

Evaluating the Criticality of Infrastructure

Freight Advisory Council | September 6, 2019

Input objective

Identify factors that should be considered when systematically evaluating the criticality of infrastructure and the relative importance of such factors.

Intended use

Systematic evaluation and inclusion of resiliency factors in the State Long-Range Transportation Plan, Freight Plan, and Rail Plan.

Other Evaluation Efforts

- Past
 - Crude Oil and Biofuels Rail Transportation Study (2016)
 - State Freight and Rail Plans bottleneck analysis (2017)
 - Transportation Systems Management and Operations ICE-Ops (2017)
- Current
 - Criticality analysis for use of Emergency Relief (ER) funds
 - ISU Resiliency Index for the State of Iowa
 - Resilience and Durability to Extreme Weather Pilot Program

Crude Oil and Biofuels Rail Transportation Study (2016)

- Determine risks, vulnerabilities, prevention methods, preparedness, and response capabilities for crude oil and biofuels railroad transportation in Iowa
- Risk and Vulnerability Analysis (RVA) factors
 - Routes and volumes of rail traffic
 - Length of railroad segments carrying crude oil or ethanol
 - Populations
 - Critical facilities
 - Risks to public health, safety, and environment
 - Previous incidents (derailments, spills, and fires)
 - Likelihood of future incidents
 - Prevention/mitigation plans and programs

4

State Freight and Rail Plans bottleneck analysis (2017)

- Identified physical, operational, and regulatory bottlenecks in the freight system
- Highway
 - Value, Condition, and Performance (VCAP) matrix
- Railroad
 - Flood-prone areas
 - Swing-span bridges
 - Others identified by rail companies
- Waterway
 - Locks
 - Swing-span bridges

Transportation Systems Management and Operations - ICE-Ops (2017)

- Infrastructure Condition Index for Operations
- Screening tool to support data-driven decisions on where to apply limited resources was developed
- Factors
 - Average annual daily traffic (AADT)
 - All bottleneck occurrences per mile
 - Freight bottleneck occurrence per mile
 - Incident frequency per mile
 - Crash rate
 - Buffer Time Index (BTI)
 - Event center buffer mileage
 - Weather-sensitive corridor mileage
 - ICE rating

6

Criticality analysis for use of Emergency Relief (ER) funds

- Demonstrate and justify the use of ER funds for betterments used in the design and reconstruction of critical infrastructure impacted by flooding
- Variables/factors

7

- Functional Class (usage)
- Truck Traffic (economic impact)
- Social Vulnerability Index (social impact)
- Redundancy (system impact)
- Factors classified into quintiles, assigned indices, and summed to produce criticality scores
- Three classes low, medium, and high criticality

Criticality analysis for use of Emergency Relief (ER) funds

<u>Criteria</u>	<u>Weight</u>
Usage: Functional Class	(30%)
Economic Impact: Truck AADT	(30%)
Social Impact: SoVI	(10%)
System Impact: Redundancy	(30%)

NOTE: Interstate segments and segments connected to bridges near east and west border manually rated "High".

ISU Resiliency Index for the State of Iowa

- Define the resilience goals or targets
 - e.g., the functionality level after the disruptive events
- Understand the system characteristics
 - e.g., resolution level on the network
- Characterize disruption scenarios
 - e.g., extreme flood, snow storms, or maintenance activities)
- Estimate the consequences
 - e.g., level of physical loss, drivers' delay, economic loss, loss of accessibility
- Find optimized solutions for the possible improvements

10

EVALUATING THE CRITICALITY OF INFRASTRUCTURE

ISU Resiliency Index for the State of Iowa

Extreme Weather and Infrastructure Resilience

BI-STATE REGIONAL COMMISSION FHWA PILOT PROJECT

Purpose of the Grant

- Conduct vulnerability assessment
- Determine strategies to mitigate impacts

Geographic Focus

Vulnerability Assessment

- Provides structured process for conducting a vulnerability assessment
- Suggests ways to use results in practice
- Features examples from other similar projects
- Includes links and references to related resources and tools

Project framework

- Set objective and define scope
- Compile data
- Assess
 Vulnerability
- Analyze adaption options
- Incorporate results into decision-making

VULNERABILITY ASSESSMENT AND ADAPTATION FRAMEWORK

Multi-modal Facilities

- I-74, I-80, I-88, I-280
- State highways
- Municipal streets and roads
- Airports
- Railroad lines
- Lock and dam 15
- Transit hubs
- Trails

Extreme weather in the QC

- River flooding
- Flash flooding
- Combined storms
 - Hail
 - Lightning/ thunder
 - High winds
- Severe winter storm
- Extreme heat
- Tornadoes

Record Crests 22.70 ft on 5/2/2019 1st 22.63 ft on 7/09/1993 2nd **Records for Consecutive Days above Flood Stage** 96 days: 2019 – 3/15 to 6/18 43 days: 2011 – 3/29 to 5/10

Local Trends

Critical Infrastructure & Facilities

- Evacuation gathering sites
- Public works facilities
- Transit hubs
- Transit transfer points
- Rural transit operations
- Airports
- Port facilities
- Railyard

Stakeholder Survey & Interviews

Stakeholder Workshop

- Vulnerability assessment
- Adaptation options

Next Steps

Priorities and Opportunities for Adaptation

+

Integrate Results & Recommendations

Sept.-Dec. 2019

- Workshop Results
- Advisory Committee for Progress to Date
- Adaptation Strategies
- MPO Technical Committee
- Draft Resilience Study Report & Recommendations for the LRTP
- Peer Exchange

Jan.-March 2020

- Draft to MPO Technical Committee and Advisory Committee
- Final Report to FHWA

Questions? Suggestions?

GENA MCCULLOUGH, <u>GMCCULLOUGH@BISTATEONLINE.ORG</u>

TARA CULLISON, TCULLISON@BISTATEONLINE.ORG

SARAH GARDNER, <u>SGARDNER@BISTATEONLINE.ORG</u>

PATTY PEARSON, <u>PPEARSON@BISTATEONLINE.ORG</u>

Input Exercise

Factors for systematically evaluating the criticality of infrastructure

Exercise Objective

- Identify factors for evaluating the criticality of multimodal infrastructure
- For example:
 - Usage/importance
 - System redundancy
 - Proximity to facilities/multimodal connections
 - Bottlenecks/pinch points
 - Susceptibility to disaster

Next steps

 Iowa DOT intends to use this information to complete infrastructure criticality analysis for the next State Freight Plan and State Long Range Transportation Plan

THANK YOU FOR YOUR TIME AND ATTENTION