI), structure sufficiency rating, passenger traffic, single unit truck traffic, combination truck traffic, and congestion. A normalization and weighting process is applied to each criterion and used to analyze

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>LOCATION</th>
<th>VALUE</th>
<th>CONDITION</th>
<th>PERFORMANCE</th>
<th>AVERAGE RANKING</th>
<th>TRUCK VOLUME</th>
<th>PRIORITY RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
highway segments before ultimately ranking them against each other based upon a final composite rating. The original tool was then expanded to the entire primary highway system in Iowa.

ICE was used to evaluate the current condition of each candidate location. The segments that make up each location were analyzed using the seven criteria and the normalization and weighting processes that had already been established. This resulted in a composite ICE rating for each location. The process was completed for each individual candidate location.

Performance (INRIX Bottleneck Ranking tool)

As mentioned in the “Freight Mobility Issues Survey” section, INRIX has a tool that identifies and ranks bottleneck locations. This tool, with additional analysis using traffic data, was used to develop a draft list of highway locations with freight mobility issues. To determine the performance ranking of each project location, the number of annual bottleneck occurrences for each location was used.

VCAP matrix (final ranking and prioritization)

After each candidate location was assigned a Value, Condition, and Performance rating, each was ranked using those values for each of the three categories. The average of these three rankings was calculated and the candidate locations were assigned an overall priority rank. If two locations had the same average ranking, total truck traffic at the location was used as a tiebreaker. See the figures and tables below for VCAP results and Iowa’s highway freight priority locations.

Summary of the prioritization process:

1. Freight Mobility Issues Survey
 - Populate initial improvement list
2. Iowa Travel Analysis Model (iTRAM)
 - Complete analysis and then rank each location
3. Infrastructure Condition Evaluation (ICE) tool
 - Complete analysis and then rank each location
4. INRIX Bottleneck Ranking tool
 - Complete analysis and then rank each location
5. Average the three rankings
6. Truck traffic counts
 - Tiebreaker if necessary

Highway Improvements

In order to identify and prioritize candidates for highway freight improvements, Iowa DOT utilized the Value, Condition, and Performance (VCAP) matrix. This approach takes advantage of multiple tools available at Iowa DOT including the Freight Mobility Issues Survey, Iowa Travel Analyst Model (iTRAM), Infrastructure Condition Evaluation (ICE) tool, INRIX traffic speed data, and Iowa’s annual traffic counts. Below is a description of the prioritization process and an example of the VCAP matrix.

Example VCAP matrix

<table>
<thead>
<tr>
<th>ID</th>
<th>LOCATION</th>
<th>VALUE</th>
<th>CONDITION</th>
<th>PERFORMANCE</th>
<th>Tiebreaker TRUCK VOLUME</th>
<th>Priority RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Location list (Freight Mobility Issues Survey)

Iowa DOT initially developed a draft list of highway locations with freight mobility issues. This was completed by analyzing INRIX traffic speed data that can, among other things, identify “bottleneck” locations in the state and the number of times each occurs throughout the year. This data was retrieved for 2014 and overlaid with Iowa DOT truck traffic count data. INRIX bottleneck locations that occurred in each quarter of the year and had either 30 percent truck traffic or more than 5,000 total trucks per day were flagged as locations with potential freight mobility issues.

This draft list was presented to the Iowa Freight Advisory Council (FAC) for input and was sent to the Iowa DOT Transportation District offices, Metropolitan Planning Organizations (MPOs), and Regional Planning Affiliations (RPAs). Each of these groups was asked to review the list, make necessary additions, and assign priority votes to each location. This was used to populate the initial candidate list.

Value (Iowa Travel Analysis Model - iTRAM)

iTRAM is a statewide travel demand model used in the evaluation of Iowa’s transportation system. The first generation was completed in 2009 and the focus of this model version was to accurately predict the number of automobiles and trucks on the current primary road network, and then project traffic in the future. The second generation of iTRAM builds upon the original statewide model architecture and incorporates two additional model components: passenger and freight movement on the rail system.

This tool is used to evaluate the value of each project location to the overall freight transportation network. A run of the model was completed first to show a base case scenario. Then, a second series of runs was completed that excluded each one of the candidate locations individually. After each run, the truck vehicle hours traveled (VHT) was compared to the base case and the difference was assigned as the value of the location. Higher priority was assigned to locations with larger VHT increases when excluded from the network. In other words, higher priority was assigned to locations that make the truck network more efficient from a VHT perspective.

Condition (Infrastructure Condition Evaluation – ICE)

The ICE tool was developed originally as a tool for evaluating the interstate highway system based on seven criteria: Pavement Condition Index (PCI), International Roughness Index (IRI), structure sufficiency rating, passenger traffic, single unit truck traffic, combination truck traffic, and congestion. A normalization and weighting process is applied to each criterion and used to analyze (continued on back)