

PORTLAND CEMENT CONCRETE LEVEL III

INSTRUCTION MANUAL

2025

TECHNICAL TRAINING AND CERTIFICATION PROGRAM

DOT CONTACT INFORMATION

Wesley Musgrove	Construction & Materials Bureau Director	515-239-1843
John Hart	Bituminous Materials Engineer	515-239-1547
Brian Johnson	Bituminous Field Engineer	515-290-3256
Bob Dawson	Chief Geologist	515-239-1339
Kevin Merryman	Contract Administration Engineer	515-239-1848
Melissa Serio	Earthwork Engineer	515-239-1280
Cedric Wilkinson	E-Construction Program Administrator	563-391-2750
Jennifer Strunk	FieldManager/FieldBook/Doc Express	641-344-0044
Desiree McClain	Foundations Field Engineer	515-233-7906
Jeff DeVries	Materials Testing Engineer	515-239-1237
Chris Brakke	Pavement Design Engineer	515-239-1882
Todd Hanson	PCC Materials Engineer	515-239-1226
Elijah Gansen	PCC Field Engineer	515-233-7865
Mahbub Khoda	Prestressed & Precast Concrete Engineer	515-239-1649
Kyle Frame	Structures Group Engineer	515-239-1619
Curtis Carter	Senior Structures Field Engineer	515-239-1185
Jesse Peterson	Structures Field Engineer	515-239-1159
Brian Worrel	Traffic Safety Engineer	515-239-1471
Mike Lauritsen	District 1 Materials Engineer	515-357-4350
Robert Welper	District 2 Materials Engineer	641-422-9421
Vacant	District 3 Materials Engineer	712-202-0809
Timothy Hensley	District 4 Materials Engineer	712-243-7629
Allen Karimpour	District 5 Materials Engineer	515-815-1405
Shane Neuhaus	District 6 Materials Engineer	319-366-0446

ORGANIZATIONS CONTACT INFORMATION

Asphalt Paving Association of Iowa 1606 Golden Aspen Drive Ste 102 Ames, IA 50010 Mike Kvach 515-450-8166 www.apai.net

Iowa Concrete Paving Association 360 SE Delaware Ave. Ankeny, Iowa 50021 Greg Mulder 515-963-0606 www.concretestate.org

Iowa Prestress Association Dennis Drews 402-291-0733 Iowa Limestone Producers Association 4438 114th St

Urbandale, IA 50322 Randy Olson 515-262-8668

www.limestone.org

Iowa Ready Mix Concrete Association

380 SE Delaware Ave. Ankeny, Iowa 50021

Greg Mulder 515-965-4575

www.iowareadymix.org

TECHNICAL TRAINING AND CERTIFICATION PROGRAM CONTACT INFORMATION

CONTACT PERSON Brian Squier - TTCP Coordinator brian.squier@iowadot.us	ADDRESS Technical Training & Certification Program and District 1 Materials 800 Lincoln Way	PHONE # 515-233-7915
Hope Arthur - TTCP Coordinator hope.arthur@iowadot.us	Ames, Iowa 50010	515-509-8302
Jon Kleven jon.kleven@iowadot.us	District 2 Materials 428 43rd Street SW Mason City, Iowa 50401	641-422-9428
Alex Crosgrove alex.crosgrove@iowadot.us	District 3 Materials 6409 Gordon Drive Sioux City, Iowa 51106	712-239-4713
Mike Magers michael.magers@iowadot.us	District 4 Materials 2310 E. Seventh St. Atlantic, Iowa 50022	712-243-7649
Helen Bailey helen.bailey@iowadot.us	District 5 Materials 205 E. 227th St. Fairfield, Iowa 52556	319-759-5408
Tammy Siebert tammy.siebert@iowadot.us	District 6 Materials 5455 Kirkwood Blvd. SW Cedar Rapids, Iowa 52404	319-364-0235

Des Moines Area Community College (DMACC)

Boone Campus 1125 Hancock Drive Boone, Iowa 50036

Kelli Bennett

Phone number: 515-433-5232 Email: kabennett@dmacc.edu

or

Renee White

Phone number: 515-433-5056 Email: crwhite@dmacc.edu

1. Table of Contents

1.	INTR	ODUCTION	. 4
	1.1.	Introductions	. 4
		SCHEDULE	
		Grading	
		Rules	
		CONTACTS	
		TEXT	
		Course Objectives	
		CONCRETE BASICS	
2.	_	ENTITIOUS MATERIALS	
		PORTLAND CEMENT	
	2.1.		
	2.1.1. 2.1.2.		
	2.1.2.	•	
	2.1.3. 2.1.4.	<u> </u>	
	2.1.4. 2.1.5.		
		FLY ASH	
	2.2.1.		
	2.2.1.	0	
	2.2.2.		
	2.2.3. 2.2.4.		
	2.2.4. 2.2.5.	5	
	2.2.5.	· · · · · · · · · · · · · · · · · · ·	
	2.2.0.	GROUND GRANULATED BLAST FURNACE SLAG (GGBFS)	17
	2.3. 2.3.1.		10
	2.3.1.		
	2.3.2.		
	2.3.3. 2.3.4.		
	2.3.4. 2.3.5.		
		SILICA FUME, CALCINED CLAY, AND SHALE	
	2.4.1.		
	2.4.1.		
		HYDRATION PROCESS	
		WATER TO CEMENT RATIO (W/C RATIO)	
		EFFECT OF W/C RATIO ON STRENGTH AND PERMEABILITY	
		Paste Volume	
	2.0. 2.8.1.		
	2.8.2.		
		CEMENT CONTENT	
		CURING.	
3.	CHE	MICAL ADMIXTURES	32
		AIR ENTRAINING	
	3.1.1.	.	
	3.1.2.	•	
	3.1.3.	5	
	3.1.4.	,	
	3.1.5.		
	3.1.6.		
	3.2.	WATER REDUCERS	39

	3.2.1.	Background	39
	3.2.2.		
	3.3. F	RETARDERS	41
	3.3.1.	Background	41
	3.3.2.		
		ACCELERATORS	
	3.4.1.		
	3.4.2.		
		SPECIALTY ADMIXTURES	
4.	AGGF	REGATE	44
	4.1. I	OWA OVERVIEW	44
	4.1.1.		
	4.1.2.	Intermediate – Article 4112	
	4.1.3.	Class V Aggregate – Article 4116	
	4.1.4.	Fine – Article 4110	
		AGGREGATE PROPERTIES TO CONSIDER FOR CONCRETE	
	4.2.1.	Strength	
	4.2.2.	Texture	
	4.2.3.	Shape	
	4.2.4.	Ideal Texture and Shape	
	4.2.5.	Freeze Thaw Durability	
	4.2.6.	Deleterious Materials	
	4.2.7.	Chemical Reactivity	
	4.2.8.	Durability Classes	
		MOISTURE CONDITIONS AND BATCH WEIGHT CORRECTIONS	54
	4.3.1.	Pores	
	4.3.2.	Moisture Corrections	
		GRADATION	
	4.4.1.	Influence on Concrete Performance	
	4.4.2.	Nominal Maximum Aggregate Size	
	4.4.3.	Surface Area	
	4.4.4.	Fineness Modulus (FM)	
	4.4.5.	ASTM-C33	
	4.4.6.	Combined Aggregate Grading	
	4.4.7.	Combined Aggregate Gradation Classifications	
	4.4.7.1		
	4.4.7.2		
	4.4.7.3	B. Well graded	59
	4.4.8.	Mathematically Combined Aggregate Gradation	60
	4.4.9.	Graphical Techniques for Evaluating Combined Gradations	61
	4.4.10		61
	4.4.11	Shilstone CW Chart	62
	4.4.12	2. 0.45 Power Curve	64
	4.4.13	B. Percent Retained Chart	65
	4.4.14		
	4.5. I	.M. 529 MIXES USING MIDPOINT OF GRADATION LIMITS	68
_	MIVE	ECION	74
5.	WIIX D	ESIGN	/1
	5.1. (Overview	71
	5.2.	DBJECTIVES	71
		LIFE STAGES	
		PROCESS	
		JOB PARAMETERS	
		PROPERTIES	
		FECHNICAL DESCRIPTION	

	5.8.	Proportioning	. 73
		MATERIAL PROPERTIES	
	5.9.1.	Particle Density	. 74
	5.9.2.	Specific Gravity (SPG)	. 74
	5.9.3.		
	5.9.4 <i>.</i>	Individual Aggregate Gradations	. 75
	5.10.	MIX DESIGN CONCEPTS	. 75
	5.10.		
	5.10.2	2. Absolute and Bulk Volume	. 77
	5.10.3	3. Absolute Volume	. 77
	5.10.4	Water to Cement Ratio	. 80
	5.10.3	5. Paste, Mortar, and Concrete	. 81
	5.10.0	6. Mortar Influence on Mix Design and Placement	. 82
	5.10.		
	5.10.8	3. Standard Deviation and Strength Adjustments	. 84
	5.10.9	Strength Adjustments for Iowa DOT Mixes	. 86
	5.10.	10. Other Strength Considerations	. 87
	5.11.	_ABORATORY TRIAL BATCH	. 87
6.	MIX E	ESIGN APPROACHES	. 95
	6.1.	PROPORTIONAL	95
		FORMAL METHODS	
		OWA DOT I.M. 529	
			นก
	631		
	6.3.1.	Calculations	. 96
	6.4.	Calculations	. 96 . 97
	6.4. <i>6.4.1.</i>	Calculations OWA DOT QM-C Calculations	. 96 . 97 . 98
	6.4. 6.4.1. 6.4.2.	Calculations OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing	96 97 98 98
	6.4. 6.4.1. 6.4.2. 6.4.3.	Calculations OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing	96 97 98 98
	6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4.	Calculations OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing Acceptable Field Adjustments	96 97 98 98 100
	6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4. 6.4.5.	Calculations OWA DOT QM-C OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing Acceptable Field Adjustments Basis of Payment	96 97 98 98 100 101
	6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4. 6.4.5.	Calculations OWA DOT QM-C. Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing Acceptable Field Adjustments Basis of Payment. OWA DOT BR	96 97 98 98 98 100 101 102
	6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4. 6.5. 6.5.	Calculations OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing Acceptable Field Adjustments Basis of Payment OWA DOT BR OWA DOT HPC STRUCTURAL	96 97 98 98 101 101 102 103
	6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4. 6.5. 6.5. 6.6.	Calculations OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing Acceptable Field Adjustments Basis of Payment OWA DOT BR OWA DOT HPC STRUCTURAL OWA DOT HPC OVERLAY	96 97 98 98 101 101 102 103
	6.4. 6.4.1. 6.4.2. 6.4.3. 6.4.4. 6.5. 6.5. 6.6.	Calculations OWA DOT QM-C Calculations Quality Control Plan and Sampling and Testing Verification Sampling and Testing Acceptable Field Adjustments Basis of Payment. OWA DOT BR OWA DOT HPC STRUCTURAL OWA DOT HPC OVERLAY OWA DOT MASS CONCRETE	96 97 98 98 98 101 101 102 103 104 105

APPENDIX A - ACI 211 MIX DESIGN AND GRAPHS

APPENDIX B – EXAMPLE PROBLEMS

APPENDIX C - WORKSHEETS

APPENDIX D - EXERCISES & ANSWER KEY

APPENDIX E - QM-C SPECIFICATION AND I.M.S

APPENDIX F - COMPUTER MIX DESIGN PROBLEM

CHAPTER 1 INTRODUCTION

1. Introduction

1.1. Introductions

1.2. Schedule

<u>Day 1</u>

9-10:30	Chapter 1 Introduction
10:30-11:30	Chapter 2 Cementitious Materials
11:30-12:30	Lunch
12:30-2:00	Chapter 3 Chemical Admixtures
2:00-3:30	Chapter 4 Aggregate

Day 2

9:00-11:30	Chapter 4 Aggregate
11:30-12:30	Lunch
12:30-2:30	Chapter 5 Mix Design
2:30-3:30	Chapter 6 Mix Design Approaches

<u>Day 3</u>

9:00-11:30	Chapter 6 Mix Design Approaches
11:30-12:30	Lunch
12:30-2:30	Chapter 6 Mix Design Approaches
2:30-3:00	Chapter 6 Computer Mix Design
3:00-3:30	Review

Day 4

9:00-1:00 Review & Test

1.3. Grading

- 3 hour written test
- 50 multiple choice and true false including calculations
- Open book open note
- 80% or higher to receive certification
- 1 retake

1.4. Rules

- Respect one another
- Follow DMACC and Zoom rules
- Start on time and end on time
- Contact instructors if you cannot make class
- Turn off cell phones
- Limit side conversations and distractions
- 10-15 minute break about every 1-2 hours
- Maintain a positive attitude, learn, and have fun

1.5. Contacts

- John Hart
 515 -239-1494
 john.hart@iowadot.us
- Todd Hanson
 515-239-1226
 todd.hanson@iowadot.us

1.6. Text

- Provided book
- Reference to keep so highlight, add notes, and tab
- Written by John Hart and Todd Hanson based on notes of Dr. Ken Hover

1.7. Course Objectives

- Learn about component materials of concrete
- Learn how component materials interact to form concrete
- Recognize when, why, and how to use the component materials to ensure quality concrete
- Learn the difference between mix design and mix proportioning
- Understand producer standard deviation effect on target strength
- Learn about the various mix design approaches and specifications for:
 - o lowa DOT I.M. 529
 - o ACI 211.1
 - lowa DOT QM-C
 - lowa DOT BR
 - lowa DOT HPC structural
 - lowa DOT HPC overlay
 - lowa DOT mass concrete
 - lowa DOT self-consolidating concrete (SCC)
- Calculate concrete mix proportions

1.8. Concrete Basics

- What is concrete
 - Concrete is the most widely used construction material in the world
 - Used to build pavements, bridge components, foundations, piles, dams, pipes, sidewalks, floors, curb and gutters, retaining walls, tanks, art, countertops, ships
 - Provides excellent versatility durability, and economy
 - Simple in appearance but extremely complex internal structure and chemistry
 - Composite material made up of component materials
 - Concrete is an engineered material designed to meet the intended application
 - Concrete is NOT cement

Figure 1-1 Cement versus concrete

- Composite materials
 - Main categories are aggregate and paste
 - Aggregate is an economic filler that provides dimensional stability and wear resistance
 - Paste glues, bonds, adheres, ties, attaches, joins, links and holds the aggregate together
 - Other concrete composite materials can be created by combining any one or more aggregates together and then gluing them together with a paste

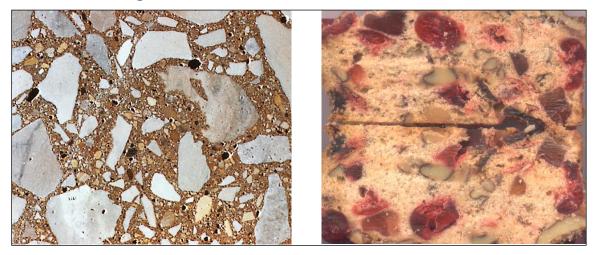



Table 1-1 Examples of aggregate and paste combinations to make concrete and other composite materials

Coarse Aggregate	Fine Aggregate	Paste	Concrete or Composite Material
Crushed rock	Concrete sand	Portland cement	Portland cement concrete
Light weight rock	Concrete sand	Portland cement	Light weight concrete
Crushed rock	Coarse sand	Asphalt cement	Asphalt cement concrete
Coarse iron ore	Fine iron ore	Portland cement	Heavyweight concrete
Steel punchings	Concrete sand	Portland cement	Heavyweight concrete
Gravel	Concrete sand	Ероху	Epoxy concrete
Chopped fruit	Crushed nuts	Sugar and flour	Fruitcake

Figure 1-3 Concrete and fruitcake are similar

- What is quality concrete
 - Depends on the application being constructed and the viewpoint of the observer
 - Goal of a mix designer is to identify and understand observer needs and best satisfy them

Table 1-2 Quality concrete for different observers and applications

	Application		
Observer	Pavements	Structure	Streetscape Sidewalk
Public	Open quickly Smooth	Open quickly Structurally sound	Visually appealing
Owner	Durable	Durable	Durable
	Ultimate strength	Ultimate strength	Economical
	Economical	Economical	Visually appealing
Contractor	Economical	Economical	Economical
	Set properly	Set properly	Set properly
	Strength gain	Workable	Visually appealing
		Strength gain	
		Various strengths	
Finisher	Workable	Workable	Workable
	Set properly	Set properly	Set properly
Saw crew	Early strength	NA	No raveling
	Aggregate type		
Designer	Ultimate strength	Various strengths	Visually appealing

CHAPTER 2 CEMENTITIOUS MATERIALS

2. Cementitious Materials

2.1. Portland Cement

2.1.1. Overview

- Manufactured product composed primarily of calcium silicates
- Hydraulic means it reacts chemically with water to set and harden
- Expensive mix component due to energy and environmental requirements required in manufacture

Figure 2-1 Typical Portland Cement

2.1.2. History

- Greeks and Romans used volcanic deposits in combination with lime
- Romans called the natural occurring deposits pozzolana because it was near the village Pozzuoli, near Mt. Vesuvius
- Pantheon dome built in 126 A.D. is concrete made of volcanic pozzolan and lime, basalt aggregate and pumice aggregate

Figure 2-2 Pantheon in Rome

- In 1824, a patent for hydraulic cement was applied for in England
- Term Portland was coined because the hardened cement product resembled the stone quarried at the Isle of Portland, England
- Cement production in the United States began in the 1870's

Figure 2-3 Globe of solid stone quarried at the Isle of Portland, England

2.1.3. Manufacturing Process

• Cement plants are located where raw materials are locally abundant, such as limestone, shale, clay, sand and iron ore (used as a flux)

Figure 2-4 Typical raw materials and their chemical contribution

- Four major steps in the manufacturing process of cement are:
 - 1. Quarry Operations
 - Raw materials are obtained, crushed, and stored
 - 2. Grinding and Blending of Raw Materials
 - Raw materials are ground to a powder and blended to produce the desired chemical composition
 - 3. Heating Raw Materials in a Kiln
 - o Kiln is a brick lined rotating furnace sloped toward the burn zone

- Blended raw materials enter the upper end of kiln and move toward the burn zone controlled by the slope and rotation
- Kiln is fueled from lower end with powdered coal, oil, gas, and or waste materials where the temperatures can reach 2600 to 3000 °F
- Limestone (CaCO₃) converts to CaO releasing carbon dioxide (CO₂)
- 4. Finish Grinding of Clinker and Distribution
 - Clinker is ground in a ball mill with approximately 5 percent gypsum
 - Gypsum is added to control setting
 - o Ground to fineness of 85-90% passing #325 mesh (holds water)
 - o The fine gray powder is angular due to crushing of clinker
 - Stored in solos to allow blending for improved uniformity before bagging or bulk delivery

Figure 2-5 Quarry operations for cement production

Figure 2-6 Bins used for blending operation

Figure 2-7 Kiln for cement production

Figure 2-8 Clinker and gypsum

Figure 2-9 Ball mill for grinding cement clinker

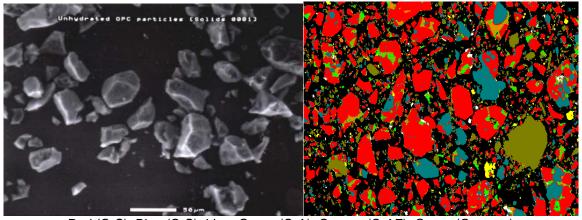
2.1.4. Four Principle Compounds

- Approximately 90 percent of cement by weight is made of these compounds, the remainder is gypsum and other minor compounds
- Individual cement grains may contain all 4 compounds
 - 1. Tricalcium Silicate (3CaO•SiO₂ = **C**₃**S**)
 - o Temperature rise during hydration
 - o Contributes to early strength
 - 2. Dicalcium Silicate (2CaO•SiO₂ = C_2S)
 - o Similar reaction as C₃S but much slower
 - Contributes to long term strength
 - 3. Tricalcium Aluminate (3CaO•Al₂O₃ = C_3A)
 - Can cause early stiffening without proper gypsum
 - o Temperature rise during initial hydration
 - o Contributes little to strength
 - 4. Tetracalcium Aluminoferrite (4CaO•Al₂O₃•Fe₂O₃ = C₄AF)
 - o Fairly inert
 - Reduces clinkering temperatures
 - o Fe₂O₃ gives cement gray color
 - White cement limits Fe₂O₃ to 0.50 percent

Figure 2-10 White cement

2.1.5. Types

- Five major types as well as blended
- ASTM C 150 specification for hydraulic cements
- ASTM C 595 specification for blended cements
- I.M. 401 lowa DOT approved sources of cement


Table 2-1 Five major cement types and their characteristics ASTM C150

Cement Type	Use	Characteristic
1	Normal use	> 8% C ₃ A
	Moderate sulfate resistance	< 8% C ₃ A
	High early strength	Fine ground type I
IV	Low heat of hydration	< 35% C ₃ S
V	High sulfate resistance	< 5% C ₃ A

Table 2-2 Blended cements and their composition ASTM C595

Cement Type	Composition
IS(X)	X is the percent GGBFS – (example IS(20))
IP(X)	X is the percent pozzolan – (example IP(25)
IL(X)	X is the percent limestone – (example IL(10)

Figure 2-11 Cement particles under microscope and SEM image

2.2. Fly Ash

2.2.1. Background

- Early use in 1930's for mass structures such as dams
- In 1982 use was mandated by federal law
- Used in Iowa since 1984

2.2.2. Byproduct Generation

- Pulverized coal is injected into the combustion chamber of the furnace
- During combustion coal impurities fuse in suspension and are transported in exhaust gases, the fused materials cool to form fly ash with a spherical shape
- Collected in electrostatic precipitators or bag filters
- After collection it is shipped, stored, or disposed of
- A typical large-scale electric generation station burns approximately 14,000,000 tons of coal per year resulting in 700,000 tons of fly ash
- Greater variability because plant is operated differently based on demand for electricity
- Least expensive cementitious material as no processing is required

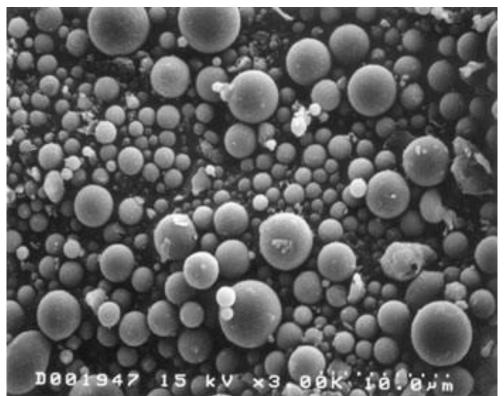


Figure 2-12 Microscopic view of fly ash

Figure 2-13 Typical coal burning electric power generating station

2.2.3. Classes

- ASTM C 618 specification for fly ashes
- I.M. 491.17 lowa DOT approved sources of fly ash

 Table 2-3
 Fly ash class and characteristics

Class	Characteristic
С	Pozzolanic and cementitious
	CaO content of 18 to 30 percent
	Tan color – high lime
	Derived from subbituminous and lignite coal
	Common west of Mississippi River
F	Pozzolanic
	Needs CH from cement hydration to react
	CaO less than 18 percent
	Gray color – higher iron
	Derived from bituminous and anthracite coal
	Common east of Mississippi River

Figure 2-14 Class C and Class F fly ash

2.2.4. Advantages

- Economical as cement replacement
- Rounded particles improve workability
- Reduced permeability by reacting with CH and forms more CSH

2.2.5. Disadvantages

- More variable material depending on plant operations
- Slower strength gain in colder weather, especially Class F

2.2.6. Supply

- The conversion from coal to natural gas fuel sources as well as increased use of wind turbines has resulted in a 50 percent decrease in fly ash produced since 2008
- Less supply with constant demand has caused prices to increase and created supply disruptions, particularly with ready mix
- Reclaiming, blending, storing and use of less desirable sources with higher carbon (unburnt coal) are being considered to alleviate supply issues
- Research is currently underway to identify ways to properly extend the use of the fly ash supply without compromising the quality of concrete

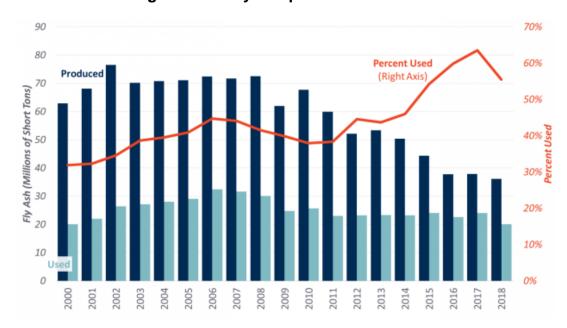


Figure 2-15 Fly ash production and use

2.3. Ground Granulated Blast Furnace Slag (GGBFS)

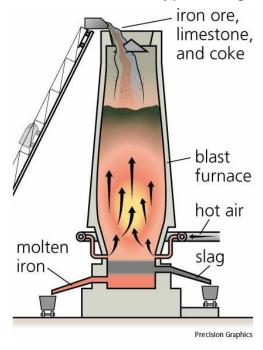
2.3.1. Background

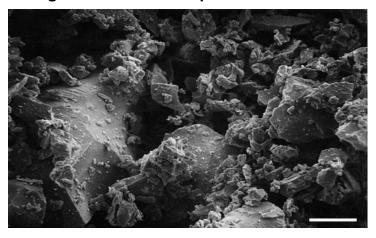
- A slow setting hydraulic cement
- White in color
- First used in Germany in 1892
- Used in Europe, Asia, east central United States, and Canada
- Used in Iowa since 1995

2.3.2. Byproduct Generation

- In an iron blast furnace, iron ore, limestone, and coke are continuously feed from the top while air heat and oxygen are forced into the furnace reaching temperatures near 2700 °F
- Limestone removes sulfur and any remaining silica (Si), alumina (Al), and magnesium (Mg) from the iron
- Molten iron collects at the bottom while molten slag floats above
- Iron and molten slag are periodically tapped
- High pressure water jets cool the molten slag rapidly to a temperature below the boiling point of water producing glassy granulated slag
- Granulated slag is then dried and ground in a ball mill to produce GGBFS with an angular shape
- Equal to cost of cement due to limited supply and additional processing
- A typical blast furnace produces 200 to 500 tons of molten slag per day
- Greater consistency due to tight process control of iron making

Figure 2-16 GGBFS byproduct generation




Figure 2-17 Granulated slag and GGBFS

2.3.3. Grades

- Three grades based on strength
- Grade 80, 100 and 120
- Iowa DOT does not allow Grade 80
- ASTM C 989 specification for GGBFS
- I.M. 491.14 lowa DOT approved sources of GGBFS

Figure 2-18 Microscopic view of GGBFS

2.3.4. Advantages

- Increased working time in hot weather
- Higher ultimate strength and reduced permeability
- Less heat of hydration for mass concrete
- Increased sulfate resistance

2.3.5. Disadvantages

- Slow strength gain in cold weather
- Workability can be reduced due to angular particles

2.4. Silica Fume, Calcined Clay, and Shale

2.4.1. Silica Fume

- An ultrafine pure silicon dust captured during production of ferrosilicon alloys in an electric arc furnace
- Expensive material with limited supply
- Used in high performance applications to produces concrete with very high strengths and very low permeability
- Requires a HRWR and extreme control in the field
- Increased susceptibility to plastic shrinkage cracking on flat work

2.4.2. Calcined Clay and Shale

- Calcining is the process of using high temperature to drive off moisture and alter materials (clay and shale) to form a pozzolan
- After calcining the pozzolans are ground to the proper fineness
- Metakaolin is a calcined clay produced from a high purity kaolin clay
- Calcined shale contains calcium which gives cementing properties
- Reacts with CH to form CSH to provide higher strength, lower permeability and sulfate resistance concrete
- Mitigates alkali silica reactivity by trapping and isolating alkalis

Figure 2-19 Silica fume and metakaolin

2.5. Hydration Process

- Portland cement is combined with water to produce a glue or the paste
- Hydration reaction is exothermic, meaning heat is released
- Basic hydration reactions
 - Calcium Silicates + Water => Calcium Silicate Hydrate (CSH) Gel + Calcium Hydroxide (CH)
 - Calcium Aluminates + Gypsum + Water => Ettringite
- Initial set occurs when temperature rises as the C₃S particles react with water forming CSH gel − paste begins to stiffen
- Final set occurs when enough CSH gel has formed that the concrete can sustain some load

Product Slow hydration DRY SHRINKAGE DIFFERENTIAL THERMAL SHRINKAGE TENSILE STRESS DEVELOPMENT STRENGTH DEVELOPMENT Deceleration CURING joint sawing window Stage of hydration Acceleration 4-8 hours placement Dormancy Initial mix 15 min. Duration of hydration Temperature

Figure 2-20 Heat profile of hydration reaction

- Hydrated paste contains the following:
 - 1. Reaction products (CSH, CH, ettringite, and monosulfate)
 - 2. Un-reacted cement particles never achieve full hydration
 - 3. Capillary pore space, or space originally occupied by mix water
 - 4. Water (gel water and pore water)
- CSH is the main contributor to strength
- CH, ettringite, and monosulfate contribute little to strength
- CH major factor in acid attack and causes leaching/efflorescence (white material in cracks)
- Ettringite and monosulfate are major factors in sulfate attack
- Supplementary cementitious materials react with CH to from more CSH
- Silica fume, Class F fly ash, metakaolin, and calcined clays are pozzolanic and need CH plus water to react
- Class C fly ash and calcined shales are both pozzolanic and cementitious
- GGBFS is a slow setting hydraulic cement

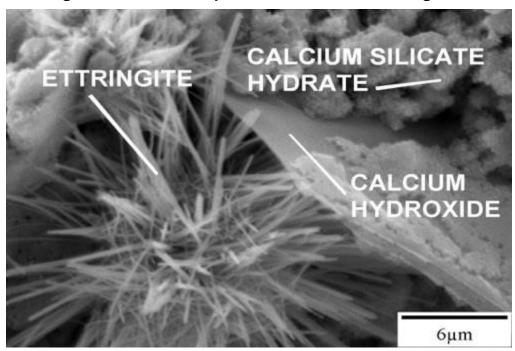
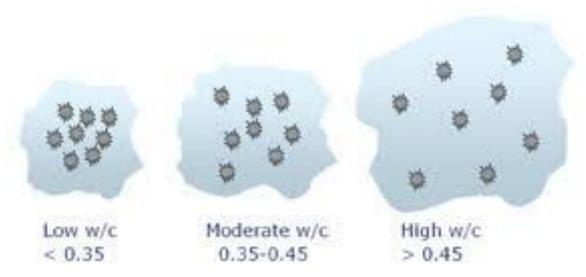


Figure 2-21 Microscopic view of reacted cement grains

2.6. Water to Cement Ratio (w/c ratio)


- Weight of all water added divided by weight of all cementitious materials
- 0.42 is a critical w/c ratio
- At a w/c ratio of 0.42 capillaries are full of water during hydration and enough water exists to fully hydrate the cement when the water is kept inside the concrete with proper curing

- At a w/c ratio between 0.36 and 0.42 additional water must be added though internal or external curing to achieve full hydration
- At a w/c ratio greater than 0.42 excess water creates larger and more porous capillaries
- At a w/c ratio of 0.70 and above it is not possible to achieve concrete with capillary pores that will be watertight in the hardened paste
- A w/c ratio must be targeted to ensure adequate workability while meeting the desired strength and permeability requirements

2.7. Effect of w/c Ratio on Strength and Permeability

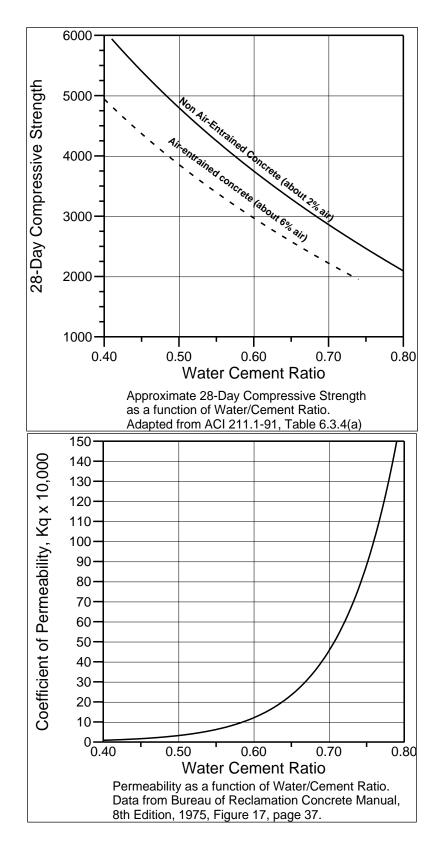

- w/c ratio impacts both strength and permeability
- A higher w/c ratio results in a lower strength and higher permeability
- A lower w/c ratio results in a higher strength and lower permeability
- As w/c ratio increases cement grains are pushed further apart creating larger more porous capillaries and less interconnected needle like growths

Figure 2-22 Graphical representation of low and high w/c ratio

- Supplementary cementitious materials (SCMs) provided additional strength and reduced permeability by reacting with CH to form more CSH and a more complete and tight hydration product
- Permeability is directly related to durability since it controls the rate of moisture and contaminant intrusion
- If moisture is present strength can continue to develop, emphasizing the importance of proper curing
- Adding 1 gallon of water per cubic yard increases slump by approximately 1 inch and w/c ratio by approximately 0.015 while lowering compressive strength by approximately 250 psi

Figure 2-23 Relationship of w/c ratio to strength and permeability

2.8. Paste Volume

2.8.1. Heat

- Hydration is an exothermic chemical reaction meaning it releases heat
- One sack of cement generates approximately 17,500 BTU when hydrating for 28 days (1 BTU is the energy required to raise 1 pound of water 1 °F)
- 10 cubic yards of a mix with 560lbs of cement per cubic yard releases approximately 1,000,000 BTUs which is equivalent to the energy released by two 20lb propane tanks
- Heat generated becomes a concern in mass structures
- Limit maximum temperature to 160 °F to prevent delayed ettringite
- Excessive heat internally (expands) while extremities cool (shrinks)
- These temperature differentials cause strength variations and thermal stresses which can cause cracking
- Differentials should be kept to 35 °F or less
- Type and amount of cement controls the heat generated
 - o Type I/II, II or IV
 - o Optimizing cement content for aggregate gradation and size
 - o Replacement of cement with SCMs like GGBFS and class F ash
- An acceptable initial mix temperature may be estimated using the following

Temperature rise = $0.16^{\circ}F \times (C + 0.5 \times FA + 0.8 \times CA + 1.2 \times SF + F \times S)$

0.16°F rise per 1lb/yd³ equivalent cement

C is Type I/II cement, lbs/yd3

FA is Class F fly ash, lbs/yd3

CA is Class C fly ash, lbs/yd3

SF is silica fume or metakaolin, lbs/vd3

F is the equivalent cement factor based on the percent GGBFS replacement S is GGBFS, lbs/yd³

Table 2-4 Factor for percent GGBFS replacement

Percent GGBFS Replacement	Equivalent Cement Factor
< 20	1.1
20 to 45	1.0
45 to 65	0.9
> 80	0.8

Initial temperature ${}^{\circ}F = Maximum$ temperature ${}^{\circ}F - Temperature$ rise ${}^{\circ}F$

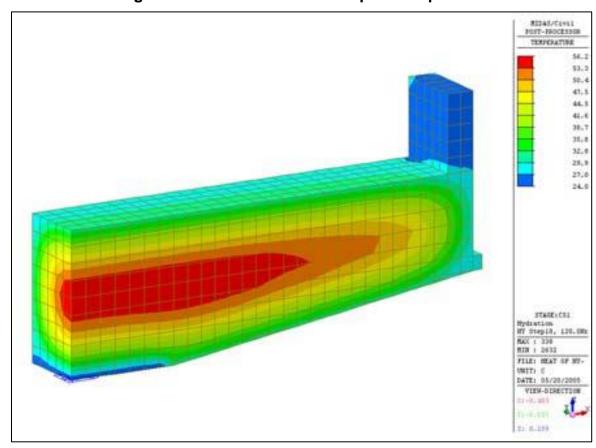


Figure 2-24 Mass concrete temperature profile

2.8.2. Shrinkage

- Detrimental volume changes that occur in concrete and results in cracking which impacts strength and durability
- Concrete is at its largest volume while plastic and immediately after being placed
- Types of shrinkage are:
 - Plastic shrinkage occurs when concrete is plastic resulting from loss of water from evaporation at the surface or from absorption of water from dry underlying materials
 - 2. Drying shrinkage is unavoidable and occurs when water dries out of the hardened concrete in its service environment
 - 3. Chemical shrinkage occurs because the hydration reaction products occupy less space than the cement and water
 - 4. Autogenous shrinkage is due to water leaving the capillaries and gel pores during hydration, particularly for very low w/c ratio mixes
 - 5. Carbonation shrinkage occurs due to a reaction between CO₂ in the atmosphere and CH which decomposes into calcium carbonate

Figure 2-25 Relative magnitudes of different types of shrinkage

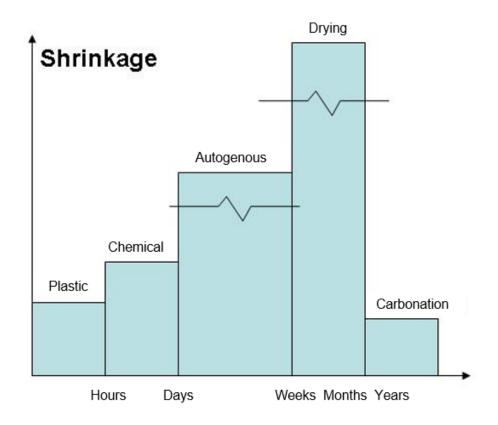


Figure 2-26 Plastic shrinkage cracks form perpendicular to wind direction

- Mitigation methods:
 - Plastic shrinkage limit excessive evaporation, cure properly, dampen subgrade and forms, use synthetic fibers and limit paste content
 - Drying shrinkage limit paste content, increase coarse aggregate content and optimize gradation and top size, cure properly, control with joints
 - 3. Chemical shrinkage limit paste content, use lower heat generating cements, use fly ash, use internal curing/lightweight aggregates
 - 4. Autogenous shrinkage use lower heat generating cements, use fly ash, use internal curing/lightweight aggregates
 - 5. Carbonation shrinkage limit paste content, use SCMs

2.9. Cement Content

- Cement content should be optimized to provide the needed workability for the placement technique and element being constructed while maintain the desired w/c ratio for adequate strength and permeability
- Perfect optimization of cement allows paste (cement and water) to coat all particles and fill void spaces entirely
- Mixes with too little paste can be considered harsh and non-workable
- Mixes with too much paste can be sticky and expensive

- Cement reductions should not occur if water additions are needed to maintain workability and the desired w/c ratio cannot be maintained
- PCA and ACPA recommend a minimum cementitious content of 564 lbs/yd³ for pavements exposed to severe freeze thaw and deicing chemicals (w/c ratio 0.40 to 0.45)
- Performance engineered mixes (PEM) for paving with cement contents of 500 to 520 lbs/yd³ are currently being evaluated in lowa
- Mixes that must be pumped and close at form faces contain more fine aggregate and have cement contents typically above 600 lbs/yd³
- Aggregate service histories are reduced when Class B mix proportions (lower cement and higher w/c ratios) are compared to Class C mix proportions (higher cement and lower w/c ratios)
- ACI 211.1 mix designs are often found to have very high cement contents

2.10. Curing

- Proper curing of concrete ensures adequate moisture and temperatures are maintained at early ages for continued hydration and development of strength, resistance to freezing, volume stability, and scaling resistance
- Air dried concrete hydrates for a short amount of time resulting in reduced strengths and higher permeability
- Moist cured concrete hydrates as long as moisture is present resulting in higher strengths and reduced permeability

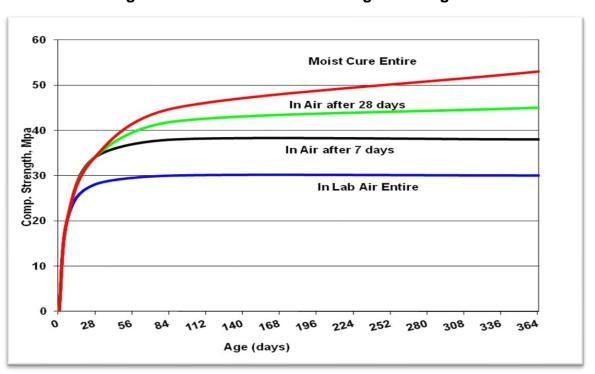


Figure 2-28 Effect of moist curing on strength

- Higher curing temperatures increase early strength but reduce ultimate strength and increase permeability due to a coarser less consistent hydration product
- Lower curing temperatures reduced early strength but increase ultimate strength and reduce permeability due to a finer more consistent hydration product

140
120
40-F
120
40-F
73 F
120 F
80
120 F

120 F

Age (days)

Figure 2-29 Curing temperature effect on strength

31

CHAPTER 3 CHEMICAL ADMIXTURES

3. Chemical Admixtures

- Large variety capable of modifying almost any mix property
- Most common properties modified are air, workability, and set
- Enhance properties of a good mix NOT fix a poor mix or bad construction practices
- Allow designer to achieve desired mix properties efficiently and economically
- Address unique conditions
- Multiple effects exist and must be understood and accounted for
- Derived from waste products of other industries
- Technical assistance provided by manufacturer is useful
- I.M. 403 lowa DOT approved sources chemical admixtures

Table 3-1 I.M. 403 Appendix summary

Appendix	Admixture	Intent	Application
Α	Air entraining	Entrain air	All
В	Retarding and water reducing	Retard and reduce water demand for extended working time	Bridge decks and drilled shafts
С	Water reducing admixtures (low and mid range)	Reduce water demand	Paving or structural concrete
D	High range water reducing	Reduce water demand or enhance workability	SCC
E	Non-chloride accelerating	Reduce set time	Concrete with steel
F	Prestressed/precast	Better compatibility, appearance, and production	Dry cast
G	Retarding and water reducing	Retard, reduce water demand, or both for normal working time	Paving or structural concrete
Н	Special performance admixtures	Viscosity modifying, anti-segregation, strength enhancing, permeability reducing	Specialty

Figure 3-1 Chemical admixture and dispensing equipment

3.1. Air Entraining

3.1.1. Background

- Most commonly used admixture
- Stabilize and entrain millions of tiny bubbles formed during mixing
- Entrained bubbles provide freeze thaw protection in the hardened state
- Bubbles improve workability and decrease potential for bleeding and segregation in the plastic state
- Discovered in the 1930's when beef tallow was used as a grinding aid resulting in a network of tiny spherical bubbles in the concrete and exceptionally durability in harsh winter conditions
- Derived from pine wood resins, vinsol resins, and synthetic detergents
- Made of complex molecules that are attracted to water (hydrophilic salts) at one end and repel water (hydrophobic resin) at the other end
- Folding and mixing introduces tiny air bubbles into the concrete
- The hydrophobic resin end of the air entraining agent attaches itself into air bubbles while the hydrophilic end affixes itself into the water in the paste
- The ends attached into the paste are charged and attracted to the cement grains while repelling other bubbles with the same charge, resulting in the bubbles being anchored and not consolidating into large bubbles
- ASTM C 260 specification requirements

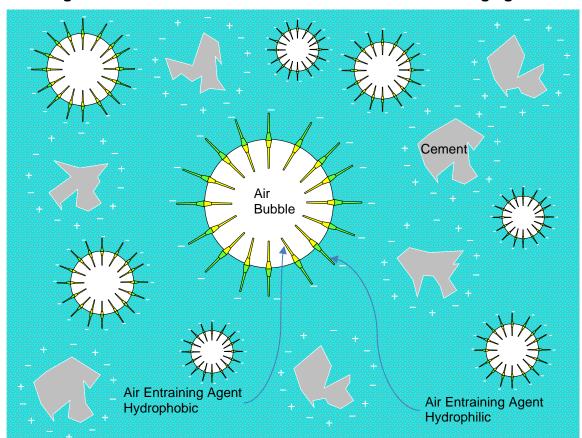


Figure 3-2 Stabilization of air bubbles with air entraining agent

3.1.2. Use and Multiple Effects

- Air entrainment is used on exterior concrete exposed to wet conditions and freeze thaw
- Items exposed to severe conditions or mixes with higher paste contents will require greater protection
- Prestressed beams do not include air entrainment as they are protected from the deck and not exposed to water
- Interior floors with a steel trowel finish do not typically use air entrainment as blistering may result
- Drilled shafts are completely air entrained to prevent the oversight of not including air entrainment above the frost line
- Multiple effects of air entrainment include reduced strength as well as increased workability
- Compressive strength is reduced approximately 5 percent for every 1 percent of entrained air
- Workability is improved as the bubbles reduce the interaction between coarse aggregate

3.1.3. Freeze Thaw Damage

- Concrete is porous due to capillary pores left after hydration is complete
- When concrete is exposed to water, the capillary pores wick water into the concrete and act as channels to move the water further into the concrete
- When freezing occurs, the water will start to turn to ice in the center of the largest capillaries expanding about 9 percent in volume
- Air bubbles act as pressure relief valves to accept the water being displaced by the expanding ice in the larger capillaries
- If no air bubbles exist, the water will be confined in the smaller capillaries and extreme pressures will develop internally in the concrete, causing cracking and allowing further water infiltration and freeze thaw damage

Figure 3-3 Freezing liquid expansion and air void relieving pressure

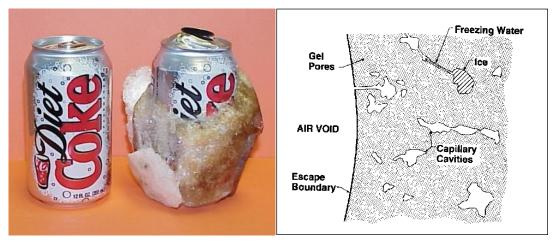


Figure 3-4 Example of freeze thaw damage on five-year-old pavement

3.1.4. Air Void System

- Amount and bubble size distribution defines the air void system
- Proper air void system is required to provide adequate freeze thaw protection
- Amount of air bubbles or air content is expressed as a percentage of concrete volume
- Air content must be in the range of 5.0 to 8.0 percent for adequate freeze thaw protection in Iowa
- lowa DOT targets 6.0 percent (0.060 by volume) air content for inplace hardened concrete
- Air content is tested in the plastic state with the air pot in the field
- Bubble size distribution is determined in the hardened concrete using microscopic methods
- To ensure adequate freeze that protection, water should travel no further than 0.008 inches before an air void is reached
- The theoretical distance water must travel to reach an air void is termed spacing factor
- Many small bubbles distributed throughout the paste provides better protection by ensuring all parts of the paste are within 0.008 inches of an air void realm of protection

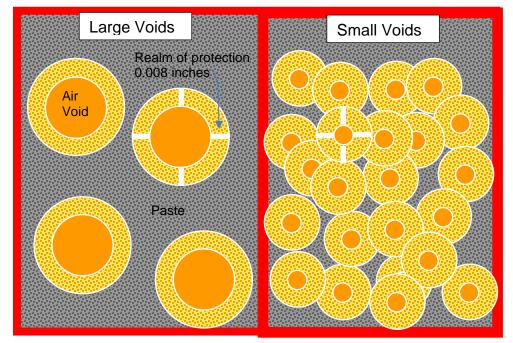
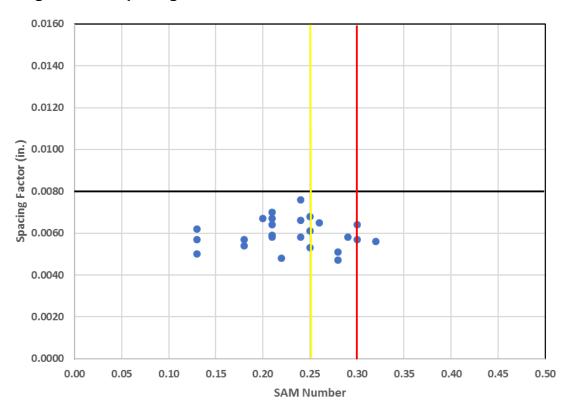



Figure 3-5 Air size distribution effect on paste protection

3.1.5. Super Air Meter (SAM)

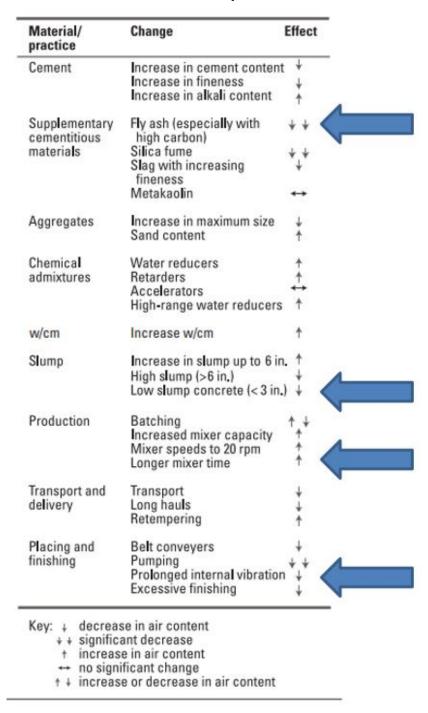

- SAM is a modified Type B Pressure Meter that functions in two ways
- Provides the same information on air content as a standard air test in addition to subjecting the concrete to a series of high pressures
- Takes approximately 10 to 15 minutes to run
- Concrete response to the series of high pressure allows for the air void system to be characterized with a SAM number that relates directly to spacing factor
- Precision and repeatability are still being evaluated
- Devices are being used for development and monitoring of performance engineered mixes (PEM) and quality control but not acceptance

Figure 3-6 Spacing factor versus SAM number Iowa DOT Q-MC mix

- 3.1.6. Material and Placement Factors Influence on Air Content
- Air content is influenced by many factors and therefore needs to be constantly tested and adjusted
- Critical placements like bridge decks have higher testing frequencies

Figure 3-7 Effects of materials and placement factors on air content

3.2. Water Reducers

3.2.1. Background

- Reduce the quantity of water required to achieve a given degree of workability
- Can be used in three ways:
 - 1. Same amount of cement but a reduced amount of water
 - Water reducing
 - o W/C ratio reduced and workability remains the same
 - Improved concrete quality
 - 2. Cement and water are reduced by same proportion
 - Cost reducing
 - W/C ratio and workability are maintained
 - Similar concrete quality
 - 3. Use the same amount of water and cement
 - Workability enhancer
 - o W/C ratio maintained and workability is increased
 - Similar concrete quality
- Water reducers can be classified into the general types of low, mid, and high range
- Mid and high range are similar materials at different dosage rates

Table 3-2 General types of water reducers

Туре	Use	Percent Water Reduction	Slump Range	Material
Low	General use for a variety of applications to reduce w/c ratio, increase slump, and improve workability	5 - 10	1 - 5	Lignosulfates, hydroxylated carbolic acid, carbohydrates
Mid	General use for a variety of applications to reduce w/c ratio, increase slump, and improve workability	8 - 15	5 - 8	Lignosulfates and polycarboxylates
High	Specialized applications with very low w/c ratios and high strengths or congested placements requiring significant increases in slump and improved workability	12 - 30+	> 8 inches or SCC	Lignosulfates, polycarboxylates, and others

- After grinding, the cement particles carry residual positive or negative charges, the oppositely charged particles attract to one another tying up a considerable amount of water and reducing workability
- All water reducers neutralize the residual charges and deflocculate the cement particles releasing the tied-up water
- Polycarboxylates provide additional defloculation through steric hindrance in which a negatively charged carbon chain attaches to the cement particles causing the particles to repel one another

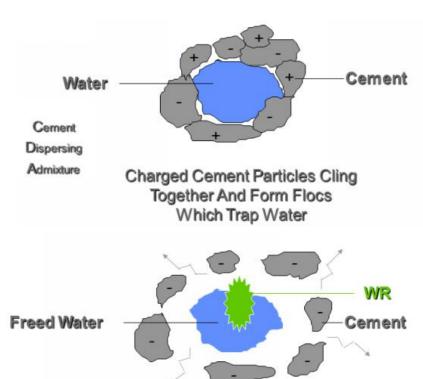
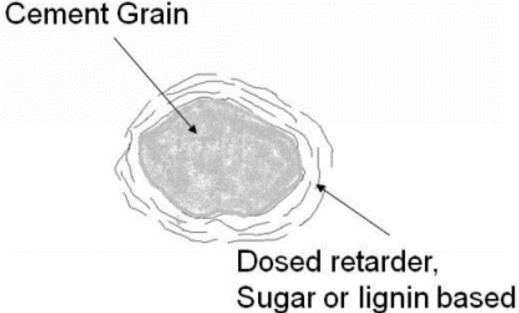


Figure 3-8 Dispersion of cement particles by a water reducer

Water Reducers separate flocs into individual grains. Trapped water is released and the grains slip by each other like ball bearings, improving the workability of the concrete

3.2.2. Use and Multiple Effects

- May or may not be required by specification
- Normal (low or mid) water reducers are typically used on pavement, patching, structures, and decks
- Mid or high range water reducers are required on drilled shafts
- High range is used on prestressed beams, some precast, and special applications like SCC


- Multiple effects of water reducers include increased air content and retardation of hydration
- High range water reducers may entrain larger bubbles and cause air instability
- ASTM C 494 specification requirements

3.3. Retarders

3.3.1. Background

- Delay and slow the early stages of hydration
- Similar to low range water reducers and have active ingredients of either lignosulfonates, hydroxyl carboxylic acids, or sugars
- Often classified as combination water reducer/retarder
- Typically, 0.03 to 0.15 percent sugar added to concrete will retard set indefinitely
- Retarders work by forming a film on the cement grains which prevents the water from fully contacting the cement grain and delays and slows down hydration from occurring
- After the film dilutes and wears off hydration begins and occurs normally
- Although hydration is delayed and slowed, ultimate strength and durability are the same or slightly increased

Figure 3-9 Retarder coating cement grain

3.3.2. Use and Multiple Effects

- May or may not be required by specification or engineer based on conditions
- Used in hot weather to increase working times, with long hauls, in large mass pours to prevent cold joints, on decks to avoid deflection cracks, and in elements with difficult placements or with special finishing
- Required on drilled shafts
- Extend mixed to placed time by 30 minutes for paving concrete transported without agitation
- Multiple effects of higher final strength and a greater potential for bleeding
- ASTM C 494 specification requirements

3.4. Accelerators

3.4.1. Background

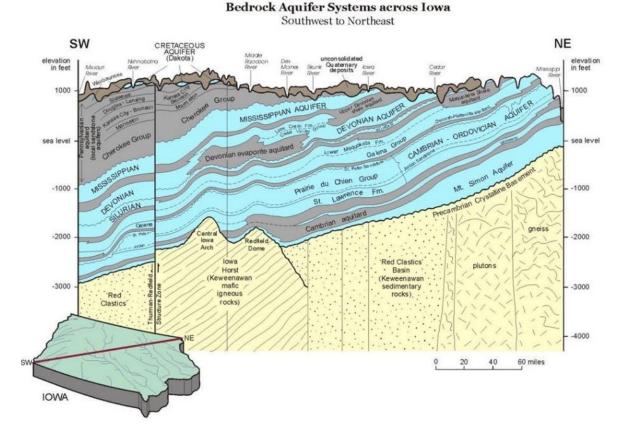
- Shorten the rate of setting and increase early strength
- Three chemical types are calcium chloride (CaCl₂), calcium nitrate, and calcium nitrite
- Calcium chloride is a soluble inorganic salt and is not for use in applications with reinforcement
- Calcium nitrate is a soluble organic compound and is safe for use in applications with reinforcement
- Calcium nitrite is an inorganic compound and is safe for use in applications with reinforcement as it is a corrosion inhibitor
- Calcium chloride is the most commonly used and most effective accelerator
- Accelerators work by breaking down cement particles, making them more permeable and increasing the rate at which tricalcium silicate (C₃S) reacts with water
- Increased C₃S reactivity increases the rate of calcium hydroxide (CH) growth resulting in higher strength in the first 24 hours

3.4.2. Use and Multiple Effects

- Not required by specification and should only be used when other options such as type III cement, insulating blankets, a lower w/c ratio, heating, and/or rapid setting bagged mixes are ineffective
- Most commonly used in pavement patching
- Multiple effects included reduced ultimate strength, durability, rapid stiffening, and corrosion of reinforcement
- ASTM C 494 specification requirements

3.5. Specialty Admixtures

- Viscosity modifying
 - Used in SCC and underwater concrete
 - Minimize the movement of water and fines away from the bulk concrete
- Shrinkage reducing
 - Used in crack critical flatwork and decks
 - Reduce the surface tension of the mix water limiting the formation of menisci in capillaries and reducing shrinkage as concrete dries
- Hydration control
 - Used for extremely long haul times
 - Very potent retarders used to stop hydration, activator is needed to wake mix and start hydration
- Alkali-silica reaction inhibiting
 - Used to stop ASR when supplementary cementitious materials are not available
 - o Lithium based, chemical stops ASR reaction
- Colorants
 - Used to provide coloring for aesthetics
 - o Liquid or powder pigments in the desired color


CHAPTER 4 AGGREGATE

4. Aggregate

4.1. Iowa Overview

- lowa has been repeatedly subjected to successive periods of sea coverage, uplift and faulting, and erosion, most recently followed by a period of glacial advances and retreats
- During periods of sea coverage limestone, shale, and sandstone were deposited
- Glacial advances and retreats resulted in gravels and sands being deposited and carried in the glacial outwash in rivers and streams
- Rock formations in Iowa slant from the north and east to the south and west
- At easily accessible depth, the oldest and best rocks occur in the northeast and the youngest and worst rocks occurring in the southwest
- Quartzite, originally a sandstone metamorphized under high pressure and temperature, occurs only in the northwest
- All approved aggregate sources in lowa are listed in the T-203 by county

Figure 4-1 Geological cross section of Iowa

44

4.1.1. Coarse - Article 4115

- Material retained on the #4 sieve and above
- Typically meets gradation 3 or 5 on Table 4109.02-1
- Crushed limestone, crushed quartzite, or gravel
- A washed crushed limestone is commonly used in lowa
- Meet specified durability class

4.1.2. Intermediate – Article 4112

- Material passing the ½ inch sieve and retained on the #4 sieve
- Meets gradation 2 on Table 4109.02-1
- Used to obtain a well graded combined grading on QM-C, BR, and HPC-D
- Crushed limestone, crushed quartzite, or pea gravel
- Produced during coarse aggregate production and often scalped out
- Often reintroduced as separate third bin, providing easy adjustments to aggregate blends
- Limestone and quartzite are required to have the same durability classification as the coarse aggregate for the mix being designed
- Pea gravel not to exceed 15 percent of total aggregate used in the mix if it is a lower durability class the than coarse aggregate

4.1.3. Class V Aggregate – Article 4116

- Sand gravel blend from Platte River in Nebraska with approximately a ½ inch top size
- Meets gradation 7 on Table 4109.02-1
- Well graded combination typically at a 45% coarse aggregate and 55% Class V
- Requires use of class F fly ash or GGBFS to reduce potential alkali silica reactivity

4.1.4. Fine – Article 4110

- Material passing the #4 sieve
- Meets gradation 1 on Table 4109.02-1
- Natural sand is used exclusively
- Shale and coal limits but no durability classes

Figure 4-2 Comparison of Class V sand/gravel blend and 4110 sand

4.2. Aggregate Properties to Consider for Concrete

4.2.1. Strength

- Soft coarse and intermediate aggregate will limit concrete strength and wear resistance
- Critical for very high strength concrete or pavements that will be ground and have exposed aggregates
- Soft aggregates can also degrade during handling and transport resulting in excessive fines
- Excessive fines require additional paste and can affect workability, air entrainment, and paste to aggregate bond

4.2.2. Texture

- Texture can be classified from rough to smooth
- Rough textured aggregates have fractured faces creating more surface area, requiring more paste to achieve a desired workability
- Smooth textured aggregates do not have fractured faces and require less paste to achieve a desired workability
- Rough texture of limestone provides a better bond with paste and typically higher strengths compared to the glassy quartzite or smooth gravel texture

4.2.3. Shape

- Shape can be classified as rounded, cubical, or flat and elongated
- Rounded and cubical shaped aggregates pack closer together and have less interference when being placed, resulting in less paste being required to fill void spaces and achieve a desired workability
- Flat and elongated aggregates do not pack tightly and conflict each other when being placed, resulting in more paste to fill void spaces and achieve a desired workability
- Flat and elongated particles can settle on top of one another causing segregation
- Crushing techniques have a direct influence on the shape obtained

4.2.4. Ideal Texture and Shape

- For normal strengths concrete, the ideal aggregate shape and texture for optimizing paste content while providing the desired workability is smooth and rounded
- Relationships between texture and shape and paste required to provide a desired workability is more critical for intermediate aggregate due to increased amount of surface area and interaction points

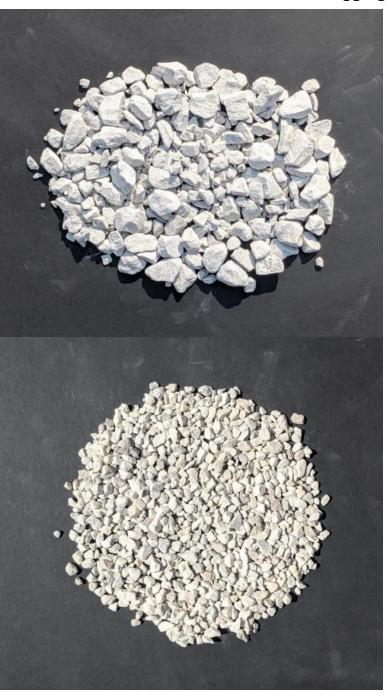

- Smooth and rounded particles have a lower surface to volume ratio and a decreased amount of void space between adjoining particles, requiring less paste to coat the surfaces and fill the void spaces while providing workability
- River gravels are typically smooth and rounded

Figure 4-3 Gravel coarse and intermediate aggregates

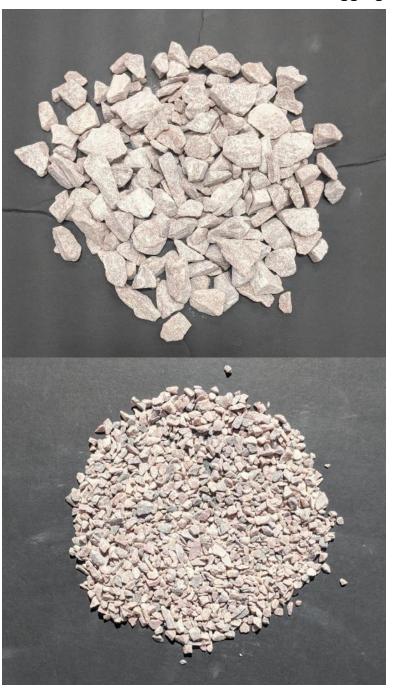
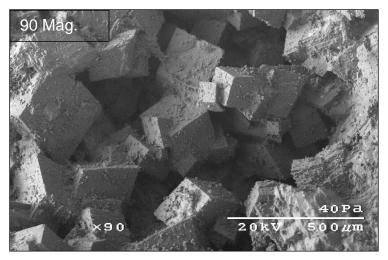

- Slightly rough and cubical particles will require more paste to be coated and fill void space between adjoining particles while providing workability
- Crushed limestone is typically slightly rough and cubical

Figure 4-4 Limestone coarse and intermediate aggregates

- Rough and flat and elongated particles will require the most paste to be coated and fill void space between adjoining particles while providing workability
- Crushed quartzite may have more flat and elongated particles


Figure 4-5 Quartzite coarse and intermediate aggregates

4.2.5. Freeze Thaw Durability

- Freeze thaw durability of coarse and intermediate aggregate is affected by the continuity and size of pores and the presence of clay
- The pore system is characterized by the lowa Pore Index test
- Coarse grain dolomitic limestone have large interconnected pore systems which allow water to move out freely during freezing
- Very fine grain limestone have very small pore systems which prevent water from entering completely
- Poor quality aggregates with intermediate interconnected pore systems that trap water during freezing causing expansion and cracking
- Clay content is determined through X-ray fluorescence testing
- Clays expand in the presences of water causing expansion and cracking
- Damage due to aggregate freeze thaw durability is called D-cracking

Figure 4-6 Coarse grained dolomitic limestone (top) versus fine grained limestone susceptible to freeze thaw damage (bottom)

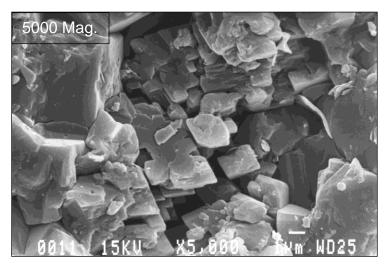


Figure 4-7 D-cracking deterioration

4.2.6. Deleterious Materials

- Aggregate impurities that adversely affect concrete performance and/or appearance
- Coal, shale, chert, and other organic materials are the primary deleterious materials
- Readily absorb moisture and degraded or experience disruptive expansion when freezing in a moist state
- Coal and shale are light and float to the top of finished concrete resulting in a concentration of pop outs and a marred surface
- Localized pop outs occur at individual chert and oolite particles
- Pop outs are a cosmetic flaw and generally do not affect durability
- lowa DOT specifications and durability classes are not developed for aesthetically critical concrete
- Specifying highest durability rating does not guarantee elimination of pop outs
- For aesthetic or highly visible concrete, aggregates containing minimal amounts of deleterious materials should be used

Figure 4-8 Oolite pop outs(left) and shale/chert pop outs (right)

4.2.7. Chemical Reactivity

- Primary reaction mechanisms are related to alkalis and deicing salts
- Alkali-silica reactions form expansive gel like material around reactive silica aggregate
- When severe, expansive gels lead to random internal and surface cracking
- Although present in lowa aggregates, alkali-silica reactivity is not severe enough to cause durability issues
- Salt susceptibility occurs in impure dolomitic limestones when the deicing salts destabilize the crystal structure of the aggregate
- Destabilization leads to failure of the aggregate paste bond and ultimately cracking and strength loss

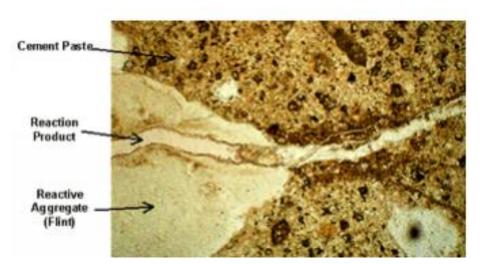
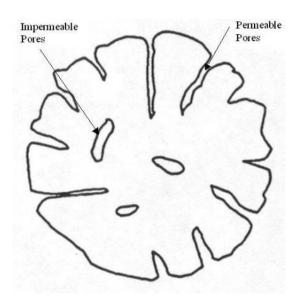


Figure 4-9 Alkali silica gel

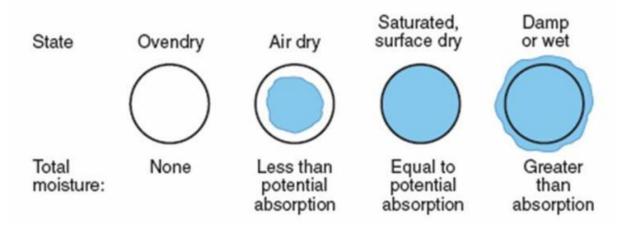
4.2.8. Durability Classes


- Classes are assigned based on physical and chemical testing
- Physical testing includes the lowa Pore Index test
- Chemical testing includes X-ray fluorescence and diffraction for mineralogy makeup and X-ray fluorescence for clay content
- Physical and chemical test results are used to calculate a quality number and assign the durability class
- Three durability classes for intermediate aggregate in Iowa
 - Class 2 = minimal deterioration only after 20 years, non-interstate usage
 - Class 3 = minimal deterioration only after 25 years, non-interstate usage
 - Class 3I = minimal deterioration only after 30 years, interstate usage

4.3. Moisture Conditions and Batch Weight Corrections

4.3.1. Pores

- Nearly all aggregates have permeable and impermeable pores
- Permeable pores connect with the outside surface and permit liquids and gases to penetrate
- Impermeable pores are entirely enclosed within the aggregate and cannot be filled by liquids or gases from the outside
- Amount of permeable pores determines the absorption of the aggregate


Figure 4-10 Porous aggregate with permeable and impermeable pores

4.3.2. Moisture Corrections

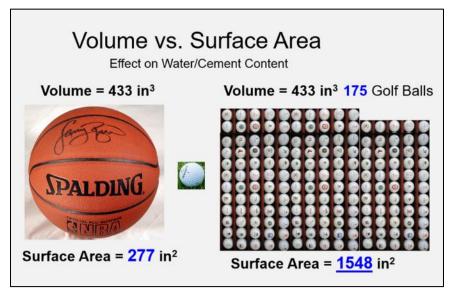
- Four aggregate moisture conditions exist
- Oven dry and saturated surface dry (SSD) are theoretical conditions
- Airdry and damp or wet are conditions that occur in practice
- SSD has water equal to absorption, air dry has water less than absorption, and damp or wet has water greater than absorption
- SSD conditions properly represent the equilibrium condition the aggregates become in the mix when they neither contribute or absorb mix water
- Aggregate with moisture conditions other than SSD must be corrected to a SSD condition
- Corrections are required to batch weights of aggregates and mix water
- Corrections help to provide a mix that is batched near or at the design w/c ratio and is more consistent over time
- Iowa DOT uses pycnometer to determine moisture content and calculate corrections
- Dry batch weight is the same as SSD batch weights
- Wet batch weight is the corrected or adjusted batch weight

Figure 4-11 Moisture conditions of aggregates

4.4. Gradation

4.4.1. Influence on Concrete Performance

 Aggregate gradation controls packing potential and the surface area to be coated by paste, which substantially influences the mix proportions, economy, water demand, workability, finishability, air entrainment, and shrinkage


4.4.2. Nominal Maximum Aggregate Size

- Largest sieve that retains some of the aggregate particles but generally not more than 10 percent
- Decision point in ACI 211.1 mix design
- Desirable to use largest available nominal maximum aggregate size available meeting project constraints

4.4.3. Surface Area

- Surface area of the aggregate controls the amount of paste required for coating
- Finer particles have a greater surface area for a given volume compared to coarser particles
- Increased amount of fine aggregate requires more paste

Figure 4-12 Relationship of particle size to volume and surface area

4.4.4. Fineness Modulus (FM)

- Index to describe how fine or coarse a given aggregate is
- Higher FM indicates a coarser gradation
- Lower FM indicates a finer gradation
- Typically used for fine aggregate but may be applied to any aggregate including combined
- Steps for determining FM:
 - 1. Determine the percent retained for the 6", 3", 1.5", 3/4", 3/8" #4, #8, #16, #30, #50, and #100
 - 2. Determine the cumulative percent retained for each sieve
 - 3. Sum all the cumulative percent retained and divide by 100

Example: FM calculation

Sieve Size	Percent Retained	Cumulative Percent Retained
6"	0	0
3"	0	0
1.5"	0	0
3/4"	0	0
3/8"	0	0
#4	2	2
#8	13	_15
#16	20	_35
#30	20	_55
#50	24	_79
#100	18	97
Pan	3	NA
Sum		283
Calculation		283 ÷ 100
FM		<u>2.83</u>

4.4.5. ASTM-C33

- Standard specification for concrete aggregates
- Individual aggregate grading requirements
- lowa DOT has adopted portions of ASTM-C33
- Differences are in fine aggregate gradations and special requirements (lowa DOT)
 - Fine aggregate must have no more than 45 (40) percent retained between two consecutive sieves
 - FM of the fine aggregate must not be less than 2.3 nor more than
 3.1 (no FM requirement 2.60 minimum)
 - Limits on minus #200 may be adopted (0-1.5)
- ASTM and Iowa DOT fine aggregate gradations are for natural sand
- Manufactured sands require a high amount of minus #200 to produce a workable mix
- Designing concrete mixes with individual aggregate gradations does not guarantee a mix is optimized or has desirable properties
- Open bands can lead to significant variation between sources
- Missing material requirements, particularly on the 3/8", #4, and #8 sieve can lead to gaps in these particle sizes

 Individual gradations are often specified and used in mixes due to ease and because aggregate producers have these products available

Table 4-1 ASTM-C33 and Iowa DOT gradation bands comparison

Sieve Size	ASTM #57 lowa DOT No. 3	ASTM #67 lowa DOT No. 5	ASTM	Iowa DOT No. 1
	Coarse	Coarse	Fine	Fine
1.5"	100			
1.0"	95 to 100	100		
3/4"		90 to 100		
1/2"	25 to 60			
3/8"		20 to 55	100	100
#4	0 to 10	0 to 10	95 to 100	90 to 100
#8	0 to 5	0 to 5	80 to 100	70 to 100
#16			50 to 85	
#30			25 to 60	10 to 60
#50			5 to 30	
#100			0 to 10	

4.4.6. Combined Aggregate Grading

- Since 1930's, the emphasis has been on an individual two aggregate approach, focusing on nominal maximum size for coarse aggregate and FM for fine aggregate
- Earlier fundamental work focused on FM of combined aggregate grading
- Recently, Shilstone and others have revived fundamental approach of focusing on combined aggregate grading
- Optimizes packing and fineness allowing for reduced paste demand while maintaining or improving workability and other mix properties
- Used on Iowa DOT QM-C, BR and HPC-D mixes

4.4.7. Combined Aggregate Gradation Classifications

4.4.7.1. Uniformly Graded

- Aggregate particles are almost all the same size
- Nearly vertical curve when plotted on percent passing chart
- Loose packing requiring more paste to fill voids
- Difficult to place because particles are in conflict when moving

4.4.7.2. Gap graded

- Aggregates particles with deficiencies in 3/8", #4, and #8 sieve sizes
- S shape curve when plotted on the percent passing chart
- Tend to segregate more easily
- Higher amount of fines is often required resulting in higher paste and greater water demand
- Sticky and difficult to finish

4.4.7.3. Well graded

- Aggregate particles are over a wide range of sizes in relatively equal amounts
- Constant sloped line when plotted on the percent passing chart
- Less prone to segregation
- Easier to place because particles are moving together
- Lower amount of fines is often required resulting in lower paste and lower water demand
- · Not sticky and easier to finish

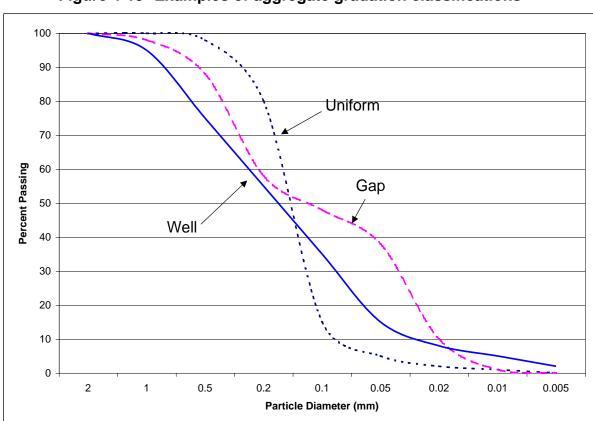


Figure 4-13 Examples of aggregate gradation classifications

4.4.8. Mathematically Combined Aggregate Gradation

- Combined aggregate grading is accomplished by mathematically combining coarse, fine, and intermediate individual gradations
- Relative percentages are the percentages of each individual aggregate being combined, their sum must equal 100 percent
- Relative percentages will be determined by the designer
- Individual percent passing will be determined in a laboratory
- Individual percent passing for the #16, #30, #50, and #100 sieves for the coarse and intermediate aggregate are theoretical and provided so that combined calculations can be determined
- Steps for mathematically combining aggregates:
 - 1. Estimate the relative percentages
 - 2. Determine the combined percent passing by multiplying the relative percentage by the percent passing for each individual aggregate and sum the total for each sieve size

P=Aa + Bb + Cc

P= Combined percent passing of a given sieve A,B,C = Percent passing given sieve for aggregate A, B, and C a,b,c = Relative percentage of aggregate A,B, and C

> Convert the combined percent passing to combined percent retained by subtracting the combined percent passing on the top sieve from 100 and the combined percent passing from each subsequent sieve, thereafter

Example: mathematically combined grading

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Relative Percent	0.48	0.12	0.40		
1 1/2"	100.0	100.0	100.0	100.0	100-100 = 0.0
1"	98.0	100.0	100.0	99.0	100-99 = 1.0
3/4"	75.0	100.0	100.0	88.0	99-88 = 11.0
1/2"	38.0	100.0	100.0	70.2	88-70.2 = 17.8
3/8"	21.0	86.0	100.0	60.4	70.2-60.4 = 9.8
#4	4.0	21.0	92.0	41.2	60.4-41.2 =19.2
#8	1.8	4.1	82.0	34.2	41.2-34.2 = 7.0
#16	1.6	3.7	66.0	27.6	34.2-27.6 = 6.6
#30	1.5	3.3	42.0	17.9	27.6-17.9 = 9.7
#50	1.3	2.9	14.0	6.6	17.9-6.6 = 11.3
#100	1.2	2.5	1.4	1.42	6.6-1.4 = 5.2
#200	1.0	2.1	0.3	0.85	1.4-0.85 = 0.55

Combined percent passing calculations

```
1 ½"
       100 \times 0.48 + 100 \times 0.12 + 100 \times 0.40 = 100
1"
         98x0.48 + 100x0.12 + 100x0.40 = 99.0
3/4"
         75x0.48 + 100x0.12 + 100x0.40 = 88.0
1/2"
         38x0.48 + 100x0.12 + 100x0.40 = 70.2
3/8"
         21x0.48 + 86x0.12 + 100x0.40 = 60.4
#4
         4.0x0.48 + 21x0.12 + 92x0.40 = 41.2
#8
         1.8 \times 0.48 + 4.1 \times 0.12 + 82 \times 0.40 = 34.2
         1.6 \times 0.48 + 3.7 \times 0.12 + 66 \times 0.40 = 27.6
#16
#30
         1.5 \times 0.48 + 3.3 \times 0.12 + 42 \times 0.40 = 17.9
#50
         1.3x0.48 + 2.9x0.12 + 14x0.40 = 6.6
#100
        1.2 \times 0.48 + 2.5 \times 0.12 + 1.4 \times 0.40 = 1.4
        1.0x0.48 + 2.1x0.12 + 0.3x0.40 = 0.85
#200
```

4.4.9. Graphical Techniques for Evaluating Combined Gradations

- Obtaining a satisfactory combined aggregate gradation is an iterative process done by selecting relative percentages and using graphical techniques to evaluate acceptability
- Graphical techniques used are Shilstone coarseness and workability (CW) chart, 0.45 power, percent retained/tarantula curve
- I.M. 532 explains these techniques and their use in detail
- A spreadsheet is used to quickly determine the mathematically combined grading and the resulting graphs
- Tarantula curve, percent retained, and 0.45 power curve may be used to identify issues with individual sieves

4.4.10. Shilstone CW Factors

- Developed by Jim Shilstone from years of field observations
- Numerical values are determined from the combined aggregate gradation and then plotted on the CW chart
- Primary technique used to optimize QM-C, BR, and HPC-D mixes
- Easy to specify and interpret as it is a plotted point
- Does not provide information about specific sieves
- Coarseness factor indicates if a combined aggregate is gap or well graded
- Workability factor indicates if a combined aggregate is fine or coarse

Coarseness factor = $\frac{Sum\ combined\ percent\ retained\ 3/8"\ sieve\ and\ above}{Sum\ combined\ percent\ retained\ #8\ sieve\ and\ above}\ X\ 100$

Workability factor = Combined percent passing #8 Sieve

Example: CW factor calculations

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Relative Percent	0.48	0.12	0.40		
1 1/2"	100.0	100.0	100.0	100.0	0.0
1"	98.0	100.0	100.0	99.0	1.0
3/4"	75.0	100.0	100.0	88.0	11.0
1/2"	38.0	100.0	100.0	70.2	17.8
3/8"	21.0	86.0	100.0	60.4	9.8
#4	4.0	21.0	92.0	41.2	19.2
#8	1.8	4.1	82.0	34.2	7.0
#16	1.6	3.7	66.0	27.6	6.5
#30	1.5	3.3	42.0	17.9	9.7
#50	1.3	2.9	14.0	6.6	11.3
#100	1.2	2.5	1.4	1.42	5.2
#200	1.0	2.1	0.3	0.85	0.6

Coarseness factor
$$= \frac{0+1+11+17.8+9.8}{0+1+11+17.8+9.8+19.2+7.0} \times 100$$
$$= \frac{39.6}{65.8} \times 100$$
$$= \underline{60.2}$$

Workability factor = 34.2

4.4.11. Shilstone CW Chart

- Assumptions
 - o Cementitious content is 564 lbs/yd³
 - For every 94 lbs of cementitious below or above 564 lbs/yd³ the workability factor is adjusted down or up by 2.5 percent
 - o Aggregate shape is rounded or cubical aggregate
 - Additional cementitious may be required when using rough, angular, and/or flat and elongated aggregate
 - Nominal maximum aggregate size of 1 to 1 ½ inches
 - o Placement is by slip form
 - Increase fine aggregate and cementitious for hand work, pumping, or more restrictive placements

- Workability is plotted on the Y axis and coarseness is plotted on the X axis
- Zone II is considered well graded for 3/4" to 1 1/2" aggregate top size
- Zone I indicates a gap graded mix that may tend to segregate
- Zone III is same as Zone II for aggregate top size of less than ½"
- Zone IV indicates a sandy sticky mix
- Zone V indicate a very rocky mix
- As plot approaches other zones, mix may tend to exhibit characteristics of zone that is closest
- Aggregate shape may cause mixes plotting on the same point to exhibit dissimilar workability and paste demand
- Zone II blue box has worked best for QM-C paving
- For slip form paving, Shilstone recommends a target CF of 60 and WF of 35
- Zone II red box has worked best for BR and HPC-D mixes
- Typically, relative percentages of 48% coarse, 12% intermediate, and 40% fine have been found to plot in Zone II

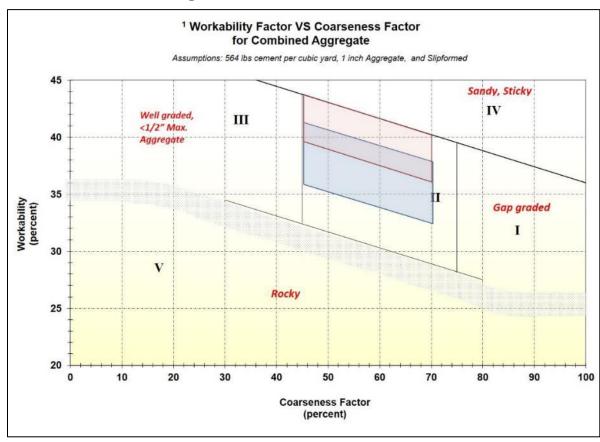


Figure 4-14 Shilstone CW chart

4.4.12. 0.45 Power Curve

- Used as a tool to identify gap or well graded combined aggregate as well as problem sieves
- Sieve sizes in millimeters are raised to the 0.45 power and combined percent passing is plotted
- Maximum density line is straight and passes through the origin and 100 percent of the sieve one size larger than the nominal maximum aggregate size
- Three maximum density lines are shown in red on the chart nominal maximum aggregate sizes of 1 ½", 1", and ¾"
- A well graded gradation will have a line that is relatively straight and follows the maximum density line
- A gap graded combination will have a S pattern and cross the maximum density line
- Gradation line may fall between two maximum density lines, means top size between. Acceptable as long as it is relatively straight
- Typically, the gradation line will deviate below the maximum density line at the #16 sieve, this is acceptable as it is providing space for cementitious material
- Deficient sieves will plot below, and excess sieves will plot above the maximum density line

Figure 4-15 0.45 power curve for a well graded combined aggregate

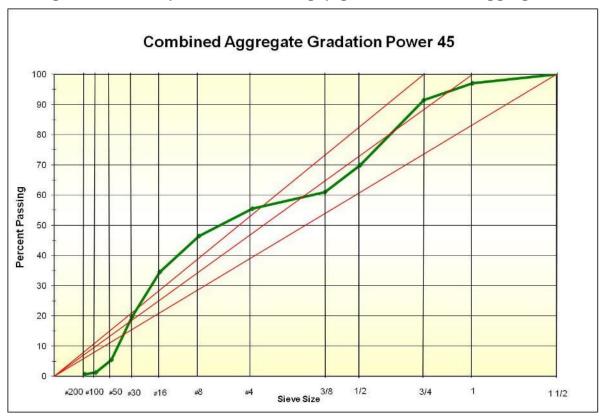
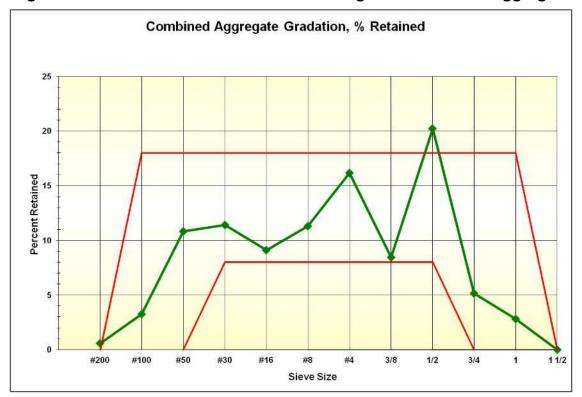
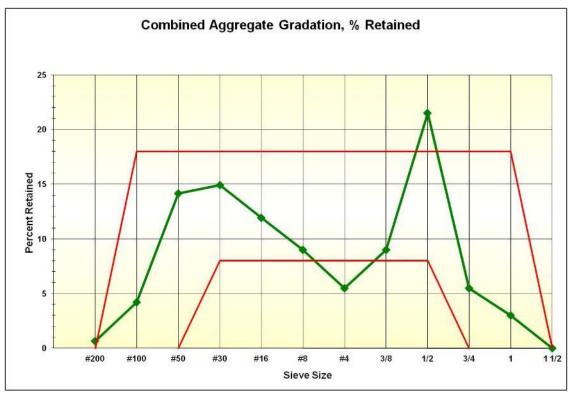


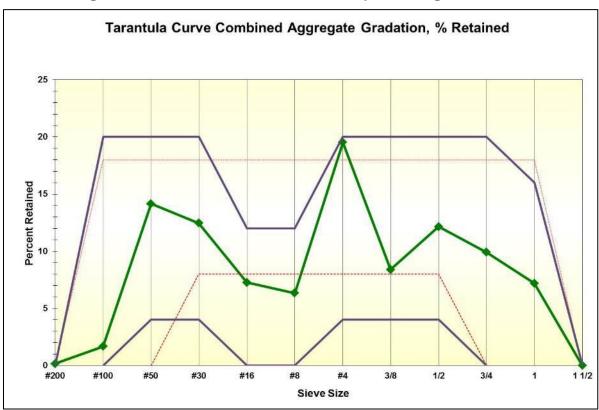
Figure 4-16 0.45 power curve for a gap graded combined aggregate

4.4.13. Percent Retained Chart

- Used as a tool to identify gap or well graded combined aggregate as well as problem sieves
- Percent retained on each sieve is plotted with limits of 8 and 18
- Limits are set so that no more nor less than a certain amount are retained on individual or consecutive sieves
- A well graded gradation will have a plot that does not contain excessive peaks or valleys and falls within limits of the bands
- A gap graded combination will show excessive peaks with a valley in the middle
- In some cases, four to five aggregates may need to be combined to fit perfectly within the bands
- The effort of fitting perfectly within the bands is not justified as it does not provide a noticeably improved mix compared to a mix that uses three aggregates and is barely out on one or two sieves
- Typically, well graded QM-C combined gradations will have one or two sieves outside of the band limits
- One or two sieves outside the limits is acceptable provided they are not out excessively, and the sieves are not consecutive

Figure 4-17 Percent retained chart for a well graded combined aggregate


Figure 4-18 Percent retained chart for a gap graded combined aggregate

4.4.14. Tarantula Curve

- Modified percent retained chart developed by Dr. Tyler Ley at Oklahoma State University
- Based on lab work removing individual sieve sizes and observations of workability with the box test
- Combined gradation must be within boundary limits for each sieve size
- Total volume of coarse sand (#8 #30) must be a minimum of 15 percent
- Total volume of fine sand (#30 #200) must be between 24 to 34 percent
- Limit flat or elongated particles to 15 percent or less at a ratio of 1:3
- Over a hundred historical QM-C gradations have been plotted on the tarantula curve and less than five have fallen outside of the limits

Figure 4-19 Tarantula curve with an optimized gradation

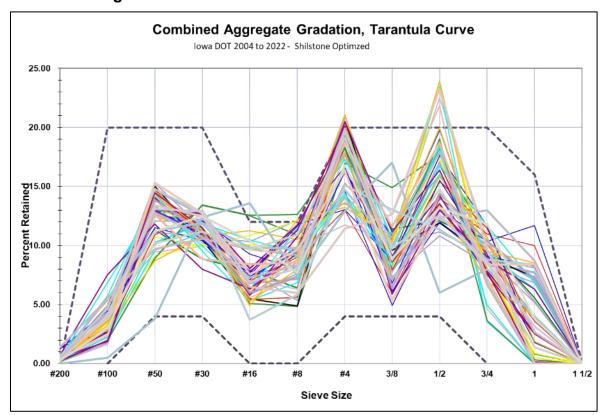


Figure 4-20 Tarantula curve - QMC Mixes 2004-2022

Combined Aggregate Grading and Mix Design

- Design approaches using combined grading require additional effort but produce mixes with desired workability and optimized paste
- Design approaches using fixed relative percentages of individual aggregates is simpler and faster but may or may not produce mixes with desired workable and optimized paste
- Iowa DOT standard I.M. 529 mixes do not consider combined grading and use fixed relative percentages of coarse and fine aggregate
- Iowa DOT Q-MC, BR, and HPC-D mixes use graphing techniques to optimize the combined aggregate gradation
- ACI 211.1 adjusts mix proportions for aggregate grading as coarse aggregate content depends on FM, nominal maximum aggregate size, and packing potential

4.5. I.M. 529 Mixes Using Midpoint of Gradation Limits

- Coarse gradation 3 and fine gradation 1 at midpoint of gradation limits
- C-2 through C-6 mix proportions
- Graphs show variation, excessive fineness, and gap grading tendency

Figure 4-21 CW chart midpoint gradation C-2 through C-6

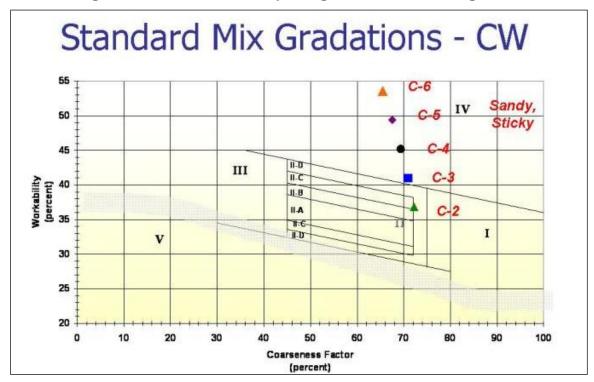
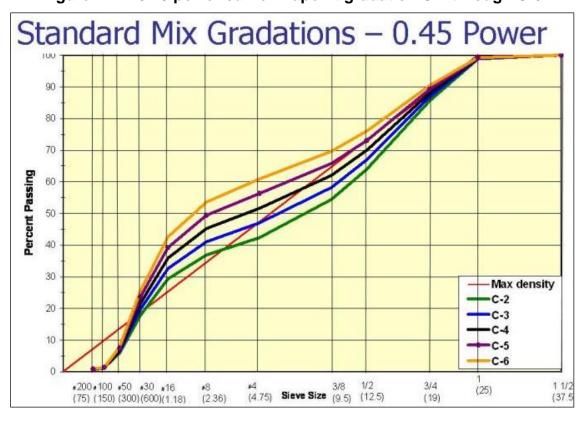



Figure 4-22 0.45 power curve midpoint gradation C-2 through C-6

CHAPTER 5 BASIC CONCEPTS

5. Mix Design

5.1. Overview

- Provides a first approximation of proportions that may need to be adjusted based on laboratory and field performance
- ONE mix design does not work for every application
- Trial batches must always be conducted to verify mix design performance
- Several mix design methods exist

5.2. Objectives

- Utilize local materials and provide greatest economy
- Practical for supplier to mix and transport
- Practical for contractor to place, consolidate, and finish
- Satisfies strength and durability requirements
- Provides consistent reproducible properties in all life stages
- Performs in lab and field

5.3. Life stages

- Fresh, transitional, and hardened life stages must be considered when designing a concrete mix
- Fresh properties will depend upon method of placement
- Transitional properties will depend upon temperature, evaporation, and admixtures
- Hardened properties will depend upon environment and structural design

Table 5-1 Times and concrete properties for life stages

Life Stage	Fresh	Transition	Hardened
Time	Mixer, transport, placement	Placement, end product	End product
Properties	Placeability Workability Slump and consistency Air content and stability Segregation	Rate of slump loss Initial and final set time Rate of strength gain Time to freeze resistance Rate of evaporation	Strength Air void system Frost resistance ASR resistance Sulfate resistance
Prop	Response to vibration Finishability Bleeding Temperature Yield	Plastic shrinkage Drying shrinkage	Permeability Abrasion resistance Shrinkage Aesthetics Cost

5.4. Process

- The following are the general steps used to design and proportion a mix:
 - 1. Identify the job parameters
 - 2. Identify the properties and technical description needed to satisfy the job parameters
 - 3. Proportion 1.0 yd³ of materials to meet the technical description
 - 4. Determine the batch weights
 - 5. Develop and test trial batches to ensure technical description is met
 - 6. Adjust proportions and repeat steps 4 and 5 until the technical description is met with the greatest economy
 - 7. Finalize mix design batch weights using the acceptable trial batch
- Some mix design methods will skip steps because they are prescriptive or are based upon years of acquired knowledge
- While skipping steps makes the process simpler and faster, the ability to completely optimize the mix and ensure the best economy may be lost

Figure 5-1 Mix design process Job **Technical Properties** Description **Parameters** Physical Maximum Maximum Nominal Dimensions of Aggregate Size Aggregate Size Concrete Element Construction Workability Slump Methods Air Content, Void Service Parameters, Cement Durability Type, W/C Ratio, Environment Permeability f'_c , f_r , f_{sp} , E_c Structural Design Strength Final Batch Trial Batch Trial Batch Mix Weights Weights **Proportions**

72

5.5. Job Parameters

- Basis for the mix design
- Describe the element being built, methods and equipment to build it, conditions the element will be subjected to, and design requirements
- May also include specific specification requirements of the owner
- For many projects, including Iowa DOT projects, described in the plans
- Could be described by the customer directly without plans or specifications
- Job parameters must be determined first and defined clearly

5.6. Properties

- Properties describe how the mix must perform to meet the job parameters
- Workability, durability, strength, as well as aggregate size, gradation, and quality are common properties
- Properties may impact more than one job parameter
- With multiple job parameters and multiple impacts designers may need to prioritize, compromise, and balance properties
- In some cases, it may be difficult to completely satisfy all job parameters

5.7. Technical Description

- Provides specific measurable requirements of the properties and is used to proportion the mix
- May include slump, w/c ratio, air content, resistivity, flexural or compressive strength, cement type, use of SCMs, as well as aggregate size, gradation, and quality
- For many projects, including lowa DOT project, described in the plans and specification
- Specifications are developed for specifically for the work type
- Very specialized or project specific requirements may be added with special specifications or plan notes

5.8. Proportioning

- Provides a ratio of component materials meeting the technical description
- A properly proportioned mix has acceptable workability, strength, durability, and uniformity, while providing the greatest economy
- Producer capabilities relative to equipment, materials, and quality control must be considered
- Representative material properties must be known such as specific gravities, gradations, and unit weights
- Adjustments to proportioning will occur until a successful trial batch is obtained and may continue to occur on the project based on field performance

5.9. Material Properties

5.9.1. Particle Density

 Weight of solid particle of material divided by the volume the solid particle occupies

$\rho = \frac{\textit{Mass of solid particle}}{\textit{Volume of solid particle}}$

- Does not include the volume of void space between the particles
- Used for aggregates and cementitious materials to obtain the specific gravity
- For concrete, impermeable pores are included when determining the particle density of aggregates
- Typical units are lbs/ft³
- Water has a constant particle density of 62.4 lbs/ft³

5.9.2. Specific Gravity (SPG)

- Dimensionless ratio relating particle density to the density of water
- For aggregates, different specific gravities exist depending on the moisture condition and if impermeable pores are included
- For concrete, bulk specific gravity SSD (BSG_{SSD}) is used for aggregates
- B indicates impermeable pores are included and SSD is the moisture condition
- Water always has a specific gravity of 1.0
- In water, a solid piece of material with a specific gravity less than 1.0 will float and greater than 1.0 will sink
- Must be know for all mix materials for all mix design approaches

$$SPG = \frac{Weight\ of\ solid\ material\ of\ known\ volume}{Weight\ of\ water\ of\ equal\ volume}$$

or

$$SPG = \frac{Particle\ density\ of\ material}{Particle\ density\ of\ water}$$

Example: specific gravity calculation

Given 1.0 ft³ of solid material weighs 172 lbs, what is the specific gravity?

$$SPG = \frac{172 \text{ lbs/ft}^3}{62.4 \text{ lbs/ft}^3} = \underbrace{2.76}_{}$$

5.9.3. Unit weight

- Indicates the weight of a material for a given volume
- Same as particle density for liquids and solid materials
- Water has a constant unit weight of 62.4 lbs/ ft³
- If voids are included between the aggregate particles, then it is a bulk unit weight or more commonly referred to as dry rodded unit weight
- Dry rodded unit weight must be known for ACI 211.1 mix design approach
- Typical units are lbs/ft³

$$Unit\ weight = \frac{Weight\ of\ material}{Volume\ of\ material}$$

Example: unit weight calculations

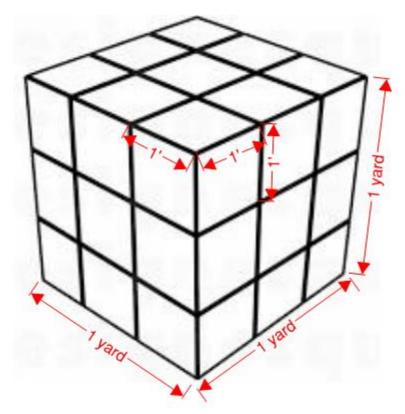
Given 0.5 ft³ of coarse aggregate weighs 47 lbs, what is the dry rodded unit weight?

Unit weight =
$$\frac{47 \text{ lbs}}{0.5 \text{ ft}^3} = \frac{94.0 \text{ lbs/ft}^3}{2000 \text{ lbs/ft}^3}$$

Given 0.25 ft³ of concrete weighs 34.8 lbs, what is the unit weight?

Unit weight =
$$\frac{34.8 \text{ lbs}}{0.25 \text{ ft}^3} = \frac{139.2 \text{ lbs/ft}^3}{\text{mag}}$$

5.9.4. Individual Aggregate Gradations


- Need to be known for the lowa DOT QM-C, BR, and HPC-D mix design approaches so that a combined grading can be optimized
- Need to know for ACI 211.1 mix design to verify nominal maximum aggregate size for coarse aggregate and calculate the FM for fine aggregate
- Average production gradations provided by and agreed upon by the aggregate producer should be used when developing a mix

5.10. Mix Design Concepts

5.10.1. Volume

- A three-dimensional space of length by width by height
- 1 ft³ is equal to a 1 foot by 1 foot by 1 foot cube
- 1 yd³ is equal to a 1 yard by 1 yard by 1 yard cube
- Conversion between ft³ and yd³ is 27 ft³ = 1 yd³
- Concrete is batched by weight and sold by cubic yard

Figure 5-2 1 yd³ volume made of 27 individual 1 ft³ volumes

Example: volume conversions

8.5 ft³ is equal to how many yd³?

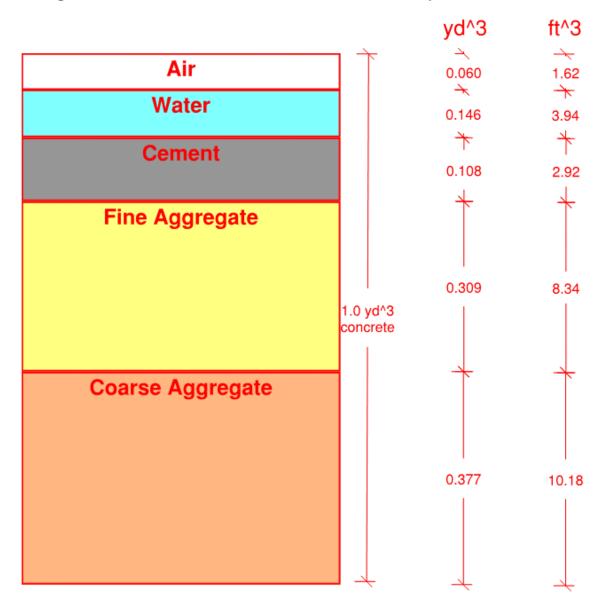
$$8.5 \text{ ft}^3 \text{ X} \frac{1 \text{yd}^3}{27 \text{ft}^3} = \underline{0.315 \text{ yd}^3}$$

 $0.114 \ yd^3$ is equal to how many ft^3 ?

$$0.114 \text{ yd}^3 \text{ X } \frac{27 \text{ ft}^3}{1 \text{ yd}^3} = \underline{3.078 \text{ ft}^3}$$

5.10.2. Absolute and Bulk Volume

- Absolute volume is the volume of solid matter in particles not including the void spaces
- Bulk volume is the volume of solid mater in particles as well as the void spaces separating the solid particles
- Void spaces included in the bulk volume will be filled with other mix ingredients



5.10.3. Absolute Volume

- Almost all mix design approaches are based on absolute volume
- Provides greater yield accuracy and mix consistency by accounting for changes in specific gravity of component materials
- An arbitrary volume of 1yd³ of concrete is used and component materials are proportioned to fill the volume exactly
- Iowa DOT I.M. 529, QM-C, BR and HPC-D mix design approaches use yd³ when determining the volumes of component materials
- ACI 211.1 mix design approach uses ft³ when determining the volumes of component materials
- The arbitrary selection of 1 yd³ results in units for component materials of ft³/yd³, yd³/yd³, and lbs/yd³
- Absolute volumes should be calculated to three decimal places when in yd³/yd³ and two decimals when in ft³/yd³
- Batch weights should be rounded to the nearest whole number

Figure 5-4 Absolute volume of concrete and component materials

Abs. Vol.
$$\frac{yd^3}{yd^3} = \frac{Weight \ lbs}{SPG \ X \ 62.4 \frac{lbs}{ft^3} \ X \ 27 \frac{ft^3}{yd^3}}$$

Abs. Vol.
$$\frac{ft^3}{yd^3} = \frac{Weight \, lbs}{SPG \, X \, 62.4 \frac{lbs}{ft^3}}$$

Weight
$$\frac{lbs}{yd^3}$$
 = Abs. Vol. $\frac{yd^3}{yd^3}$ X SPG X 62.4 $\frac{lbs}{ft^3}$ X 27 $\frac{ft^3}{yd^3}$

Weight
$$\frac{lbs}{yd^3} = Abs. Vol. \frac{ft^3}{yd^3} X SPG X 62.4 \frac{lbs}{ft^3}$$

Example: absolute volume calculations

What is the absolute volume of cement in yd³/yd³ for 593 lbs/yd³ (SPG =3.14)?

Abs. Vol.
$$\frac{yd^3}{yd^3} = \frac{593 \frac{lbs}{yd^3}}{3.14 \times 62.4 \frac{lbs}{ft^3} \times 27 \frac{ft^3}{yd^3}} = \frac{0.112 \frac{yd^3}{yd^3}}{\frac{d^3}{d^3}}$$

What is the absolute volume of cement in ft³/yd³ for 593 lbs/yd³ (SPG =3.14)?

Abs. Vol.
$$\frac{ft^3}{yd^3} = \frac{593 \frac{lbs}{yd^3}}{3.14 \times 62.4 \frac{lbs}{ft^3}} = 3.026 \frac{ft^3}{yd^3}$$

What is the weight of sand in lbs/yd³ with an Abs. Vol. of 0.325 yd³/yd³ (SPG =2.59)?

Weight
$$\frac{\text{lbs}}{\text{yd}^3} = 0.325 \frac{\text{yd}^3}{\text{yd}^3} \times 2.59 \times 62.4 \frac{\text{lbs}}{\text{ft}^3} \times 27 \frac{\text{ft}^3}{\text{yd}^3} = 1,418 \frac{\text{lbs}}{\text{yd}^3}$$

What is the weight of sand in lbs/yd 3 with an Abs. Vol. of 8.25 ft 3 /yd 3 (SPG = 2.59?

Weight
$$\frac{\text{lbs}}{\text{yd}^3} = 8.25 \frac{\text{ft}^3}{\text{yd}^3} \text{ X } 2.59 \text{ X } 62.4 \frac{\text{lbs}}{\text{ft}^3} = 1,333 \frac{\text{lbs}}{\text{yd}^3}$$

Table 5-2 Absolute volumes accounting for different SPGs

Coarse Aggregate	Specific Gravity	Absolute Volume	Weight
River gravel	2.66	0.377	1690
Lava stone	1.80	0.377	1143
River gravel	2.66	0.377	1690
Lava stone	1.80	0.557	1690

5.10.4. Water to Cement Ratio

- Total water divided by total cementitious in the mix
- Important technical description impacting strength and durability, see page 23
- Total water includes all water added at all stages and water added or subtracted from the aggregate
- Total cementitious includes cement and all SCMs
- Units for water and cement are in pounds and cancel out resulting in a unitless ratio
- Water added on grade will be estimated in gallons and must be converted to pounds to match the batch weight units
- Conversion between gallons and pounds is 1 gallon = 8.33 lbs

$$w/c = \frac{Total\ water\ weight\ lbs}{Total\ cementitious\ weight\ lbs}$$

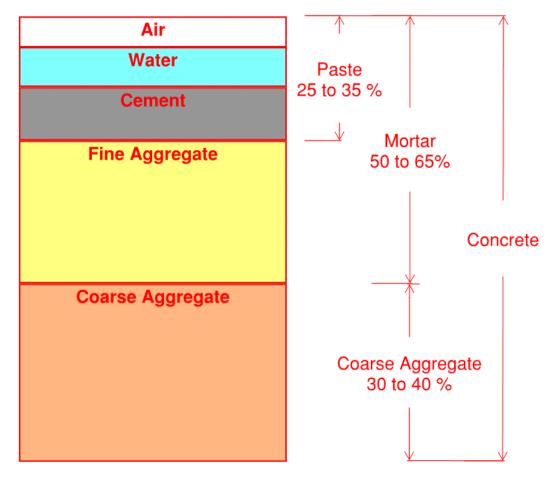
$$Total\ cementitious\ weight\ lbs = \frac{Total\ water\ weight\ lbs}{w/c}$$

Total water weight lbs = Total cementitious weight $lbs \ X \ w/c$

Example: w/c ratio calculation

Determine the w/c ratio given 450 lbs cement, 109 lbs fly ash, water of 200 lbs plant, 24 lbs from aggregates, 3 gals added on grade. All information given is per cubic yard of concrete.

$$w/c = \frac{200 \text{ lbs} + 24 \text{lbs} + 3 \text{ gal X 8.33} \frac{\text{lbs}}{\text{gal}}}{450 \text{ lbs} + 109 \text{ lbs}} = \underline{0.445}$$


Determine the weight of water given 482 lbs cement, 121 lbs fly ash and a w/c ratio of 0.400.

Total water weight lbs = $(482 \text{ lbs} + 121 \text{ lbs}) \text{ X } 0.400 = \underline{241 \text{ lbs}}$

5.10.5. Paste, Mortar, and Concrete

- Paste is water, cement, and air
 - o Typically accounts for 25 to 35 percent of the total concrete volume
 - o Concrete quality depends substantially on the quality of paste
 - Higher paste results in higher potential for shrinkage, increased heat, and increased costs, see page 29
- Mortar is paste and fine aggregate
 - Typically accounts for 50 to 65 percent of the total concrete volume
 - Provides lubricant for coarse aggregate and can control mix economy
- Concrete is mortar and coarse aggregate
 - Typically, coarse aggregate accounts for 30 to 40 percent of the total concrete volume
 - o Economic filler that should be well graded and durable

Figure 5-5 Paste, mortar, and coarse aggregate percentages of total concrete volume

5.10.6. Mortar Influence on Mix Design and Placement

- Strictly defined, mortar consists of paste and all aggregate finer than the #8 sieve
- Insufficient mortar results in a harsh mix, susceptible to segregation when pumping and placing and is difficult to finish and close
- Excessive mortar results in a sticky mix that may segregate, and will require more cement/paste due to more fine aggregate that needs to be coated
- Mortar requirement needs to be optimized based on the method of placement, aggregate shape, texture, gradation, and presence of formed or finished surfaces
- Wall effect describes the increased mortar fraction that is required at formed surfaces, finished surfaces, and in pump pipe walls
- Inadequate mortar can result in surface defects such as honeycombing or bugholes that may need to be fixed

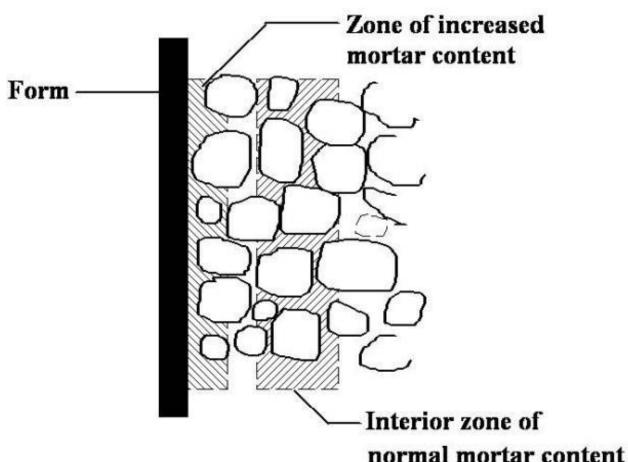


Figure 5-6 Wall effect zone

Figure 5-7 Bugholes and honeycombing at wall effected zone

 Table 5-3
 Percent mortar required for different placement methods

Class	Description	Approximate Percent Mortar Required
1	Placed by steep sided bottom-drop	48 to 50
	bucket, conveyor, or paving machine.	
2	Placed by bottom drop bucket or chute	50 to 52
	in open vertical construction.	
3	Placed by chute, buggy, or conveyor in	51 to 53
	an 8 in. (200 mm) or deeper slab.	
4	Placed by 5 in. (125 mm) or larger	52 to 54
	pump for use in vertical construction,	
	thick flat slabs and larger walls, beams,	
	and similar elements.	
5	Placed by 5 in. (125 mm) pump for pan	53 to 55
	joist slabs, thin or small castings, and	
	high reinforcing steel density.	
6	Placed with a 4 in. (100 mm) pump.	55 to 57
7	Long, cast-in-place piling shells.	56 to 58
8	Placed by pump smaller than 4 in. (100	58 to 60
	mm).	
9	Toppings less than 3 in. thick.	60 to 62
10	Flowing fill.	63 to 66

Shilstone guidelines for mortar fraction from "Concrete Mixture Optimization," Concrete International, June 1990, pp. 33-39. Used by permission of the author.

5.10.7. Producer Capabilities

- Number of cement and SCMs silos as well as aggregate bins will govern the number of materials that can be blended
- Consideration especially with older and/or rural ready-mix plants
- Transport capabilities must also be considered as this could impact the desired workability and time to initial set
- When possible, materials should be selected that are readily available locally
- Selecting materials that need to be transported significant distances or specially made will substantially increase mix costs
- Ability for a producer to consistently meet or exceed strength requirements is extremely important

5.10.8. Standard Deviation and Strength Adjustments

- Terms:
 - Design strength (f'_C)is the concrete strength the element is designed to
 - Target strength (f'_{Cr}) is the strength the mix is designed for
 - Standard deviation (S) is a measure of variability of the concrete producer
- Specifications are based on a minimum design strength requirement
- Engineers, owners, and contractors will need to have confidence that the design strength is being met
- Setting the target strength to the average strength is not acceptable as this will result in half of the strengths below the design strength

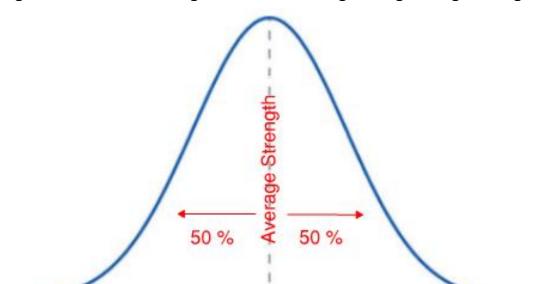


Figure 5-8 Half of strengths are below design using average strength

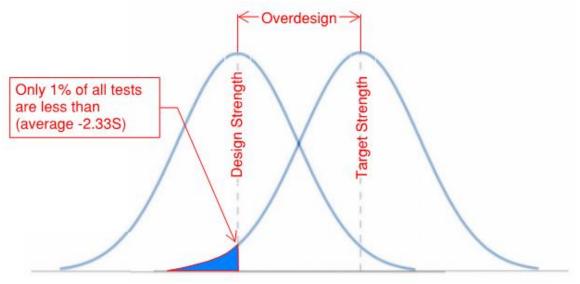
- To ensure design strength is met the target strength will be adjusted upward to account for producer variation
- Target strength will always be greater than the design strength
- ACI 211.1 uses a statistical approach to account for producer variation by adopting ACI 318 Building Code
- ACI 318 Building Code requires the target strength, based on the average of two cylinders, meet the largest value of the following:
 - 1. A one percent chance a single test will be below the minimum specified strength requirement

$$f'_{CT} = f'_{C} + (2.33 \text{ S} - 500)$$

2. A one percent chance that the average of three consecutive test values will be less than the minimum specified strength requirement

$$f'_{Cr} = f'_{C} + (1.34 \text{ S})$$

- S is typically based on a minimum of 30 tests of average strength of at least two cylinders
- S must be increased if less than 30 tests are available
- A lower S indicates better quality control and will result in less strength overdesign and a mix with less cement that is more economical
- When there is no strength history, or less than 15 tests available then special equations must be used to determine the target strength


Table 5-4 Factor to increase S when less than 30 tests

Number of Tests	Factor to Increase Standard Deviation
15 to 19	1.16
20 to 24	1.08
25 to 29	1.03

Table 5-5 Special equations for required target strength

Design Strength, f' _C (psi)	Target Strength, f' _{Cr} (psi)
Less than 3000	f' _C + 1000 psi
3000 to 5000	f'c + 1200 psi
Over 5000	1.1 x f' _C + 700 psi

Figure 5-9 Target strength adjusted to account for producer variation

Example: target strength calculation

What is the target strength given a design strength of 4,500 psi and a producer standard deviation (S) of 550 psi for 35 tests?

$$f'$$
cr = 4500 + (2.33 X 550 – 500) = 5281.5 psi

$$f'_{Cr} = 4500 + 1.34 \times 550 = 5237 \text{ psi}$$

Select the largest value 5281.5 and round to the next highest 10 psi

$$f'_{Cr} = 5290 \text{ psi}$$

5.10.9. Strength Adjustments for Iowa DOT Mixes

- Occur by using design strengths well below known actual strengths and ensuring the w/c ratio is monitored and controlled
- Quality control is established and maintained by specifying certified plant inspection
- Result in a high confidence that design strengths are achieved
- Developmental Specification Structural Concrete (4500 psi or greater)

Table 5-6 Class C mix design and actual strengths

Class C Mix	Design (psi)	Actual Statewide Average (psi)
Compressive	4,000	5,800
Flexural	575	640

5.10.10. Other Strength Considerations

- Strength is specified in a variety of ways
 - Compressive, common for structural applications
 - Center point flexural, common for opening to traffic or form removal on pavements
 - o Third point flexural, common for pavement design
- 28-day strength is age commonly used
- Early strength will be lower and ultimate strengths will be higher especially if SCMs were used
- More important to know strength for removing forms, building up, loading with construction traffic, or putting into service
- Many factors can cause inaccurate field strength test specimen results
 - Improper casting and handling can result in defects or damage and lower strengths
 - High cure temperature can result in high early strength and reduced long term strength
 - o Low cure temperatures can result in low early strength
 - Improper testing procedures can lower or increase strength
- When determining strength for specification compliance standard curing according to I.M. 315 I C 3 or I.M. 328 B 2, 3, 6 should be used
- Field curing should only be used for form removal or determining when an element may be loaded
- · Maturity method may be used as a replacement to field curing

5.11. Laboratory Trial Batch

- 1. AASHTO T126 should be followed and describes the scope, equipment, and procedure for developing a trial batch
- 2. Key concepts are as follows:
 - All equipment used (scales, slump cone, air meter, temperature device, molds, etc.) should meet requirements
 - An appropriate revolving drum or revolving pan/paddle mixer should be used
 - Batch size should not overload the mixer
 - For greater accuracy and to prevent segregation, coarse and intermediate aggregates should be weighed into individual size fractions and recombined to proper proportions
 - For batches less than 2 cubic feet, aggregates should be in SSD condition
- 3. Laboratory mix procedure:
 - 1. Divide coarse and intermediate aggregate into individual sieve sizes
 - 2. Soak #8 material and above in water for 24 hours
 - 3. Bring soaked aggregate to SSD condition before weighing

4. Weigh all materials, dividing water into 2 containers, one with $\frac{1}{2}$ the mix water and air agent and one with $\frac{1}{2}$ mix water

- 5. Butter the mixer with a concrete batch of similar mortar content
- 6. Remove the butter batch materials leaving the mortar that sticks to sides and paddles
- 7. Add coarse aggregate

8. Add ½ water with air entraining admixture in mixing water

9. Turn on mixer and add sand

10. Add cement and remaining water

- 11. Add water reducing admixture or retarding admixture12. Start stopwatch and begin 3 minute mix cycle

13. Cover and rest 3 minutes

14. Remove cover and re-mix an additional 2 minutes

15. To prevent segregation, transfer to clean, damp container and re-mix with shovel or trowel, until it appears uniform

16. Check air content, slump, unit weight, and temperature

17. If necessary, adjust air content and slump and re-mix for 30 seconds 18. Cast specimens

- 19. Observe workability, finishability, response to vibration, and set characteristics
- 20. Hardened concrete should be tested for strength and other required properties (F/T durability, permeability, etc.)21. If necessary, adjust mix proportions and perform a new trial batch
- based on test results

CHAPTER 6 MIX DESIGN

6. Mix Design Approaches

6.1. Proportional

- Extremely simple and based entirely on acquired field experience
- Proportion volumes of cement to fine aggregate to coarse aggregate of 1:2:3
- Add water slowly to achieve desired workability
- Other ratios can be tried or used to achieve different results
- Old method used before concrete was more developed and scientifically understood
- Used for backyard mixing noncritical elements
- Not used for engineering work as better methods are available

6.2. Formal Methods

- Developed from empirical data relying on experience and observation over time
- Utilize tables, graphs, nomographs, and empirical relationships
- Follow general process of determining:
 - 1. Nominal maximum aggregate size
 - 2. Target strength adjusted for producer variation
 - Water cement ratio to meet target strength and compared with required durability
 - 4. Desired workability and water content
 - 5. Cement content
 - 6. Percentage of aggregates
 - Various methods:
 - Trial and adjustment
 - o ACI 211.1
 - British DoE
 - Rapid method
 - Proportioning by IS guidelines
- Absolute volumes used for all methods
- Aggregate grading is considered through use of FM, coarse aggregate packing, and grading zones of fine aggregate
- ACI 211.1 will be presented in detail and is covered in Appendix A

6.3. Iowa DOT I.M. 529

- Prescriptive traditional lowa DOT approach to mix design
- Field experience and theoretical concepts were used in development
- Mixes are organized by class and are application specific
- Knowledge of concrete use and of component material properties is required

- Proportions have been predetermined based on absolute volume for 1.000 yd³, a basic w/c ratio, no fly ash or GGBFS substitution, and a cement with a SPG of 3.14
- Mixes based on these proportions are accepted without trial batches due to extensive use and historic record in lowa since 1950's
- Proportions for various mix classes and aggregate ratios are presented in I.M. 529
- Little if any change occurs to these mix proportions
- All batch weights are in SSD condition
- Strength is not defined directly but these mixes have historically significantly exceeded design strengths and need to meet w/c ratio and quality control requirements
- Durability is addressed by specifying w/c ratio limits, air contents, and coarse aggregate durability classes
- Adjustments for aggregate gradation and size are not considered and may lead to non-optimized mixes and variation in performance

6.3.1. Calculations

- 1. Obtain a blank 820150 form or computer spreadsheet
- 2. Determine the SPG for each component material from appropriate I.M.s or tests
- 3. Determine the absolute volume for cement from I.M. 529 for the desired mix number
- 4. Determine the cement weight using the absolute volume equation
- 5. If needed, determine the weight of fly ash and or GGBFS by using a 1:1 weight substitution for the percent substituted of cement
- 6. If needed, determine the adjusted cement weight by subtracting the fly ash and or GGBFS substitution weights from the original cement weight
- 7. Determine the amount of water used by solving the w/c ratio for the weight of water
- 8. Determine the absolute volumes for cement, fly ash, GGBFS, water, and air using the adjusted weights using the absolute volume equation
- 9. Determine the subtotal of the absolute volumes for cement, fly ash, GGBFS, water, and air by adding each absolute volume
- 10. Subtract the subtotal from 1.000
- 11. Ensure the subtotal and subtotal subtracted from 1.000 equals 1.000 when added
- 12. Determine the absolute volume of each aggregate by multiplying the percent of each aggregate used by the subtotal subtracted from 1.000 and dividing by 100
- 13. Determine the aggregate total by adding the absolute volumes for each aggregate
- 14. Ensure the aggregate total is equal to the subtotal subtracted from 1.000

- 15. Determine the weight of each aggregate by using the absolute volume equation
- 16. Summarize the weights of the cement, fly ash, GGBFS, water, fine aggregate, and coarse aggregate

6.4. Iowa DOT QM-C

- Less prescriptive Iowa DOT approach to mix design for paving projects
- Applied using developmental specification to slip form paving over 50,000 vd²
- Uses Shilstone principles to provide and optimized combined aggregate gradation, see page 61
- Knowledge of component material properties is required, specifically aggregate gradation, texture, and shape
- Proportions are based on absolute volume for 1.000 yd³ and must meet specific concrete mixture constraints in the QMC DS

Table 6-1 Concrete mixture constraints

Technical Description	Requirement	
Nominal maximum coarse aggregate	Greater than or equal to I inch	
size		
Combined gradation	CW factor plots in zone II	
Cementitious content	560 lbs/yd ³ * (Abs. Vol. = 0.106)	
W/C ratio	Basic 0.40, maximum 0.435	
Air content	Design absolute volume 0.060 yd ³ , 6 ± 1%,	
Third point 28-day flexural strength	Minimum 640 psi	

^{*} The minimum cement content assumes the use of Type I/II cement with a specific gravity of 3.14 for an absolute volume of 0.106 yd³. If cement other than Type I/II is used, use an absolute volume of 0.106 yd³ and determine the weight of cement using the cement specific gravity.

- Mixes must be developed by a Level III Certified Technician and submitted to the District Materials Engineer for review and approval
- Trial batches are no longer required due to extensive use and historic record in lowa since 2000
- All batch weights are in SSD condition
- Target strength is specified in the concrete mixture constraints and is approximately 1.5 times the S above the design strength
- Historically mixes meeting the concrete mixture constraints have met or exceeded the target strength
- Durability is addressed by specifying w/c ratio limits, air contents, and coarse and intermediate aggregate durability classes

6.4.1. Calculations

- Download the most recent version of the QM-C mix PC Batch Weights spreadsheet from the Iowa DOT Construction and Materials webpage (pcbatchQMC.xlsx)
- 2. Obtain percent passing production gradations from aggregate producers for each aggregate being considered for use
- 3. Calculate the average percent passing production gradation for each aggregate and enter them into Gradation sheet
- Input initial relative percentages for aggregates being considered into the Gradation sheet (recommended starting point is 48% coarse, 12% intermediate, and 40% fine)
- Review the calculated values for the CW factors as well as the FM
- 6. Evaluate the combined gradation using the Shilstone CW chart, 0.45 power curve, and percent retained chart sheets
- 7. Based on the evaluation, determine what adjustments, if any, need to be made to the relative percentages
- 8. Adjust the relative percentages on the Gradation sheet and repeat steps 4 through 7 until satisfactory results are achieved
- Enter all information on the 955QMC sheet and use the completed sheet as an agreement between the aggregate producer and the contractor
- 10. Enter all known general data, source information, substitution rates, aggregate percentages, and target air content on the Mix Design sheet
- 11. Based on aggregate strength, gradation, shape, and texture estimate the volume of cement as well as a base w/c ratio and enter them on the Mix Design sheet
- 12. Submit the completed mix design for review and approval

6.4.2. Quality Control Plan and Sampling and Testing

- Contractor must develop a quality control plan and conduct quality control sampling and testing at rates specified
- Intent of quality control plan, sampling and testing is to ensure the contractor has qualified staff and a process to quickly identified and resolve issues
- Quality control plan identified in I.M 530 should:
 - o Provide names, credentials, and duties of quality control staff
 - Describe stockpile management, mixing, transportation, placement, consolidation, and finishing
 - o Define sampling and testing frequencies and documentation
 - Detail criteria for adjusting materials approaching control limits or rejecting non-complying materials
 - Identify the process for providing corrective actions
- Contractor must submit the quality control plan and mix design at least
 7 days prior to the preconstruction conference for review and approval

- Quality control sampling and testing is the responsibility of the contractor and is identified in DS-23027
- Overseen by a Level II PCC Certified Technician
- Conducted by a Level I PCC Certified Technician
- Equipment shall be calibrated and correlated prior to use for testing
- Quality control testing is performed on QM-C bid item concrete

Table 6-2 Quality control testing

Test	Limits	Testing Frequency	Test Methods
Unit weight (mass) of plastic concrete	Monitor for changes, ± 3%	Twice/day	AASHTO T 121
Gradation combined % passing	Zone II, I.M. 532	1/1500 cubic yard	Materials I.M. 216, 301, 302, 531
Aggregate moisture contents	See Materials I.M. 527	1/1500 cubic yard	Materials I.M. 308
Air content plastic concrete in front of paver	See Article 2301.02, B, 4	1/350 cubic yard 1/100 cubic yard ready mix	Materials I.M. 318
Air content plastic concrete in back of paver	May be used by engineer to adjust target air in front of paver	2/day for first 3 days and 1/week thereafter (for each paver used)	Materials I.M. 318
Water/cementitious ratio	0.42 maximum	Twice/day	Materials I.M. 527
Vibrator frequency	See Article 2301.03, A, 3, a, 6, a	With electronic vibration monitoring: twice/day Without electronic vibration monitoring: twice/vibrator/day	Materials I.M. 384

- Running average of three combined aggregate gradation tests should be within the limits established from the mix target gradation and the working range
- Working range limits are not for specification compliance

Table 6-3 Combined aggregate working ranges

Sieve Size	Working Range
#4 or greater	± 5%
#8 to #30	± 4%
#50	± 3%
#100	± 2%
Minus #200	See below

- For combined aggregate gradations, take corrective action when the running average of three tests approaches working range limits and notify the engineer if they are exceeded
- For concrete tests, take corrective action when an individual test result approaches the control limits and notify the engineer if they are exceeded
- Quality control test results for combined gradations, moistures, unit weights, air contents, CW factors, and w/c ratios shall be plotted on the lowa DOT QM-C quality control spreadsheet
- Notify engineer when adjusting combined gradation target
- Upon project completion the QM-C quality control spreadsheet should be submitted to the engineer

6.4.3. Verification Sampling and Testing

- Performed by the certified agency inspectors for accepting concrete
- Identified in I.M. 530

Table 6-4 Verification testing

Test	Testing Frequency	Test Method
Unit weight plastic concrete	None	I.M. 340
Gradation (each agg., % passing)	Sample 1/day if production >500 yd3 Test 1st/day, then twice per week	I.M. 302
Flexural strength, third Point loading - 28 days *	1/10,000 cu. yd. Maximum of three sets	I.M. 328
Air content unconsolidated concrete	1/700 cu. yd. central batch 1/200 cu. yd. ready mix	I.M. 318
Water/cement ratio	None	I.M. 527
Vibration frequency	1/week	I.M. 384

- Verification based on gradation zone for the combined aggregate, not individual aggregates.
- If minus #200 exceeds the following limits, the material represented by that test for this sieve will be considered non-complying:
 - Combined percent passing #200 sieve shall not exceed 1.5%
 - For crushed limestone or dolomite (maximum of 2.5% passing the #200 sieve when production less than 1%), the combined percent passing the #200 sieve shall not exceed 2.0%

6.4.4. Acceptable Field Adjustments

- Identified in the QMC DS
- All mix changes must be mutually agreed upon by the contractor and engineer
- Documented on QM-C Mix Adjustment form
- When the water cement ratio varies more than ±0.03 from the basic water cement ratio, the mix design shall be adjusted to a unit volume of 1.000
- New mix design not required for:
 - o Increase cementitious content
 - Decrease fly ash substitution rate
 - Adjust aggregate proportions ±4% for all aggregates
 - Change from water reducer to water reducer retarder
 - Adjust chemical admixture dosage rates
 - Change source of fly ash
 - Change in source of sand, provided target gradation limits met
- Other changes should be discussed and approved by the District Materials Engineer and may require a new mix design or 28 day flexural strength validation

6.4.5. Basis of Payment

- Costs for furnishing labor, equipment, and materials for the work required to design, test, and provide quality control sampling and testing shall be included in the unit price for QM-C bid items
- Average CW factors are determined per I.M. 530 for each lot and price adjustments are applied when they plot outside of zone II on the CW chart

Table 6-5 Price adjustment for lot CW factors outside zone II

CW Chart Zone	Price Adjustment Per Lot	
IV	2%	
	5%	

 Contractor weekly (lot) samples are validated by engineer weekly (lot) samples so they may be used for payment

- Validation process:
 - Engineer obtains sample and runs gradation tests on first day of paving
 - 2. Thereafter, the engineer obtains aggregate samples daily and randomly tests gradation on a minimum of two samples weekly (lot)
 - 3. Relative percentages are determine based on the batch weights at the time the sample was obtained
 - 4. Using the determined relative percentages, the combined gradation is determined along with the CW factors
 - 5. Average CW factors are calculated for the lot
 - If the average engineer and contractor CW factors for the lot fall within the same zone the contractor results are validated and can be used for payment
 - If the average engineer and contractor CW factors for the lot fall in different zones, the engineer will test the remaining aggregate samples in the lot and average all results for the lot
 - If the average of all engineer verification samples and contractor CW factors for the lot fall within the same zone the contractor results are validated and can be used for payment
 - If the average of all engineer verification samples and contractor CW factors for the lot fall in different zones, the engineer results will govern and be used for payment

6.5. Iowa DOT BR

- Required for all slip formed rails
- Developed from field observations of improved placement versus Class D mix
- Uses Shilstone principles to provide and optimized combined aggregate gradation, see page 61
- Knowledge of component material properties is required, specifically aggregate gradation, texture, and shape
- Proportions are based on absolute volume for 1.000 yd³ and must meet the mix requirements of specification 2513 and I.M 529
- Do not need to be developed by a Level III Certified Technician
- Trial batches are not required due to extensive use and historic record
- Submit mix design to the District Materials Engineer 7 calendar days prior to placement for approval
- All batch weights are in SSD condition
- Strength testing not required, however these mixes have historically exceeded design strengths of 4000 psi
- Durability is addressed by specifying w/c ratio limits, air contents, and coarse aggregate durability classes
- Contractor may use synthetic fibers at an addition rate and using batching recommendations provided by manufacturer
- Calculations are the same as a QM-C mix, see page 98

Table 6-6 BR mix requirements

Technical Description	Requirement	
Individual gradation	Meet division 41	
Combined gradation	CW factor plots in zone II	
Cementitious content	Minimum 0.114 yd ³ *	
W/C ratio	Basic 0.40, maximum 0.45	
Air content	Design absolute volume 0.060 yd ³	
Fly ash and GGBFS substitution	See table 2513.03-3	

Table 6-7 BR mix fly ash and GGBFS requirements

Cement Type	Maximum Allowable Substitution (a)	Time Period	
Type I, II	35% GGBFS	March 16 to October 15	
	20% fly ash		
Type IS, IP	20% fly ash	March 16 to October 15	
Type I, II	20% fly ash	October 16 to March 15	
Type IS, IP	0%	October 16 to March 15	
(a) Maximum total SCM substitution is 50%			

6.6. Iowa DOT HPC Structural

- Used for bridge substructure and decks on high traffic corridors
- Developed from field observations on I-235 for higher strength and lower permeability

Table 6-8 Target strength and permeability for HPC substructure and deck mixes

Target	Substructure	Deck
Compressive strength (psi)	4,000 to 5,000	4,000 to 5,000
Permeability (coulombs)	2,000	1,500
Resistivity (K ohm-cm)	> 20	> 30

- Deck mixes, uses Shilstone principles to provide and optimized combined aggregate gradation, see page 61
- Knowledge of component material properties is required, specifically aggregate gradation, texture, and shape for deck mixes
- Proportions are based on absolute volume for 1.000 yd^3 and must meet the mix requirements of DS-23034
- Do not need to be developed by a Level III Certified Technician
- HPC-S (substructure) and HPC-D (deck) mix proportions are provided in I.M. 529

- Trial batches are not required due to extensive use and historic record in lowa since 2000
- Submit mix design to the District Materials Engineer for approval
- Contractor designed mixes may be used
 - Trial batches may be required depending on historical use and data
 - Mix design needs to be submitted to the District Materials Engineer for approval
- Calculations for the substructure are the same as an I.M. 529 mix, see page 96
- Calculations for the deck are the same as a QM-C mix, see page 98

Table 6-9 HPC substructure and deck mix requirements

	Requirement	
Technical	Substructure	Deck
Description		
Coarse and	3i	3i
intermediate		
aggregate durability		
Individual gradation	Meet division 41	Meet division 41
Combined gradation	NA	CW factor plots in zone II
Cement type	Type IS, IP, or IT	Type IS, IP, or IT
	Type I/II or IL with a	Type I/II or IL with a
	minimum of 30% weight	minimum of 30% weight
	replacement with GGBFS	replacement with GGBFS
Fly ash substitution	20% maximum	20% maximum
Maximum SCM	50%	50%
substitution		
W/C ratio	Basic 0.42, maximum 0.45	Basic 0.40, maximum 0.435
Air content	Design absolute volume	Design absolute volume
	0.060 yd ³	0.060 yd ³

6.7. Iowa DOT HPC Overlay

- Optional for bridge deck overlays
- Developed for low permeability, higher slump with ready mix delivery, and to eliminate nuclear density testing versus O mix
- Knowledge of component material properties is required
- Proportions are based on absolute volume for 1.000 yd³ and must meet the mix requirements of specification 2413 and I.M. 529
- Trial batch and mix design submittal are not required
- All batch weights are in SSD condition

- Strength is not defined directly but these mixes have historically significantly exceeded design strengths and need to meet w/c ratio and quality control requirements
- Durability is addressed by specifying w/c ratio limits, air contents, coarse aggregate durability classes, and the use of SCMs
- Calculations are the same as an I.M. 529 mix, see page 96

Table 6-10 HPC-O mix requirements

Technical Description	Requirement	
Individual gradation	Meet division 41	
Slump	Target 1 to 4 inches, maximum 5 inches	
Chemical admixture	Use a water reducer and a retarder	
	If haul time is less than 30 minutes or	
	maximum air temperature expected is	
	less than 75°F, addition of a retarder is	
	not required	
W/C ratio	Basic 0.39, maximum 0.42	
Cement type	Type IS, IP, or IT	
	Type I/II or IL with a minimum of 25%	
	weight replacement with GGBFS	
Fly ash substitution	20% maximum	
Air content	Design absolute volume 0.060 yd ³	

6.8. Iowa DOT Mass Concrete

- Required on elements with a least dimension of 4.5 feet excluding drilled shafts
- Developed from field observations to limit temperatures and temperature differentials
- Knowledge of component material properties is required
- Proportions are based on absolute volume for 1.000 yd³ and must meet the mix requirements of DS-15081 and I.M. 529
- All batch weights are in SSD condition
- Two tiers based on size of element

Table 6-11 Tier 1 and 2 size and requirements

Tier	Size	Thermal Control Plan	Mix Class
1	4.5 to 6.5 feet	Submitted by contractor	C or MCM
2	> 6.5 feet	Submitted by thermal control engineer	MCM

- Class C and MCM mix proportions are provided in I.M. 529
- Do not need to be developed by a Level III Certified Technician
- Trial batches are not required due to extensive use and historic record in lowa
- Mix design should be identified in the thermal control plan (TCP)
- TCP shall be submitted to the engineer for review and approval at least 30 calendar days prior to first placement
- Strength is not defined directly but these mixes have historically significantly exceeded design strengths and need to meet w/c ratio and quality control requirements
- Durability is addressed by specifying w/c ratio limits, air contents, coarse aggregate durability classes, and the use of SCMs
- Calculations are the same as an I.M. 529 mix, see page 96

Table 6-12 Mass concrete mix requirements

	Require	ment
Technical	Class C	Class MCM
Description		
Individual	Meet division 41	Meet division 41
gradation		
Class F fly ash	35% maximum	35% maximum
substitution		
Maximum GGBFS	70%	70%
substitution		
Maximum SCM	70%	70%
Substitution		
W/C ratio	Basic 0.43, maximum	Basic 0.40, maximum 0.45
	0.488/9	
Cementitious	0.108 to 0.128 depending	0.106
content	on mix number	
Air content	Design absolute volume	Design absolute volume
	0.060 yd ³	0.060 yd ³
Thermal modeling	NA	Required

6.8.1. Temperature Control Requirements

- Concrete placement temperature shall not exceed 70°F or be less than 40°F
- For Tier 2, the maximum concrete temperature may be modified by the thermal control engineer, when supported by thermal analysis, up to 90°F
- Maximum temperature within the mass concrete shall not exceed 160°F

 Maximum temperature difference between the interior of the section and the outside surface of the section shall not exceed the limits in Table DS-15081.03-1

Table 6-13 Temperature differential limits, Table DS-15081.03-1

Hours After Placement	Maximum Temperature Differential °F
0-24	20
24-48	30
48-72	40
>72	50

6.9. Iowa DOT SCC

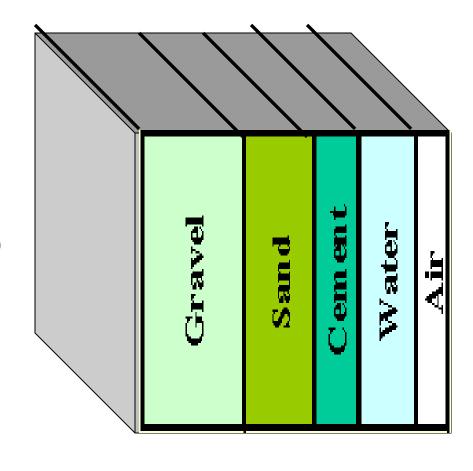
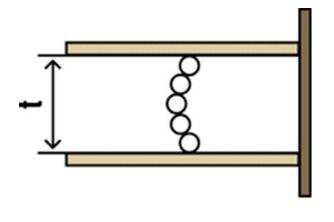

- Highly flowable and non-segregating concrete used for structural concrete placements that are complex in shape, congested with reinforcement, and/or inaccessible to placement and vibration
- Developed to optimize flow and stability using the following typical characteristics
 - Well graded combined grading
 - ¾ inch or less nominal maximum aggregate size
 - Sand to coarse aggregate ratio of 0.40 to 0.50
 - Paste volume from 28 to 40 percent
 - Water to cementitious ratio of 0.25 to 0.45
- Knowledge of component material properties is required, specifically aggregate gradation, texture, and shape
- Proportions are based on absolute volume for 1.000 yd³ and must meet the mix requirements of 2403, 2412, and I.M 529 Appendix A
- Do not need to be developed by a Level III Certified Technician
- All batch weights are in SSD condition
- Trial batches are required
- Recommend assistance from admixture technical representative
- Submit mix design to the District Materials Engineer 7 calendar days prior to the trial batch for review and approval
- Strength is application specific and addressed by validating compressive strength during the trial batch and meeting w/c ratio and quality control requirements
- Durability is application specific and addressed by specifying w/c ratio limits, air contents, and coarse aggregate durability classes
- Calculations are the same as a QM-C mix, see page 98

Table 6-14 SCC mix requirements

Technical Description	Requirement
Nominal maximum aggregate size	No larger than 1/3 rd the minimum clear
	spacing between reinforcing steel
Chemical admixtures	Use a high range water reducer
	When a viscosity modifying admixture is
	used it must be compatible with the HRWR
	Use a retarding admixture or hydration
	stabilizer when extended plasticity is
	needed
W/C ratio	Maximum 0.45
Cementitious content	Minimum 624 lbs/yd ³
Slump flow	Target 23.0 +/- 3.0 inches
Visual stability index	Not to exceed 1
J-ring flow	Passing with a maximum allowable
	difference of 2.0 inches from slump flow
Static segregation	Not to exceed 1
Air content	Application specific
Compressive strength	Application specific


APPENDIX A ACI 211 MIX DESIGN

ACI Mix Design

ACI Mix Design Example Problem

- A reinforced wall 8" wide by 6" thawing in a moist condition exposure to freezing and high will be placed with and deicing chemicals.
- between reinforcing steel is 6" The minimum clear spacing

ACI Mix Design Example Problem

Specifications

- A minimum compressive strength of 3500 psi.
- Assume a standard deviation of 370 psi.
- A maximum w/c ratio of 0.50

ACI Mix Design Example Problem

- The maximum aggregate size available is 34".
 - Mid range water reducer shall be used
- □ Assume a 10% water reduction.
- Coarse Aggregate
- \Box SpG = 2.60
- □ Dry Rodded Unit Wt. = 92.0 lbs/ft3
- Fine Aggregate
- \Box SpG = 2.65
- ☐ Fineness Modulus = 2.6

ACI 211 Mix Design

- Select initial Slump
- Select Aggregate Size
- Air Content or Non-air Entrained
- Water cement ratio (minimum required)
- Durability
- ☐ Strength
- Water reduction -admixtures, gradation, etc.
- Bulk Volume Coarse Aggregate
- Batch Weights

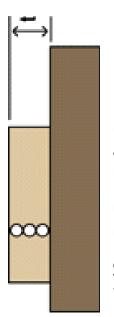
Select Slump

Table 9-6. Recommended Slumps for Various Types of Construction

	Slumb,	Slump, mm (in.)
Concrete construction	Maximum*	Minimum
Reinforced foundation		
walls and footings	75 (3)	25 (1)
Plain footings, caissons, and		
substructure walls	75 (3)	25 (1)
Beams and reinforced walls	(100 (4))	25 (1)
Building columns	100 (4)	25 (1)
Pavements and slabs	(8) 52	25 (1)
Mass concrete	(8) 57	25 (1)

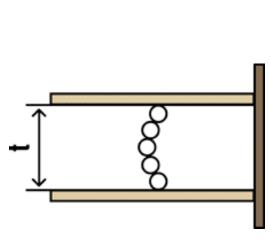
*May be increased 25 mm (1 in.) for consolidation by hand methods, such as rodding and spading. Plasticizers can safely provide higher slumps.

Adapted from ACI 211.1.

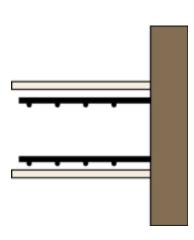

Select Slump

Mix Design and Mix Ingredients Data Sheet By Date ⊕ Mixture:

page 1 of 3 ACI MIX EXAMPLE


	Project Analysis			
1.	Pavement	Building slab	Footing	Bridge Deck
	Wall	Beam	Column	Curb
	Officer			
2.	Minimum dim. betv	Minimum dim. between formed (or slip-formed) faces	formed) faces	
				8 inches
3.	Minimum pavemen	Minimum pavement/ slab/ overlay thickness	ıess	
				inches
4.	Minimum clear spa	Minimum clear spacing between reinforcing bars	ing bars	6 inches
5.	Minimum clear cov	Minimum clear cover between bars and forms	forms	
				inches
9.	Method of placing concrete	concrete		
	Slip form	Truck Chute	Conveyor	Pump
	Crane & Bucket	Tremie	Machine finish	Hand finish
7.	Method of consolidating concrete	lating concrete		
	Form vibrators	Immersion vibr.	Fixed vibr.	Hand consol.
8.	Select initial slump			4 inches

Select Max. Aggregate Size


1/3 slab thickness

V

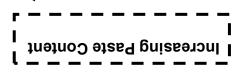

1/5 formed surfaces

8/5 = 1.6 in.

0.75 clear cover between form & rebars

Y V

0.75 clear space between rebars


 $6 \times 0.75 = 4.5 \text{ in.}$

Select Max. Aggregate Size

	Selecting Nominal Maximum Aggregate Size		
9.	1/5 minimum dimension between formed faces	16	
	8/5 =	7.0	inches
10.	1/3 minimum slab depth		
			inches
11.	3/4 minimum clear opening between reinforcing bars	45	
	$6 \times 0.75 =$	J.,	inches
12.	3/4 minimum clear cover between bars and forms		
	(optional requirement for architectural concrete)		inches
13.	Specified nominal maximum aggregate size		
			inches
14.	Minimum of all values (rows 9-13)	71	
		7.0	inches
15.	Largest size available not exceeding size in row 14.	3/4	-
		. />	inches
16.	Nominal Maximum Aggregate Size selected	V/C	
		J/7 inches	inches

Select Air Content

Nominal maximum aggregate size, in inches.	Air content, as a percentage of total concrete volume.	ent, as a e of total volume.
9% mortar air for Severe F/T	Severe Exposure	Moderate Exposure
3/8	7.5	9
1/2	7	2.5
3/4	$\begin{pmatrix} & 6 & \end{pmatrix}$	5
	6	4.5
1-1/2	5.5	4.5
2	5	4
3	4.5	3.5

Select Air Content

		~ inches
	Air Entrained or Non Air- Entrained Concrete	
17.	Air required when concrete exposed to freezing and	(Air) r (Non-Air)?
	thawing in a moist condition or exposed to deicing)
	chemicals	
18.	Exposure mild, moderate, or severe?	(mild) (moderate) (extreme)
19.	Specified Total Air Content?	% 0.9

Select minimum w/c ratio - Durability

Table 9-1. Maximum Water-Cementitious Material Ratios and Minimum Design Strengths for Various Exposure Conditions

	Maximum water-cementitions material	Minimum design compressive strength.
Exposure condition	ratio by mass for concrete	f, MPa (psi)
Concrete protected from exposure to freezing and thawing, application of deicing chemicals, or aggressive substances	Select water-cementitious material ratio on basis of strength, workability, and finishing needs	Select strength based on structural requirements
Concrete intended to have low permeability when exposed to water	0.50	28 (4000)
Concrete exposed to freezing and thawing in a moist condition or deicers	0.45	(31 (4500)
For conosion protection for reinforced concrete exposed to chlorides from deicing salts, salt water, brackish water, seawater, or spray from these sources	0.40	35 (5000)

Adapted from ACI 318 (2002).

Select minimum w/c ratio - Durability

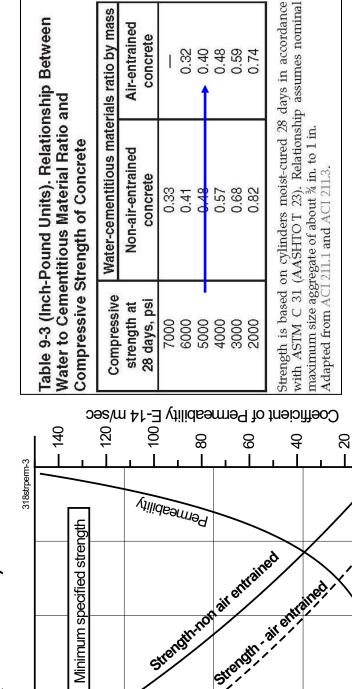
Mix Design and Mix Ingredients Data Sheet By Date Mixture:

t page 2 of 3 ACI MIX EXAMPLE

	Selecting w/c or w/cm for durability	
20.	Concrete intended to have low permeability when	$3x/c$ or $w/cm \le 0.50$
	exposed to water	
21.	Concrete exposed to freezing and thawing in a moist	W/c or $w/cm \le 0.45$
	condition or exposed to deicing chemicals	
22.	For corrosion protection of reinforcement in concrete	W/c or $w/cm \le 0.40$
	exposed to chlorides from deicing chemicals, salt, salt	
	water, brackish water, seawater. og spray from these	
	sources.	
23.	Minimum w/c or w/cm for durability from rows	
	20,21,22.	0.45

Select minimum w/c ratio - Strength

- (4500 psi for Durability
- 3500 psi specified
- Producer standard deviation
- Select largest value of following


$$\square 4500 + (2.33 \times 370) - 500 = 4862$$

$$\square 4500 + (1.34 \times 370) = 4991 \sim 5000 \text{ psi}$$

Select minimum w/c ratio

ACI 318-99 Building Code Requirements for Durable Concrete (Section 4.2.2)

0009

0

0.80

0.70

0.40 0.45 0.50

2000 –

Moist Freezing

Corrosion Protection

Average 28-day Compressive Strength (psi)

Maximum water/cementitious materials ratio

Water / Cementitious Materials Ratio

Strength Select minimum w/c ratio

5		
	Selecting w/c or w/cm for strength	
24.	If concrete intended to have low permeability when exposed to water, \mathcal{L}_{ϵ} min. = 4000 psi.	$\mathcal{L}_{\boldsymbol{\epsilon}}$ minimum =
25.	If concrete exposed to freezing and thawing in moist condition or exposed to deicers, \mathcal{L}_{c} min. = 4500 psi.	$\mathcal{L}_{\mathcal{L}}$ minimum = 4500
26.	If conc. is reinforced and exposed to chlorides from deicers, salt, salt water, brackish water, seawater. or	$\mathcal{L}_{\mathcal{E}}$ minimum =
27.	spray from these sources, \mathcal{L}_{e} min.= 5000 psi. Specified 28-day compressive strength, \mathcal{L}_{e}	3500
28.	Maximum of rows 24-27.	$f_{\infty}^{*} = 4500$
29.	Producer's standard deviation, S, for similar mix (index of producer's precision)	S = 370
30.	$\mathcal{L}_{e}^{*} + 2.33 S - 500 \text{ psi}$	4862 psi
31.	$\mathcal{L}_{\epsilon}^{*} + 1.34 S \text{ psi}$	4996 psi
32.	Mix design target strength, L. e. = Larger of two values in rows 30 and 31.	$\mathcal{L}_{\mathcal{C}} = 5000$
33.	w/c or w/cm required for target strength (From documented producer data, 3-point trial mix test data, or from ACI 211.1 data)	0.40
34.	Specified maximum w/c or w/ <u>cm</u>	0.50
35.	Mix Design w/c or w/ <u>cm</u> = Minimum value from rows 23(durability), 33(strength), and 34(specifications)	0,40

Water Adjustment

Mix Design and Mix Ingredients Data Sheet By

ACI MIX EXAMPLE page 3 of 3

	Water Adjustment and Admixture Data	а	
	Water reduction	Water Reduction	Adjustment
		Effectiveness	Percentage
			Selected
36.	Aggregate shape & Texture	round (-5% to +5%) angular	
37.	Normal range water reducing admixture	(-10 to -5%)	
38.	Mid-range water reducing admixture	(-15 to -8%)	-10
39.	High-range water reducing admixture	(-30 to -12%)	
40.	Mineral Admixtures	2011 Apr. 14 10 10 40 11 15 11 11 11 11 11 11 11 11 11 11 11	
	Fly ash to Silica Fume	11) asii (-10 to + 1270) siinea	
41.	Cumulative adjustment percentage	= sum	-10
42.	Water Adjustment Factor	= 1.00 + (sum/100)	06.0
	Condidant an John Harm II (11)	,	

(suggest no less than 0.70)

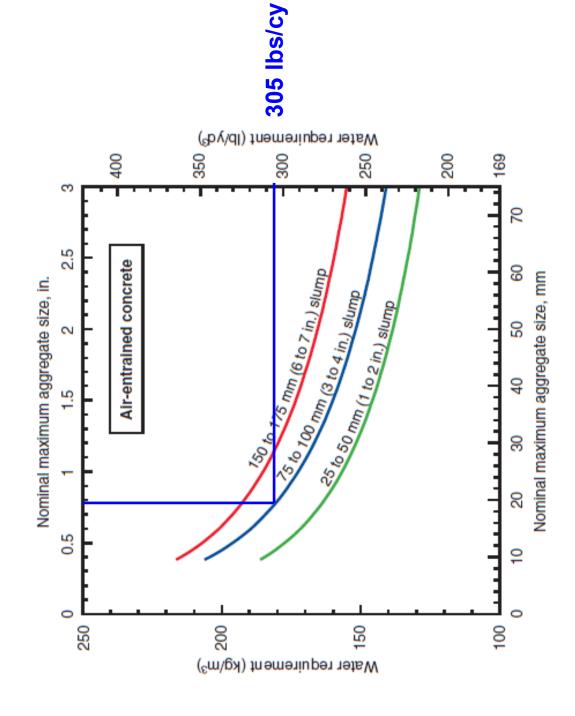
Admirtura Dacado

Water Content & Aggregate Shape

Aggregate Shape	Water Reduction (pounds per cubic yard)
Crushed stone (angular)	0
Crushed stone (subangular)	20
Gravel (some crushed)	35
Gravel (well rounded)	45

This illustrates the need for trial batch testing of local and can influence concrete properties differently. materials, as each aggregate source is different

Enter Known Data on Mix Proportioning Worksheet


	Mix Proportioning Worksheet	ing Workshe		Mixture	Date	Prepa	Prepared by ACI MIX EXAMPLE	I MIX EX	AMPLE
	$Slump = \frac{4}{4}$	(in.)	Nom. N	Nom. Max. Agg. Size= 3/4 (in.)	Basic Water) Demand	Vater 🤰	lb/CY	Water A	Water Adjustment Factor (note impact of AE Conc.)
	Controlling w/c or w/cm =	0.40	Mix des psi	Mix design target strength = 5000		ir Entrained concrete? YES NO	oncrete? O	Exposure: Mild Mod	Moderate Extreme
	Mix Component			Weight (lbs/CY)	Specific Gravity	Gravity	Absolute Vol.	Vol. (ft ³)	Subtotal Vol. (ft3)
	Adjusted Water			(qI)	1.			(£3)	
	Total cementitions		(qp)						
Estimate	Water Content lent		%	(qp)	3.14			(ff3)	
ð	Fly ash		%	(Ib)	0			(ff3)	
ļSŧ	Other Pozzolan		%	(qp)	0			(#3)	
3d	Total (water + cm) = Paste Volume								([])
ліA	Total Air Content	Specified Value	м	ACI 318 <u>Value</u> 6-%	18% of paste= Paste Vol X 18/27	18/27	Selection=	% -9	(ft³)
	Air + Paste Volume							(ff3)	
	Total Agg Volume				27- (a	27- (air + paste)		(#3)	
	Agg. Data				FM (Sand) =	= 2.6	b/b ₀ =	=	
Ð	Coarse Aggregate	Bulk Vol. = $b/b_0 \times 27$	5/b ₀ x 27	= Bulk Vol. x unit wt.	t. Sp. G. SSD	2 CO	37.0 Lus	(ff)	
gregat	Intermediate Aggregate				Sp. G. SSD	1		(ff ₃)	
θĄ	Fine Aggregate			(<u>QSS'qI)</u>) Sp. G. SSD	2.65		(ff3)	Total agg = (coarse & interm vol)
	Total Agg Volume								(ff3)
	Total Weight / CY			(qj)	(
	Total Absolute Volume								27.00(ft³)
	Design Yield								(%)

Estimate Water Content

Table 9-5 (Inch-Pound Units). Approximate Mixing Water and Target Air Content Requirements for Different Slumps and Nominal Maximum Sizes of Aggregate

	Water, p	ounds per o	cubic yard o	Water, pounds per cubic yard of concrete, for indicated sizes of aggregate*	or indicated	sizes of ago	yregate*	
Slump, in.	% in.	½ in.	% in.	1 in.	1½ in.	2 in.**	3 in.**	6 in.**
			Z	Non-air-entrained concrete	ined concr	ete		
1 to 2	350	335	315	300	275	260	220	190
3 to 4	385	365	340	325	300	285	245	210
6 to 7	410	385	360	340	315	300	270	L
Approximate amount of								
entrapped air in non-air-	က	2.5	2	1.5	-	0.5	0.3	0.2
entrained concrete, percent								
				Air-entrain	Air-entrained concrete	4)		
1 to 2	305	295	280	270	550	240	205	180
3 to 4	340	325	305	295	275	265	225	200
6 to 7	365	345	325	310	290	280	260	1
Recommended average total								
air content, percent, for level								
of exposure:†						1		
Mild exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate exposure	0.9	5.5	2.0	4.5	4.5	3.5	3.5	3.0
Severe exposure	7.5	7.0	0.9	0.9	5.5	2.0	4.5	4.0

Estimate Water Content

AMPLE	Water Adjustment Factor (note impact of AE Conc.)	ue: Moderate Extreme	Subtotal Vol. (ft³)						(fł3)	(ft³)							Total <u>agg</u> = (coarse & interm vol)	(ft ³)		27.00(ft³)	(%)
Prepared by ACI MIX EXAMPLE		Exposure:	Absolute Vol. (ft ³)	(#3)		(ff3)	(ff3)	(ff3)		₁₌ 6 %	(ff3)	(#3)	•	92 Ω (lbs/ft³)SSD	(H³)	(ff3)	(ff3)				
epared by	305 lb/CY	Entrained concrete? YES NO								% Selection=		ite)	5		_ (2				
	Basic Water 3 Demand	one Entering YES	Specific Gravity	1.0		3.14				18% of paste= Paste Vol X 18/27		27- (air + paste)	FM(Sand) = 2.6	Unit Wt. Crs.Agg=	Sp. G. SSD 2 6/	Sp. G. SSD	Sp. G. SSD 2.65				
Mixture Date	Nom. Max. Agg. Size= $\frac{3/4}{(in.)}$	Mix design target strength = 5000	Weight (lbs/CY)	(qI)		(qI)	(db)	(lb)		ACI 318 <u>Value</u> 6-%					= Bulk Vol. x unit wt. (lb,SSD)		(QSS'qI)		(qj)		
	Nom. N	0.40 Mix de			(Ib)	%	%	%		Specified Value%					Bulk Vol. = $b/b_0 \times 27$ (ft ³)						
Mix Proportioning Worksheet	$Slump = \frac{4}{4}$	Controlling w/c or $w/cm = 6$	Mix Component	Adjusted Water	Total cementitions	Portland Cement	Fly ash	Other Pozzolan	Total (water + cm) = Paste Volume	Total Air Content	Air + Paste Volume	Total Agg Volume	Agg. Data		Coarse Aggregate	Intermediate Aggregate	Fine Aggregate	Total Agg Volume	Total Weight / CY	Total Absolute Volume	Design Yield
'			1					ļSI		ηİΑ					əţ	grega	θA				

Paste Volume Determine

Calculate Batch Proportions & Volumes

```
7.92 ft3
                                                                                                                                                                                                                                                                                             Cement = 688 lbs / (62.4 lbs/ft3 \times 3.14) = 3.51 ft3
                                                                                                                                                                                                                       Water = 275 \, \text{lbs} / (62.4 \, \text{lbs/ft3} \times 1.00) = 4.41 \, \text{ft}^3
Water Adjustment = 305 \, \mathrm{lbs} \, \mathrm{X} \, 0.90 = 275 \, \mathrm{lbs}
                                                                       Cement Content = 275 \, \text{lbs} / 0.40 = 688 \, \text{lbs}
                                                                                                                                                                                                                                                                                                                                                                       Volume of Paste =
                                                                                                                                            Abs Vol. (ft^3)
```

Heart Hear		Mix Proportioning Worksheet	ing Workshe	- 1		Date Prepa	Prepared by ACI MIX EXAMPLE	MIX EX	AMPLE	Г
Controlling		$Slump = \frac{4}{4}$	(in.)	Nom. N	//ax. Agg. Size= 	ater		Water A	Adjustment Factor oct of AE Conc.)	
Afgusted Water Afguste			0.40	Mix des psi	sign target strength = 5000	Air Entrained co	oncrete? IO	เรด	erate	
Adjusted Water Adjuste		Mix Component			Weight (lbs/CY)	Specific Gravity	Absolute V	ol. (ft ³)	Subtotal Vol. (ft3)	П
Total cementitious G88		Adjusted Water				1.	4.4	(£#)]		
Portland Cement 100 % 688 (lb) 3.14 3.51 (ft) (ft) Fly ash		Total cementitions	889	(qI)						
Fly ash % (1b) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)		Portland Cement	100	%		Н	3 51			
Other Pozzolan % (lb) (R³) 7.92 Total (water + cm) = Paste Volume Specified Value % ACI 318 Value % ACI 318 Value % No selection % ACI 318 Value % No selection % No sel	ð		1	%	(db))	10:0			
Total (water + cm) = Paste Volume Specified Value % ACI 318 Value % Paste Vol X 18/27 Paste Volume Specified Value % ACI 318 Value % Paste Vol X 18/27 Paste Vol X 18/27 Paste Volume (ff²) Aci Content Aci	ļSl			%	(db))		(ff3)		
Total Air Content Specified Value % ACI 318 Value 6	39								(ff) Z6.Z	
Air + Paste Volume 27- (air + paste) (ft²) Agg. Data EM (Sand) = 2,6 bb₀ = 0,0 bb₀ = 0,0 kb₀ = 0	ηİΑ	Total Air Content	Specified Val		ACI 318 <u>Value</u> 6-%	18% of paste= Paste Vol X 18/27			(ff ³)	
Total Agg Volume 27- (air + paste) (ft²) Agg. Data FM (Sand) = 2,6 bb₀ = 02,0 d (lbs/ft²) SSD bb₀ = 02,0 d (lbs/ft²) SSD Coarse Aggregate Bulk Vol. = bb₀ x 27 (lb, SSD) Bulk Vol. = with wt. (lb, SSD) Sp. G. SSD Coarse Aggregate Aggregate Fine Aggregate Sp. G. SSD (ft²) Total agg — (coarse Aggregate		Air + Paste Volume						(ff3)		
Agg. Data FM (Sand) = 2.6 bb ₀ = 2.6 lb ₀ = 92.0 (lb _S /ft ³)SSD FM (Sand) = 2.6 lb ₀ = 92.0 (lb _S /ft ³)SSD Coarse Aggregate Bulk Vol. = b/b ₀ x 27 (ft ³) Bulk Vol. x unit wt. (lb _S SSD) Sp. G. SSD (R ³) (ft ³) Intermediate Aggregate Sp. G. SSD (R ³) (ft ³) (ft ³) Fine Aggregate Fine Aggregate (ft ³) (ft ³) (ft ³) Total Agg Volume Total Absolute (ft ³) (ft ³) (ft ³) Total Absolute (ft ³) (ft ³) (ft ³) (ft ³) Total Absolute (ft ³) (ft ³) (ft ³) (ft ³) Design Yield (ft ³) (ft ³) (ft ³) (ft ³)		Total Agg Volume				27- (air + paste)		(£¥)		
Coarse Aggregate Bulk Vol. = $b/b_0 \times 27$ = Bulk Vol. x unit wt. $\frac{Omt}{(lb_0 SSD)}$ $\frac{Omt}{(lb_0 SSD)}$ $\frac{Omt}{(lb_0 SSD)}$ $\frac{2.60}{2.65}$ $\frac{92.0108 \text{ MeV}}{(lb_0 SSD)}$ $\frac{(lb_0 SSD)}{(lb_0 SSD)}$ $\frac{2.60}{2.65}$ $\frac{(lb_0 SSD)}{(lb_0 SSD)}$ $(lb_0$		Agg. Data				d) =	b/b ₀ =	3,000		
Coarse Aggregate Bulk Vol. = b/b ₀ x 27 = Bulk Vol. x untt wt. (lb, SSD) Sp. G. SSD (ft³) (ft³) Intermediate Aggregate (sp. G. SSD (ft³) (ft³) Total agg = (coar coar coar coar coar coar coar coar			,			Omt wt.	1/SOT 17.76	USS(-)		
Intermediate Aggregate Sp. G. SSD (ft³) (ft³) Total agg = (coar Stinterm vol) Fine Aggregate (Ib, SSD) Sp. G. SSD 2,65 (ft³) Total agg = (coar Stinterm vol) Total Agg Volume (Ib) (Ib) (Ib) (Ib) 77.00 Total Absolute Volume Volume (Ib) 77.00 Volume Volume 10.00 10.00 10.00	əji		Bulk Vol. =	b/b ₀ x 27 (ff³)	= Bulk Vol. x unit wt (lb_sSSD)			(#3)		
Fine Aggregate (Ib, SSD) Sp. G. SSD 2.65 (ff³) Total agg = (coar Stinterm vol) Total Agg Volume (Ib) (Ib) <th>gregs</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(#₃)</td> <td></td> <td></td>	gregs							(# ₃)		
/ CY (1b) 27.00	βĄ	Fine Aggregate			(lb, SSD)	Sp. G. SSD		-	Total <u>agg</u> = (coarse & interm vol)	
/ CY (1b) 27.00		Total Agg Volume							(ff ₃)	
27.00		Total Weight / CY			(Ib)	(
		Total Absolute Volume							27.00(ft³)	
		Design Yield							(%)	

Determine Air Volume

Calculate Batch Volumes

Air must be minimum of 18% of paste volume.

7.94 ft³ X 0.18 = 1.43 ft³ air volume in paste

 $1.43 \text{ ft}^3/27 \text{ ft}^3 \times 100 = 5.3\%$ air

6% required by ACI

Select highest

Air Vol =

 $0.06 \times 27 \, \text{ft}^3 = 1.62 \, \text{ft}^3$

	Mix Proportioning Worksheet	ing Workshe	- 1	Mixture	Date		Prepared by ACI MIX EXAMPLE	I MIX EX	AMPLE	
	Slump = 4	(in.)	Nom. N	Nom. Max. Agg. Size=	ze= 3/4 (in.)	Basic Water 305 Demand	1b/CY	Water A	Water Adjustment Factor	9°.
	Controlling w/c or w/cm =	0.40	Mix de: psi	Mix design target strength = 5000	ngth =	Air Entrained concrete? YES NO	concrete? NO	Exposure: Mild Mod	ure: Moderate Extreme	\bigcap
	Mix Component			Weight (lbs/CY)	CX)	Specific Gravity	Absolute Vol.	7ol. (ft ³)	Subtotal Vol. (ff ³)	. (ff³)
	Adjusted Water			526	(Ib)	1.0	4.4	(#) 1		
	Total cementitious	889	(qp)							
	Portland Cement	100	%	889	(Ib)	3.14	3 51	(ff3)		
Ð	Fly ash	1	%		(Ib)		5	(#3)		
SE	Other Pozzolan		%		(lb)			(ff ³)		
39	Total (water + cm) = Paste Volume								7.92	(ff3)
ηiΑ	Total Air Content	Specified Value	ne %	ACI 318 Value	% 9 -	18% of paste= 5 3 % Paste Vol X 18/27	Selection=	_% — 9	1.62	(ff³)
	Air + Paste Volume							(ff3)		
	Total Agg Volume					27- (air + paste)		(ff3)		
	Agg. Data					FM(Sand) = 2.6	b/b ₀ =	037500		
Ð	Coarse Aggregate	Bulk Vol. = $b/b_0 \times 27$	b/b ₀ x 27	= Bulk Vol. x unit wt.	c unit wt.	Sp. G. SSD	(f)	(ff)		
glega	Intermediate Aggregate					Sp. G. SSD		(ff3)		
βĄ					(Ib,SSD)	Sp. G. SSD 2.65		(ff3)	Total $\frac{\text{agg}}{\text{agg}} = (cc)$ & interm vol)	(coarse I)
١	Total Agg Volume									(ft³)
	Total Weight / CY				(Ib)					
	Total Absolute Volume								27.	27.00(ft³)
	Design Yield									(%)

Paste + Air Volume Aggregate Volume Determine

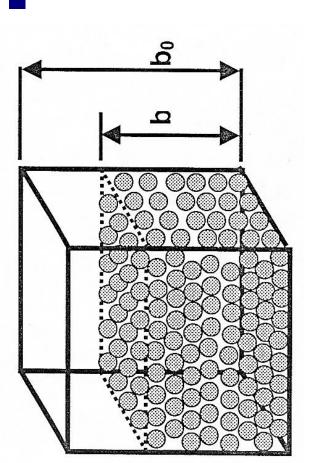
Calculate Batch Volumes

Volume of Paste =

7.92 ft3

Volume of Air =

1.62 ft³


Volume of Paste + Air =

9.54 ft3

Volume of Aggregate = 27_{ft3} - 9.56_{ft3} = 17.46_{ft3}

Mix Proportioning Worksheet	ning Workshe	- 1		Date Basic Wat	Prepai	Prepared by ACI MIX EXAMPLE	MIX EX	AMPLE	Γ
$= \frac{4}{4}$	(in.)	NOM. IN	Nom. Max. Agg. Size= 3/4 (in.)	1.) Demand	er <i>305</i>	lb/CY	Water A	water Adjustment Factor (note impact of AE Conc.)	0
Controlling w/c or w/cm =	0.40	Mix de: psi	design target strength = 5000		ir Entrained concrete? YES NO	ncrete? O	Exposure: Mild Mod	Mederate (Extreme	
Mix Component			Weight (lbs/CY)	Specific Gravity	avity	Absolute Vol. (ft ³)	7 ol. (ft ³)	Subtotal Vol. (ff ³)	
Adjusted Water			1) 526	(lb) 1.0		4.41	(£#) []		
Total cementitions	889	(qp)							
Portland Cement	100	%	D 889	(lb) 3.14		3 51	1 (ft³)		
Fly ash	1	%)	(Ib)			(#3)		
Other Pozzolan		%	D	(lb)			(ff3)		
Total (water + cm) =								t) 26.7	(ft³)
Total Air Content	Specified Value	lue%	ACI 318 <u>Value</u> 6-%	% 18% of paste= 5_3 Paste Vol X 18/27	%	Selection=	% -9	1.62 (f	(ft³)
Air + Paste Volume						9.54	(£3)		
Total Agg Volume				27- (air + paste)	+ paste)	17.46	(£#)		
Agg. Data				$FM (Sand) = \frac{2}{2}$ Unit Wt. Crs. Agg=	5	$b/b_0 = 0.00$ (Tbs/ft ³)SSD	ft3)SSD		
Coarse Aggregate	Bulk Vol. = $b/b_0 \times 27$	b/b ₀ x 27 (ff ³)	= Bulk Vol. x unit wt. (1b.SSD)		090	26.2	(#3)		
Intermediate Aggregate				Sp. G. SSD	3		(ff3)		
Fine Aggregate			(OSS'9I)	Sp. G. SSD	2.65		(ff3)	Total <u>agg</u> = (coarse & interm vol)	10
Total Agg Volume								f)	(ft³)
Total Weight / CY)	(Ib)					
Total Absolute Volume								27.00(f³)	ff)
Design Yield								s)	(%)

Estimate Aggregate Proportions

Bulk volume of coarse aggregate (b/b₀) is the percent of loosely packed (dry rodded) volume the coarse aggregate occupies in one cubic yard

Estimate Aggregate Proportions

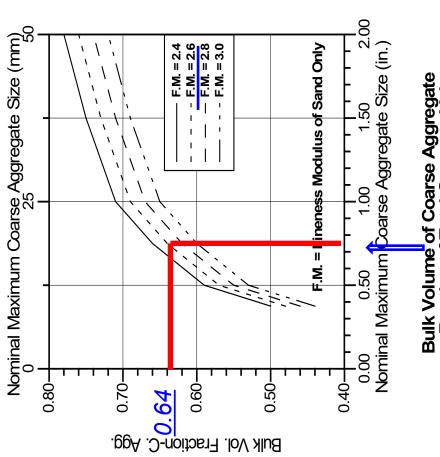


Table 9-4. Bulk Volume of Coarse Aggregate Per Unit Volume of Concrete

Nominal maximum size of	Bulk v aggregate	Bulk volume of dry-rodded coarse aggregate per unit volume of concrete for different fineness moduli of fine aggregate*	y-rodded cc lume of con uli of fine a	oarse Icrete for ggregate*
mm (in.)	2.40	2.60	2.80	3.00
9.5 (%)	0.50	0.48	0.46	0.44
12.5 (½)	0.59	0.57	0.55	0.53
19 (%)	99.0	0.64	0.62	09.0
25 (1)	0.71	0.69	0.67	0.65
37.5 (1½)	0.75	0.73	0.71	69.0
50 (2)	0.78	0.76	0.74	0.72
75 (3)	0.82	0.80	0.78	92.0
150 (6)	0.87	0.85	0.83	0.81

Bulk volumes are based on aggregates in a dry-rodded condition as described in ASTM C 29 (AASHTO T 19), Adapted from ACI 211.1.

as a Fraction of Total Concrete Volume. Data from Table 6.3.6 ACI 211.1-91.

Coarse Aggregate Volume Determine

X EXAMPLE	Water Adjustment Factor (mote impact of AE Conc.)	Exposure: Mild Moderate Extreme	t ³) Subtotal Vol. (ft ³)	(6		(ft³)	(ff ³)	(ft)	7.92 (ft³)	_% 1.62 (ff³)	(ff3)	(ff ₃)	6	(ff ³)	(ft³)	(ft³) Total <u>agg</u> = (coarse & interm vol)	(ff ³)		27.00(ft³)	(14)
Prepared by ACI MIX EXAMPLE	lb/CY		Absolute Vol. (ft ³)	4.41		3 51				Selection= 6	9.54	17.46	b/b ₀ = 0.64)						
	Basic Water 305 Demand	Air Entrained concrete? YES NO	Specific Gravity	1.0		3.14				18% of paste= 5 3 % Paste Vol X 18/27		27- (air + paste)	FM(Sand) = 2.6	Sp. G. SSD	Sp. G. SSD	Sp. G. SSD 2.65				
Mixture Date	Nom. Max. Agg. Size= 3/4 (in.)	Mix design target strength = 5000	Weight (lbs/CY)	(lp)		(q1) 889	(lb)	(qp)		ACI 318 <u>Value</u> 6 %				= Bulk Vol. x unit wt.		(IP'SSD)		(qI)		
		0.40 Mix des			(q1) 889	% 001	%	%		Specified Value%				Bulk Vol. = $b/b_0 \times 27$						
Mix Proportioning Worksheet	Slump = 4	Controlling w/c or $w/cm = 6$	Mix Component	Adjusted Water	Total cementitions	Portland Cement	Fly ash	Other Pozzolan	Total (water + cm) = Paste Volume	Total Air Content	Air + Paste Volume	Total Agg Volume	Agg. Data	Coarse Aggregate	Intermediate Aggregate	Fine Aggregate	Total Agg Volume	Total Weight / CY	Total Absolute Volume	
			•				Ð	S	39	ΊΙΑ	••			Ðļ	glega	βĄ				_

Calculate Aggregate Batch Proportions

Coarse Aggregate

Bulk Volume $(b/b_0) = 0.64 \times 27 \text{ Hz} = 17.28 \text{ Hz}$

Weight (lbs) = $17.28 \text{ ft}^3 \times 92.0 \text{ lbs/ft}^3 = 1590 \text{ lbs}$

Abs. Vol.(ft³)=1590 lbs/(62.4 lbs/ft³ X 2.60)= 9.80ft³

AMPLE	Water Adjustment Factor (note impact of AE Conc.)	ure: Moderate (Extreme	Subtotal Vol. (ft³)						7.92 (ft³)	1.62 (ff³)						Total $\frac{\text{agg}}{\text{agg}}$ (coarse & interm vol)	(ft ³)		27.00(ft³)	(%)
Prepared by ACI MIX EXAMPLE	1b/CY	Exposi Mild	Absolute Vol. (ft ³)	4.41 (ft)		3 51 (ft³)	(ft³)	(ft³)		Selection=6%	9.54 (ft³)	17,46 (ft ³)	$b/b_0 = 0.64$	9.80 (ff³)	(ff)	(ff)				
	Basic Water 305 Demand	Air Entrained concrete? YES NO	Specific Gravity	1.0		3.14				18% of paste= 5 3 % Paste Vol X 18/27		27- (air + paste)	FM(Sand) = 2.6 Unit Wt. Crs. Agg=	Sp. G. SSD	Sp. G. SSD	Sp. G. SSD 2.65				
Mixture Date	Nom. Max. Agg. Size= 3/4 (in.)	design target strength = 5000	Weight (lbs/CY)	(qp) 522		(IP) (B)	(Ib)	(Ib)		ACI 318 <u>Value</u> 6 %				= Bulk Vol. x unit wt. 1590 (lb.SSD)		(DSS'qI)		(qI)		
	Nom. N	0.40 Mix de			(qp) 889	% <i>001</i>	%	%		Specified Value%				Bulk Vol. = $b/b_0 \times 27$ 17.28 (ft³)						
Mix Proportioning Worksheet	$b = \text{dum}_{S}$	Controlling w/c or w/cm =	Mix Component	Adjusted Water	Total cementitions	Portland Cement	Fly ash	Other Pozzolan	Total (water + cm) = Paste Volume	Total Air Content	Air + Paste Volume	Total Agg Volume	Agg. Data	Coarse Aggregate	Intermediate Aggregate	Fine Aggregate	Total Agg Volume	Total Weight / CY	Total Absolute Volume	Design Yield
			-				ð	ļSI	şq	ліА				Đ)	grega					

Fine Aggregate Volume Determine

Calculate Aggregate Batch Proportions

Fine Aggregate

Abs. Vol.(\mathfrak{m}^3) = 17.46 \mathfrak{m}^3 - 9.80 \mathfrak{m}^3 = 7.66 \mathfrak{m}^3

Weight (lbs) = 7.66 lts X 62.4 lbs/ft3 X 2.65=1267 lbs

	Mix Proportioning Worksheet	uing Workshe		Mixture	Date		Prepared by ACI MIX EXAMPLE	I MIX EX	AMPLE	
	$Slump = \frac{4}{4}$	(in.)	Nom. N	Nom. Max. Agg. Size= 3/4 (in.)	(in.)	Basic Water 305 Demand	lb/CY	Water A	Water Adjustment Factor (note impact of AE Conc.)	.90
	Controlling w/c or $w/cm =$	0.40	Mix des psi	Mix design target strength = 5000	- ų	Air Entrained concrete? YES NO	concrete? NO	Exposure: Mild Mod	.ure: Moderate Extreme	\bigcirc
	Mix Component			Weight (lbs/CY)		Specific Gravity	Absolute Vol.	/ol. (ft ³)	Subtotal Vol. (ff ³)	(ff3)
	Adjusted Water			522	(qp)	1.0	4.41			
	Total cementitions	889	(qI)							
	Portland Cement	100	%	889	(Ib)	3.14	3 51			
Ð	Fly ash		%		(lb)			(ff3)		
ļSŧ	Other Pozzolan		%		(Ib)			(ff ³)		
3d	Total (water + cm) = Paste Volume								7.92	(ff3)
ліA	Total Air Content	Specified Value	lue%	ACI 318 Value	% 9	18% of paste= 5 3 % Paste Vol X 18/27	Selection=	_% —9	1.62	(# ₃)
	Air + Paste Volume						9.54	(ff3)		
	Total Agg Volume					27- (air + paste)	17.46	(H ₃)		
	Agg. Data					FM(Sand) = 2.6	b/b ₀ = 0.64	64		
						Unit Wt. Crs.Agg=	92,0 (lbs/	H-)SSD		
ĐÌI	Coarse Aggregate	Bulk Vol. = $b/b_0 \times 27$ 17.28 (ft ³)	$= b/b_0 \times 27$ $\frac{28}{}$ (ff ³)	= Bulk Vol. x unit wt. 1590 (lb,SSD)	x unit wt. (lb,SSD)	Sp. G. SSD 2 60	9.80	(ft³)		
grega	Intermediate Aggregate					Sp. G. SSD		(ff ³)		
6 A	Fine Aggregate			(I) 1567	(DSS'9)	Sp. G. SSD 2.65	7.66	(ff)	Total agg = (coarse & interm vol)	arse
	Total Agg Volume			0 0 0					17.46	(ff ³)
	Total Weight / CY			3820	(qp)					
	Total Absolute Volume								27.72	27.00(ft³)
	Design Yield								IND	(%)

APPENDIX B EXAMPLE PROBLEMS

Example 1 Fineness Modulus Worksheet

Sieve Size	Percent retained	Cumulative Percent Retained
6"	0	0
3"	0	0
1.5"	0	0
3/4"	0	0
3/8"	0	0
#4	2	
#8	11	
#16	18	
#30	20	
#50	25	
#100	18	
Pan	4	NA
Sum		
Calculation		
FM		

Example 1 Answer Fineness Modulus Worksheet

Sieve Size	Percent retained	Cumulative Percent Retained
6"	0	0
3"	0	0
1.5"	0	0
3/4"	0	0
3/8"	0	0
#4	2	2
#8	11	13
#16	18	31
#30	20	51
#50	25	76
#100	18	94
Pan	4	NA
Sum		267
Calculation		267 ÷ 100
FM		<u>2.67</u>

Example 2 – Mathematically Combined Gradation

An aggregate blend of 45% coarse, 15% intermediate, and 40% fine aggregate is to be combined. Determine the combine percent passing and combined percent retained.

Mathematical Combined Aggregate Gradation, by Weight

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Relative Percent	0.45	0.15	0.40		
1 1/2"	100.0	100.0	100.0		
1"	98.0	100.0	100.0		
3/4"	76.0	100.0	100.0		
1/2"	38.0	100.0	100.0		
3/8"	22.0	86.0	100.0		
#4	4.8	21.0	92.0		
#8	1.8	4.1	84.0		
#16	1.7	3.7	66.0		
#30	1.6	3.4	42.0		
#50	1.5	2.9	14.0		
#100	1.4	2.5	1.4		
#200	1.3	2.1	0.3		

Example 2 – Mathematically Combined Gradation Answer

An aggregate blend of 45% coarse, 15% intermediate, and 40% fine aggregate is to be combined. Determine the combine percent passing and combined percent retained.

Mathematical Combined Aggregate Gradation, by Weight

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Sieve, in.	701 4331116	70 I assing	70 I dissing	70 Tassing	/o Retained
Relative	0.45	0.15	0.40		
Percent					
1 1/2"	100.0	100.0	100.0	100.0	100-100 = 0.0
1"	98.0	100.0	100.0	99.1	100-99.1 = 0.9
3/4**	76.0	100.0	100.0	89.2	99.1-89.2 = 9.9
1/2**	38.0	100.0	100.0	72.1	89.2-72.1 = 17.1
3/8"	22.0	86.0	100.0	62.8	72.1-62.8 = 9.3
#4	4.8	21.0	92.0	42.1	62.8-42.1 = 20.7
#8	1.8	4.1	84.0	35.0	42.1-35.0 = 7.1
#16	1.7	3.7	66.0	27.7	35.0-27.7 = 7.3
#30	1.6	3.4	42.0	18.0	27.7-18.0 = 9.7
#50	1.5	2.9	14.0	6.7	18.0-6.7 = 11.3
#100	1.4	2.5	1.4	1.6	6.7-1.6 = 5.1
#200	1.3	2.1	0.3	1.0	1.6 -1 = 0.6

Combined %Passing

```
1 ½"
       100x0.45 + 100x0.15 + 100x0.40 = 100
1"
        98x0.45 + 100x0.15 + 100x0.40 = 99.1
3/4"
        76x0.45 + 100x0.15 + 100x0.40 = 89.2
1/2"
        38x0.45 + 100x0.15 + 100x0.40 = 72.1
3/8"
        21x0.45 + 86x0.15 + 100x0.40 = 62.8
#4
        4.8 \times 0.45 + 21 \times 0.15 + 92 \times 0.40 = 42.1
#8
        1.8 \times 0.45 + 4.1 \times 0.15 + 84 \times 0.40 = 35.0
#16
        1.7x0.45 + 3.7x0.15 + 66x0.40 = 27.7
#30
        1.6x0.45 + 3.4x0.15 + 42x0.40 = 18.0
#50
        1.5 \times 0.45 + 2.9 \times 0.15 + 14 \times 0.40 = 6.7
#100
        1.4 \times 0.45 + 2.5 \times 0.15 + 1.4 \times 0.40 = 1.6
#200
        1.3x0.45 + 2.1x0.15 + 0.3x0.40 = 1.0
```

Example 3 Calculating Coarseness and Workability Factors

Given crushed limestone coarse aggregate, crushed intermediate aggregate, and sand at the percentages indicated, determine the coarseness and workability factors.

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Relative Percent	0.45	0.15	0.40		
1 1/2"	100.0	100.0	100.0	100.0	0.0
1"	98.0	100.0	100.0	99.1	0.9
3/4"	76.0	100.0	100.0	89.2	9.9
1/2"	38.0	100.0	100.0	72.1	17.1
3/8"	22.0	86.0	100.0	62.8	9.3
#4	4.8	21.0	92.0	42.1	20.7
#8	1.8	4.1	84.0	35.0	7.1
#16	1.7	3.7	66.0	27.7	7.3
#30	1.6	3.4	42.0	18.0	9.7
#50	1.5	2.9	14.0	6.7	11.3
#100	1.4	2.5	1.4	1.6	5.1
#200	1.3	2.1	0.3	1.0	0.6

Example 3 Calculating Coarseness and Workability Factors Answer

Given crushed limestone coarse aggregate, crushed intermediate aggregate, and sand at the percentages indicated, determine the coarseness and workability factors.

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Relative Percent	0.45	0.15	0.40		
1 1/2"	100.0	100.0	100.0	100.0	0.0
1"	98.0	100.0	100.0	99.1	0.9
3/4''	76.0	100.0	100.0	89.2	9.9
1/2"	38.0	100.0	100.0	72.1	17.1
3/8"	22.0	86.0	100.0	62.8	9.3
#4	4.8	21.0	92.0	42.1	20.7
#8	1.8	4.1	84.0	35.0	7.1
#16	1.7	3.7	66.0	27.7	7.3
#30	1.6	3.4	42.0	18.0	9.7
#50	1.5	2.9	14.0	6.7	11.3
#100	1.4	2.5	1.4	1.6	5.1
#200	1.3	2.1	0.3	1.0	0.6

Coarseness factor =
$$\frac{Combined\ Percent\ Re\ tained\ Above\ 3 / 8''\ Sieve}{Combined\ Percent\ Re\ tained\ Above\ #8\ Sieve} \times 100$$

= $\frac{0 + 0.9 + 9.9 + 17.1 + 9.3}{0 + 0.9 + 9.9 + 17.1 + 9.3} \times 100$
= $\frac{37.2}{65} \times 100 = 57.2$

Workability factor = Combined Percent Pas sin g #8 Sieve

Examples 4 – 14 Volume, Unit Weight, Specific Gravity, and Water Cement Ratio

4.
$$8.0 \text{ ft}^3 = yd^3$$

5.
$$0.118 \text{ yd}^3 = \underline{\qquad} \text{ft}^3$$

6. How many pounds does 6.8 gallons of water weigh?

7. What is the absolute volume (yd³) of 235 lbs of water?

8. Determine the unit weight of 0.25 ft³ of concrete that weighs 35.7 lbs?

9. 1.0 ft³ of a material weighs 167 lbs. Determine the specific gravity (SPG).

10. Given 6% air content in a cubic yard. What volume of air in cubic feet?

11. What is the absolute volume of cement yd ³ per cubic yard, given the SPG is 3.14 and there are 709 lbs/yd ³ ?
12. What is the absolute volume of cement <u>ft³</u> per cubic yard, given the SPG is 3.14 and there are 709 lbs/yd³?
13. What is the weight of material (lbs/yd³) given an absolute volume of 0.330 and a specific gravity of 2.65? What is the weight in (lbs/ft³)?
14. Determine the w/c ratio, given the following mix design: 300 lbs cement 200 lbs water at plant 90 lbs fly ash 10 lbs from coarse aggregate 210 lbs ggbfs 30 lbs from fine aggregate 2 gallons water per yd³ added on truck

15. Given that a concrete mix is designed on the basis of 1 yd³ (27 ft³) provide the correct answer in each box so that <u>ALL</u> of the missing information in the following table is completed. The w/c ratio is given as 0.45.

Component Material	Absolute Volume (yd³/yd³)	Absolute Volume (ft ³ /yd ³)	Weight (lbs/yd³)
Cement (SPG =3.14)	0.106	b)	a)
Water	d)	e)	c)
Fine Aggregate	g)	h)	1650
Coarse Aggregate	f)	10.6	1560
Total	1.000 yd ³	27.0 ft ³	

Answers 4 – 15 Volume, Unit Weight, Specific Gravity, and Water Cement Ratio

4.
$$8.0 \text{ ft}^3 = \text{yd}^3$$

8.0 ft³
$$\div$$
 27 ft³ / yd³ = 0.296 yd³

5.
$$0.118 \text{ yd}^3 = \underline{\qquad} \text{ ft}^3$$

$$0.118 \text{ yd}^3 \times 27 \text{ ft}^3 / \text{ yd}^3 = 3.186 \text{ ft}^3$$

6. How many pounds does 6.8 gallons of water weigh?

$$(6.8 \text{ gal}) \times (8.33 \text{ lbs})/\text{gal}. = 56.64 \text{ lbs}$$

7. What is the absolute volume (yd³) of 235 lbs of water?

Abs Vol (yd³) = 235 lbs
$$\div$$
 (1.00 x 62.4 lbs/ ft³ x 27 ft³ yd³)
235 lbs \div 1684.8 lbs/yd³ = 0.139 yd³

8. Determine the unit weight of 0.25 ft³ of concrete that weighs 35.7 lbs?

$$\frac{35.7 \text{lbs}}{0.25 \text{ ft}^3}$$
 = 142.8 lbs/ft³

9. 1.0 ft³ of a material weighs 167 lbs. Determine the specific gravity (SPG).

SPG = Unit wt of material =
$$167.4 \text{ lbs/ft}^3 \div 62.4 \text{ lbs/ft}^3 = 2.68$$

Unit wt of water

10. Given 6% air content in a cubic yard. What volume of air in cubic feet?

$$0.06 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 1.62 \text{ ft}^3$$

11. What is the absolute volume of cement <u>yd³</u> per cubic yard, given the SPG is 3.14 and there are 709 lbs/yd³?

Abs. Vol (yd3/yd3) =
$$\frac{709 \text{ lbs/yd}^3}{(3.14 \times 62.4 \text{ lbs/ft}^3 \times 27 \text{ ft}^3/\text{yd}^3)}$$
 =0.134 yd3/yd3

12. What is the absolute volume of cement $\underline{\mathbf{ft}^3}$ per cubic yard, given the SPG is 3.14 and there are 709 lbs/yd³?

Abs. Vol (ft3/yd3) =
$$\frac{709 \text{ lbs/yd}^3}{(3.14 \times 62.4 \text{ lbs/ft}^3)}$$
 =3.61 ft³/yd³

13. What is the weight of material (lbs/yd³) given an absolute volume of 0.330 and a specific gravity of 2.65? What is the weight in (lbs/ft³)?

Weight lbs/yd³ = 0.330 x 2.65 x 62.4 ft³/yd³ x 27 ft³/yd³ = 1473 lbs/yd³
Weight lbs/ ft³ = 1473 lbs/yd³
$$\div$$
 27 ft³/yd³ = 54.57 lbs/ft³

14. Determine the w/c ratio, given the following mix design:

300 lbs cement
 90 lbs fly ash
 210 lbs ggbfs
 200 lbs water at plant
 10 lbs from coarse aggregate
 30 lbs from fine aggregate
 2 gallons water per yd³ added on truck

$$w/c = {200 + 10 + 30 + 2x8.33 \over 300 + 90 + 210} = {256.66 \over 600} = 0.428$$

15. Given that a concrete mix is designed on the basis of 1 yd³ (27 ft³) provide the correct answer in each box so that <u>ALL</u> of the missing information in the following table is completed. The **w/c ratio** is given as **0.45**.

Component Material	Absolute Volume	Absolute Volume	Weight
_	(yd^3/yd^3)	(ft ³ /yd ³)	(lbs/yd ³)
Cement (SPG =3.14)	0.106	b)	a)
Water	d)	e)	c)
Fine Aggregate	g)	h)	1650
Coarse Aggregate	f)	10.6	1560
Total	1.000 yd ³	27.0 ft ³	

- a) 0.106 X 62.4 X 27 X 3.14 = 561 lbs
- b) $0.106 \times 27 = 2.86 \text{ ft}^3$
- c) 561 X 0.45 = 252.45 lbs
- d) $252.45 \div (1.00 \times 62.4 \times 27) = 0.150 \text{ yd}^3$
- e) $0.150 \times 27 = 4.05 \text{ ft}^3$
- f) $10.6 \div 27 = 0.393 \text{ yd}^3$
- g) $1.000 0.393 0.150 0.106 = 0.351 \text{ yd}^3$
- h) $0.351 \times 27 = 9.48 \text{ ft}^3$

Example Problem 16

16. Determine the SSD weights for a QMC mix using form 820150 given the following source information:

•	LafargeHolcim I/II	3.14
•	Port Neal #4 fly ash (20% replacement)	2.66
•	Fine agg. Halletts Materials, Army Post East, Polk Co.	2.65
•	Coarse agg. Martin Marietta, Ames Mine, Story Co.	2.68
•	Intermediate agg. Martin Marietta, Ames Mine, Story Co.	2.68

Assume the following aggregate Proportions:

- Coarse = 0.48
- Intermediate = 0.12
- Fine = 0.40

Rev 05/09		-	tment Of Transportation		Form E820150E
			ice Of Materials DICEMENT CONCRETE		
		PORTLAN	CEMENT CONCRETE		
Project No.: P	roblem 16		_	County:	Any
Mix No.:	QMC	A	bs Vol. Cement:0.1059	Туре:	<u>I/II</u>
Cement (IM 401):		lbs	Source: LafargeHolcim I/II	Sp. Gr.:	3.14
Fly Ash (IM 491.17):	% 20	112	Source: Port Neal #4	Sp. Gr.:	2.66
Slag (IM 491.14):		0	Source:	Sp. Gr.:	
Adjus	sted lbs. Cement:	448			
То	tal Cementitious	560	Total % Replacement = 20		
IM T203	Fine Aggregat	e Source:	Army Post East	Sp. Gr.:	2.65
IM T203	Interm. Aggrega		Ames Mine	Sp. Gr.:	2.68
IM T203	Coarse Agrega		Ames Mine	Sp. Gr.:	2.68
Basic w/c	0.400		Water (lbs/cy) = Design w/c (wt. cement +	•	
Max w/c_	0.435		Max. Water (lbs/cy) = Design w/c (wt. cement +	wt Fly Ash +Slag) =	244
Absolute Volumes	Cement		(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	0.085
	Fly Ash		(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	0.025
	Slag		(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Water		(lbs/cy) / (1.00 X 62.4 X 27)	=	0.133
	Air				0.060
			Subtotal	=	0.303
			1.000 - Subtotal	=	0.697
			Total	=	1.000
% FA Agg.:			ggregate (1.000 - Subtotal) X % In Mix	=	
% In. Agg.:			Aggregate (1.000 - Subtotal) X % In Mix	=	
% CA Agg.:		Coarse	Aggregate (1.000 - Subtotal) X % In Mix Aggregate Total	=	0.697
			Aggregate i otal	=	0.097
Aggregate Weights		Fine Ag	gregate (abs vol.) X Sp. Gr. X 62.4 X 27	=	
		Intermediate	Aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=	
		Coarse A	ggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=	
Summary			Cement (lbs/cy)		
•			Fly Ash (lbs/cy)		
			Slag (lbs/cy)		
			Water (lbs/cy)		
			Fine Agg. (lbs/cy)		
			Interm. Agg (lbs/cy)		
			Coarse Agg (lbs/cy)		
Distribution: Materials. D	DME. Proj. Engr	Contractor			

Example 16 Answer

Rev 05/09	Iowa D	epartment Of Transportation		Form E820150E
		Office Of Materials		
	PORT	LAND CEMENT CONCRETE		
Project No.: P	roblem 16		County:	Any
Mix No.:	QMC	Abs Vol. Cement: 0.1059	Type:	I/II
MIX 110	QIIIO	ABS VOI. SCHICIT	ı ypc.	
Cement (IM 401):	560 lbs	Source: LafargeHolcim I/II	Sp. Gr.:	3.14
_	%			
Fly Ash (IM 491.17): _	20 112	Source: Port Neal #4	Sp. Gr.:	2.66
Slag (IM 491.14):	0	Source:	Sp. Gr.:	
31ag (1W 491.14)		Source:	ор. Gr	
Adjus	sted lbs. Cement: 448			
To	otal Cementitious 560	Total % Replacement = 20		
IM T203	Fine Aggregate Source	: Army Post East	Sp. Gr.:	2.65
IM T203	Interm. Aggregate Source		Sp. Gr.:	2.68
IM T203	Coarse Agregate Source		Sp. Gr.:	2.68
1111 1 200	Odarse Agregate Odarse	Alles mile	ор. Ог	2.00
Basic w/c	0.400	Water (lbs/cy) = Design w/c (wt. cement + wt Fly Ash	+Slag) =	224
Max w/c	0.435	Max. Water (lbs/cy) = Design w/c (wt. cement + wt Fly Ash	+Slag) =	244
	_			
Absolute Volumes	Cement	(lbs/cy) / (Sp. Gr. X 62.4 X 27) =		0.085
	Fly Ash	(lbs/cy) / (Sp. Gr. X 62.4 X 27) =		0.025
		(ISSO), (Sp. 511 X 5214 X 21)		0.020
	Slag	(lbs/cy) / (Sp. Gr. X 62.4 X 27) =		
	Water	(lbs/cy) / (1.00 X 62.4 X 27)	=	0.133
	Δir			0.060
	Al			0.000
		Subtotal	=	0.303
		1.000 - Subtotal	=	0.697
		Total	=	1.000
a, 				
% FA Agg.: _		ne Aggregate (1.000 - Subtotal) X % In Mix	=	0.278
% In. Agg.: _		erm. Aggregate (1.000 - Subtotal) X % In Mix	=	0.084
% CA Agg.: _	48 Coa	arse Aggregate (1.000 - Subtotal) X % In Mix	=	0.335
		Aggregate Total	=	0.697
Aggregate Weights	Fine	e Aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=	1241
	Interme	diate Aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=	379
				4540
	Coar	rse Aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=	1513
Summary		Cement 448 (lbs/cy)		
		Fly Ash 112 (lbs/cy)		
		Slag 0 (lbs/cy)		
		Water 224 (lbs/cy)		
		Fine Agg. 1241 (lbs/cy)		
		Coarse Agg. 1513 (lbs/cy)		
Distribution: Materials,	DME, Proj. Engr., Contracto	or		

APPENDIX C WORKSHEETS

PCC Level III Basic Equations

Abs. Vol. $(yd3/yd3) = weight (lbs) \div SpG \div 62.4 lbs/ft3 \div 27 ft3/yd3$

Abs. Vol. (ft3/yd3) = weight (lbs) \div SpG \div 62.4 lbs/ft3

Weight (lbs/yd3) = Abs. Vol. (yd3/yd3) X SpG X 62.4 lbs/ft3 X 27 ft3/yd3

Weight (lbs/yd3) = Abs. Vol. (ft3/yd3) X SpG X 62.4 lbs/ft3

w/c ratio = weight water / weight cementitious materials

weight of Cement = weight water / (w/c ratio)

weight of water = weight cement materials X (w/c ratio)

unit weight of water = 62.4 lbs/ft3

SpG of water = 1.00

1 gallon of water = 8.33 lbs

Standard Deviation

$$f'_{CT} = f'_{C} + (2.33 \times S - 500)$$

$$f'_{Cr} = f'_{C} + (1.34 \times S)$$

f'cr = Targetstrength

f'c = design strength

S = standard deviation

Select the largest value and round to the next highest 10 psi

Fineness Modulus Worksheet

Sieve Size	Percent Retained	Cumulative Percent Retained
6"		
3"		
1.5"		
3/4"		
3/8"		
#4		
#8		
#16		
#30		
#50		
#100		
Pan		NA
Sum		
Calculation		
FM		

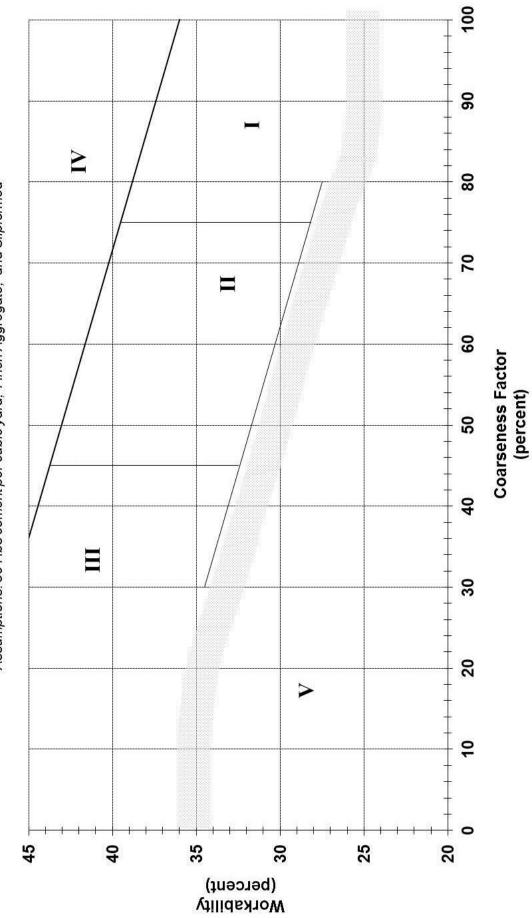
Mathematical Combined Aggregate Gradation, by Weight

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Relative					
Percent					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"					
#4					
#8					
#16					
#30					
#50			_		_
#100			_		
#200					

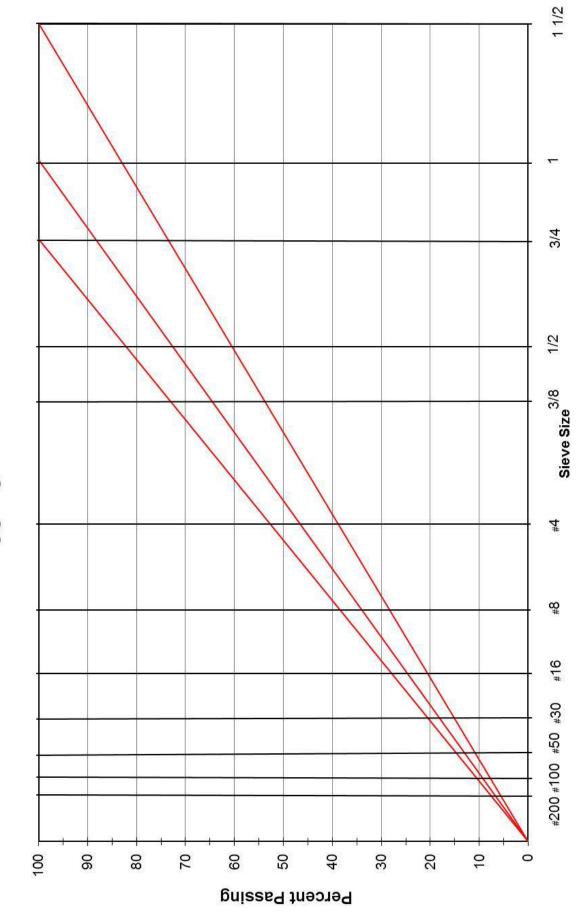
Rev 05/09	(artment Of Transportation Office Of Materials AND CEMENT CONCRETE		Form E820150E
Proiect No.:	. 511.12		County :	
_		Abs Vol. Cement:		
Cement (IM 401):	lbs	Source:	Sp. Gr.:	
Fly Ash (IM 491.17): _		Source:	Sp. Gr.:	
Slag (IM 491.14): _		Source:	Sp. Gr.:	
Adjus	ted lbs. Cement:			
To	otal Cementitious	Total % Replacement =		
IM T203	Fine Aggregate Source:		Sp. Gr.:	
IM T203	Interm. Aggregate Source:			
IM T203	Coarse Agregate Source:		Sp. Gr.:	
Basic w/c_		Water (lbs/cy) = Design w/c (wt. cement + wt F	ly Ash +Slag) =	
		Max. Water (lbs/cy) = Design w/c (wt. cement + wt F	Fly Ash +Slag) =	
Absolute Volumes	Cement	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Fly Ash	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Slag	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Water	(lbs/cy) / (1.00 X 62.4 X 27)	=	
	Air			0.060
		Subtotal	=	
		1.000 - Subtotal	=	
		Total	=	1.000
% FA Agg.: _	Fine	Aggregate (1.000 - Subtotal) X % In Mix	=	
% In. Agg.: _	Interm	. Aggregate (1.000 - Subtotal) X % In Mix	=	
		e Aggregate (1.000 - Subtotal) X % In Mix	=	
		Aggregate Total	=	
Aggregate Weights	Fine A	aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	_	

	Intermediate Aggregate (abs vol.)	X Sp. Gr. X 62.4 X 27
	Coarse Aggregate (abs vol.) X S	p. Gr. X 62.4 X 27
Summary	Cement	(lbs/cy)
	Fly Ash	(lbs/cy)
	Slag	(lbs/cy)
	Water	(lbs/cy)
	Fine Agg.	(lbs/cy)
	Interm. Agg.	(lbs/cy)
	Coarse Agg	(lbs/cy)

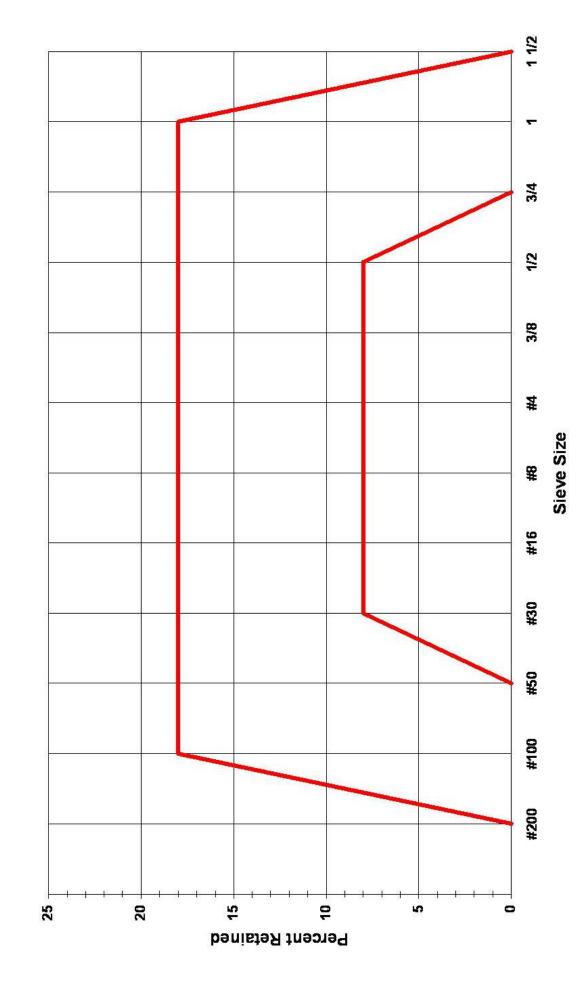
Distribution: ___ Materials, ___ DME, ___ Proj. Engr., ___ Contractor

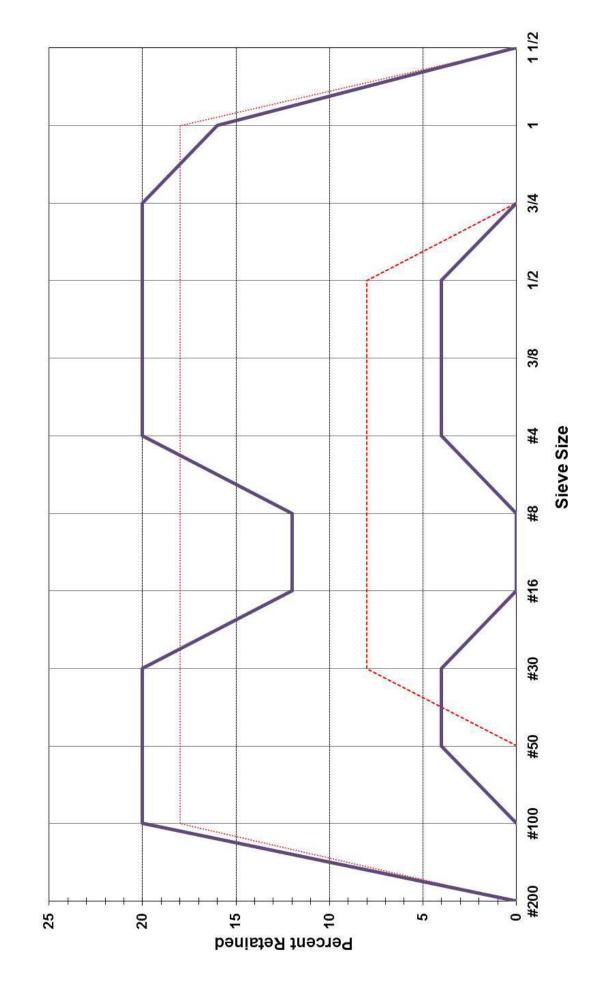

Rev 05/09	(eartment Of Transportation Office Of Materials AND CEMENT CONCRETE		Form E820150E
Proiect No.:	. 52		County :	
_		Abs Vol. Cement:		
WIX 140		Abs voi. Genent.		
Cement (IM 401):	lbs	Source:	Sp. Gr.:	
Fly Ash (IM 491.17): _		Source:	Sp. Gr.:	
Slag (IM 491.14): _		Source:	Sp. Gr.:	
Adjus	sted lbs. Cement:			
To	otal Cementitious	Total % Replacement =		
IM T203	Fine Aggregate Source:		Sp. Gr.:	
IM T203	Interm. Aggregate Source:			
IM T203	Coarse Agregate Source:		Sp. Gr.:	
Basic w/c_		Water (lbs/cy) = Design w/c (wt. cement + wt F	Fly Ash +Slag) =	
		Max. Water (lbs/cy) = Design w/c (wt. cement + wt F	Fly Ash +Slag) =	
Absolute Volumes	Cement	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Fly Ash	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Slag	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=	
	Water	(lbs/cy) / (1.00 X 62.4 X 27)	=	
	Air			0.060
		Subtotal	=	
		1.000 - Subtotal	=	
		Total	=	1.000
% FA Agg.: _	Fine Aggregate (1.000 - Subtotal) X % In Mix			
	Interm. Aggregate (1.000 - Subtotal) X % In Mix =			
		e Aggregate (1.000 - Subtotal) X % In Mix	=	
		Aggregate Total	=	
Aggregate Weights	Fine A	_		

	Intermediate Aggregate (abs vol.)	X Sp. Gr. X 62.4 X 27	
	Coarse Aggregate (abs vol.) X S	X Sp. Gr. X 62.4 X 27	
Summary	Cement	(lbs/cy)	
	Fly Ash	(lbs/cy)	
	Slag	(lbs/cy)	
	Water	(lbs/cy)	
	Fine Agg.	(lbs/cy)	
	Interm. Agg.	(lbs/cy)	
	Coarse Agg.	(lbs/cy)	


Distribution: ___ Materials, ___ DME, ___ Proj. Engr., ___ Contractor

¹ Workability Factor VS Coarseness Factor for Combined Aggregate




Combined Aggregate Gradation Power 45 Scale

Combined Aggregate Gradation, % Retained

Tarantula Curve Combined Aggregate Gradation, % Retained

APPENDIX D EXERCISES & ANSWER KEY

Ch. 2 Cementitious Materials

- 1 Which of the following statements are true regarding fly ash?
 - a. Class F is pozzolanic
 - b. Class C is both cementitious and pozzolanic
 - c. Class F is predominantly available in Iowa
 - d. All of the above
 - e. A and B
- 2 Which of the following statements are correct regarding supplementary cementitious materials?
 - a. GGBFS is more variable because the molten limestone contains steel
 - b. Fly ash is tightly controlled because it's based on electricity production
 - c. GGBFS is less variable than fly ash because of the tight controls in steel production
 - d. GGBFS is cheaper than fly ash because it does not need further processing
- 3 What are the potential benefits to using slag and fly ash in a mix design?
 - a. Reduced permeability and increased strength
 - b. Increased permeability and increased strength
 - c. Reduced cost
 - d. a and b
 - e. a and c
- 4 The w/c ratio has the biggest impact on what major concrete properties?
 - a. Abrasion resistance and frost resistance
 - b. Air void system
 - c. Strength and permeability
 - d. Sulfate resistance
- 5 What effect does w/c ratio have on capillary pores?
 - a. As the w/c ratio increases, the strength and permeability increase
 - b. As the w/c ratio decreases, the strength and permeability decrease
 - c. As w/c ratio increases, more water is available for hydration so strength is increased and permeability is decreased
 - d. As w/c ratio increases, the cement grains become further apart increasing permeability and decreasing strength

Ch. 2 Cementitious Materials Answers

- 1 Which of the following statements are true regarding fly ash?
 - a. Class F is pozzolanic
 - b. Class C is both cementitious and pozzolanic
 - c. Class F is predominantly available in Iowa
 - d. All of the above
 - e. A and B
- 2 Which of the following statements are correct regarding supplementary cementitious materials?
 - a. GGBFS is more variable because the molten limestone contains steel
 - b. Fly ash is tightly controlled because it's based on electricity production
 - c. GGBFS is less variable than fly ash because of the tight controls in steel production
 - d. GGBFS is cheaper than fly ash because it does not need further processing
- 3 What are the potential benefits to using slag and fly ash in a mix design?
 - a. Reduced permeability and increased strength
 - b. Increased permeability and increased strength
 - c. Reduced cost
 - d. a and b
 - e. a and c
- 4 The w/c ratio has the biggest impact on what major concrete properties?
 - a. Abrasion resistance and frost resistance
 - b. Air void system
 - c. Strength and permeability
 - d. Sulfate resistance
- 5 What effect does w/c ratio have on capillary pores?
 - a. As the w/c ratio increases, the strength and permeability increase
 - b. As the w/c ratio decreases, the strength and permeability decrease
 - c. As w/c ratio increases, more water is available for hydration so strength is increased and permeability is decreased
 - d. As w/c ratio increases, the cement grains become further apart increasing permeability and decreasing strength

Ch 3 Chemical Admixtures

- 1. Which of the following statements are correct regarding chemical admixtures?
 - a. All admixtures are designed to improve only one concrete property
 - b. An admixture may be used to enhance a poor mix design and improve placement
 - c. Admixtures should be used to enhance the properties of a good mix design
 - d. Admixtures are liquid and will likely increase the w/c ratio
- 2. Which of the following describes the impact of bubble size and spacing on concrete freeze thaw protection?
 - a. Many small bubbles spaced relatively close to each other provides the maximum freeze thaw protection
 - b. A few large bubbles spaced as close as possible will provide adequate freeze thaw protection
 - c. Freeze thaw protection is not a concern in lowa because the concrete remains frozen for an extended time
 - d. Since the capillaries contain all the water, the bubble size has little impact on freeze thaw protection
- 3. Which of the following describe multiple effects of admixtures on concrete properties?
 - a. Water reducers aid in air entrainment as well as reduce water for a given slump
 - b. Retarders provide water reduction as well as retard the set
 - c. Air entrainment improves workability and improves F/T resistance
 - d. All of the above
 - e. None of the above
- 4. Water reducers can be used in which of the following manners to achieve various effects?
 - a. Use same cement and reduce the water
 - b. Reduce cement and water the same amount
 - c. Cement and water remain the same
 - d. All of the above
 - e. None of the above

- 5. Which of the following statements are correct regarding retarders?
 - a. Retarders reduce the ultimate strength because it delays the initial hydration
 - b. Retarders coat the cement grains, increasing placement period, yet have relatively little impact on the ultimate strength
 - c. Retarders greatly increase the ultimate strength because of the long slow hydration
 - d. Retarders are used in cold weather to delay freezing of the concrete

Ch 3 Chemical Admixtures Answers

- 1. Which of the following statements are correct regarding chemical admixtures?
 - a. All admixtures are designed to improve only one concrete property
 - b. An admixture may be used to enhance a poor mix design and improve placement
 - c. Admixtures should be used to enhance the properties of a good mix design
 - d. Admixtures are liquid and will likely increase the w/c ratio
- 2. Which of the following describes the impact of bubble size and spacing on concrete freeze thaw protection?
 - a. Many small bubbles spaced relatively close to each other provides the maximum freeze thaw protection
 - b. A few large bubbles spaced as close as possible will provide adequate freeze thaw protection
 - c. Freeze thaw protection is not a concern in Iowa because the concrete remains frozen for an extended time
 - d. Since the capillaries contain all the water, the bubble size has little impact on freeze thaw protection
- 3. Which of the following describe multiple effects of admixtures on concrete properties?
 - a. Water reducers aid in air entrainment as well as reduce water for a given slump
 - b. Retarders provide water reduction as well as retard the set
 - c. Air entrainment improves workability and improves F/T resistance
 - d. All of the above
 - e. None of the above
- 4. Water reducers can be used in which of the following manners to achieve various effects?
 - a. Use same cement and reduce the water
 - b. Reduce cement and water the same reduce cost
 - c. Cement and water remain the same increase workability
 - d. All of the above
 - e. None of the above

- 5. Which of the following statements are correct regarding retarders?
 - a. Retarders reduce the ultimate strength because it delays the initial hydration
 - b. Retarders coat the cement grains, increasing placement period, yet have relatively little impact on the ultimate strength
 - c. Retarders greatly increase the ultimate strength because of the long slow hydration
 - d. Retarders are used in cold weather to delay freezing of the concrete

Ch. 4 Aggregate

- 1. Which of the following statements are correct concerning aggregate shape and cement content?
 - a. Flat and elongated and rough textured aggregates require more paste to reduce particle interactions
 - b. Smooth and rounded particles require more cement to keep the particles suspended in the mix
 - c. Angular fine aggregate may require more cement versus a rounded sand
 - d. a and b
 - e. a and c
- 2. What is the ideal aggregate shape and texture for workability in a concrete mix design?
 - a. Smooth and rounded have lower surface to volume ratio
 - b. Flat and elongated particles can stack better
 - c. A cubical aggregate with a rough texture
 - d. All of the above
- 3. What moisture condition should be used when developing a concrete mix?
 - a. SSD is the condition the aggregate when it is in equilibrium
 - b. Dry condition allows more water to be added
 - c. Any moisture condition is okay
 - d. Wet condition allows better slump
- 4. What graphical techniques can be used to check individual sieves for a combined aggregate gradation?
 - a. Shilstone CW and 0.45 Power curve
 - b. Shilstone CW and Percent Retained chart
 - c. 0.45 Power curve and Percent Retained chart
 - d. Shilstone CW, 0.45 Power curve, and Percent Retained chart

5. Calculate the FM for the following gradation:

Sieve Size	Percent retained	Cumulative Percent Retained
6"	0	0
3"	0	0
1.5"	0	0
3/4"	0	0
3/8"	10	
#4	12	
#8	17	
#16	16	
#30	23	
#50	10	
#100	7	
Pan	5	NA
Sum		
Calculation		
FM		

6. Calculate the Combined percent passing and Combined percent retained given the following gradations and relative percentage of aggregates.

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
Sieve, iii.	70 I assing	70 I assing	70 Tassing	70 I assing	/o Retained
Relative percent →	0.45	0.14	0.41		
1 1/2 "	100.0	100.0	100.0	100.0	0.0
1"	99.0	100.0	100.0	99.6	0.5
3/4**	84.0	100.0	100.0	92.8	6.8
1/2"	44.0	100.0	100.0	74.8	18.0
3/8"	15.0	100.0	100.0		
No. 4	2.4	38.0	98.0		
No. 8	1.2	5.2	84.0		
No. 16	1.1	4.3	65.0		
No. 30	1.0	3.3	43.0	18.6	9.2
No. 50	1.0	2.4	13.0	6.1	12.5
No. 100	0.9	1.4	1.3	1.13	5.0
No. 200	0.8	0.5	0.8	0.76	0.4

7. Calculate the coarseness and workability factors for the following gradations:

	Passing	Passing	Passing	Passing	Retained
Sieve Size	Coarse	Intermediate	Fine	(Combined Agg)	(Combined Agg)
1 1/2"	100	100	100	100.0	
1"	100	100	100	100.0	0.0
3/4"	86	100	100	92.9	7.1
1/2"	53	100	100	76.0	16.8
3/8"	32	97	100	65.1	11.0
#4	9	27	98	46.2	18.8
#8	2.7	2.9	86	36.0	10.2
#16	2.42	2.64	68	28.7	7.4
#30	2.14	2.38	42	18.1	10.6
#50	1.86	2.12	11	5.5	12.6
#100	1.58	1.86	1	1.4	4.2
#200	1.3	1.6	0.05	0.8	0.5
Total				_	100

Ch. 4 Aggregate Answers

- 1. Which of the following statements are correct concerning aggregate shape and cement content?
 - a. Flat and elongated and rough textured aggregates require more paste to reduce particle interactions
 - b. Smooth and rounded particles require more cement to keep the particles suspended in the mix
 - c. Angular fine aggregate may require more cement versus a rounded sand
 - d. a and b
 - e. a and c
- 2. What is the ideal aggregate shape and texture for workability in a concrete mix design?
 - a. Smooth and rounded have lower surface to volume ratio
 - b. Flat and elongated particles can stack better
 - c. A cubical aggregate with a rough texture
 - d. All of the above
- 3. What moisture condition should be used when developing a concrete mix?
 - a. SSD is the condition the aggregate when it is in equilibrium
 - b. Dry condition allows more water to be added
 - c. Any moisture condition is okay
 - d. Wet condition allows better slump
- 4. What graphical techniques can be used to check individual sieves for a combined aggregate gradation?
 - a. Shilstone CW and 0.45 Power curve
 - b. Shilstone CW and Percent Retained chart
 - c. 0.45 Power curve and Percent Retained chart
 - d. Shilstone CW, 0.45 Power curve, and Percent Retained chart

5. Calculate the FM for the following gradation:

Sieve Size	Percent retained	Cumulative Percent Retained
6"	0	0
3"	0	0
1.5"	0	0
3/4"	0	0
3/8"	10	10
#4	12	22
#8	17	39
#16	16	55
#30	23	78
#50	10	88
#100	7	95
Pan	5	NA
Sum	100	387
Calculation		387 / 100
FM		<u>3.87</u>

6. Calculate the Combined percent passing and Combined percent retained given the following gradations and relative percentage of aggregates.

Sieve, in.	Coarse % Passing	Intermediate % Passing	Fine % Passing	Combined % Passing	Combined % Retained
	70 1 usbing	, or assing	, or assing	, or assing	/ o Atotaliica
Relative percent ->	0.45	0.14	0.41		
1 1/2 "	100.0	100.0	100.0	100.0	0.0
1"	99.0	100.0	100.0	99.6	0.5
3/4"	84.0	100.0	100.0	92.8	6.8
1/2"	44.0	100.0	100.0	74.8	18.0
3/8"	15.0	100.0	100.0	<mark>61.8</mark>	<mark>13.0</mark>
No. 4	2.4	38.0	98.0	<mark>46.6</mark>	<mark>15.2</mark>
No. 8	1.2	5.2	84.0	<mark>35.7</mark>	<mark>10.9</mark>
No. 16	1.1	4.3	65.0	<mark>27.8</mark>	<mark>7.9</mark>
No. 30	1.0	3.3	43.0	18.6	9.2
No. 50	1.0	2.4	13.0	6.1	12.5
No. 100	0.9	1.4	1.3	1.13	5.0
No. 200	0.8	0.5	0.8	0.76	0.4

% Passing

3/8" 0.45x15 + 0.14x100 + 0.41x100 = 61.8 #4 0.45x2.4 + 0.14x38 + 0.41x98 = 46.6

#8 0.45x1.2 + 0.14x5.2 + 0.41x84 = 35.7

#16 0.45X1.1 + 0.14x4.3 + 0.41x65 = 27.8

% Retained

3/8" 74.8-61.8=13

#4 61.8-46.6=15.2

#8 46.6-35.7=10.9

#16 35.7-27.8=7.9

7. Calculate the coarseness and workability factors for the following gradations:

	Passing	Passing	Passing	Passing	Retained
Sieve Size	Coarse	Intermediate	Fine	(Combined Agg)	(Combined Agg)
1 1/2"	100	100	100	100.0	0.0
1"	100	100	100	100.0	0.0
3/4"	86	100	100	92.9	7.1
1/2"	53	100	100	76.0	16.8
3/8"	32	97	100	65.1	11.0
#4	9	27	98	46.2	18.8
#8	2.7	2.9	86	<mark>36.0</mark>	10.2
#16	2.42	2.64	68	28.7	7.4
#30	2.14	2.38	42	18.1	10.6
#50	1.86	2.12	11	5.5	12.6
#100	1.58	1.86	1	1.4	4.2
#200	1.3	1.6	0.05	0.8	0.5
Total					100

$$WF = 36$$

$$CF =$$
 $0+0+7.1+16.8+11$ $X 100 =$ 34.9 $X 100 =$ 54.6 $0+0+7.1+16.8+11+18.8+10.2$

Ch. 5 Basic Mix Design Concepts

- 1. Why is standard deviation of producer important in mix design?
 - a. A producer with a high standard deviation can use less cement
 - b. A producer with a low standard deviation needs to use more cement
 - c. A producer with a lower standard deviation has tighter quality control, requiring lower over design and perhaps lower cement content
 - d. Standard deviation is not a requirement for mix design
- 2. What typical unit of volume is used when selling or placing concrete?
 - a. Tons
 - b. Pounds
 - c. Cubic foot
 - d. Cubic yard
- 3. Why is it preferable to design mixes using absolute volumes?
 - a. Because it equals on cubic yard
 - b. It is easy to determine the number of bags of cement in the mix
 - c. Because there are 27 cubic feet in a cubic yard
 - d. To achieve consistent yield by accounting for specific gravity differences
 - e. None of the above

4. _____
$$ft^3 = 0.118 \text{ yd}^3$$

5.
$$5.0 \text{ ft}^3 = __y \text{d}^3$$

6.	What is the weight of water (lbs/yd³), if the w/c ratio is 0.40 and the cement content is 448 lbs/yd³ and fly ash content is 112 lbs/yd³?
7.	What is the absolute volume(ft³) of cement if the SPG is 3.14 and there are 625lbs/yd³?
8.	What is the W/C ratio given 500 lbs cement, 100lbs fly ash, 220 lbs of water at the plant, and 3 gallons added at the grade?
9.	Which of the following would be considered a reasonable concrete mix design? a) A mix with 10% paste and 90% aggregate b) A mix with 30% paste and 70% aggregate c) A mix with 75% paste and 25% aggregate d) None of the above

10. Given that a concrete mix is designed on the basis of 1 yd³ (27 ft³) provide the correct answer in each box so that <u>ALL</u> of the missing information in the following table is completed. The w/c ratio is given as 0.45.

Component Material	Absolute Volume	Absolute Volume	Weight
	(yd^3/yd^3)	(ft ³ /yd ³)	(lbs/yd ³)
Cement (SPG =3.14)	d)	e)	c)
Water	0.159	a)	b)
Fine Aggregate	g)	h)	1650
Coarse Aggregate	f)	9.45	1560
Total	1.000 yd ³	27.0 ft ³	i)

11. Given that a concrete mix is designed on the basis of 1 yd³ (27 ft³) provide the correct answer in each box so that <u>ALL</u> of the missing information in the following table is completed. w/c=0.40

	Absolute Volume	Absolute Volume	Weight
Component Material	(yd^3/yd^3)	(ft ³ /yd ³)	(lbs/yd ³)
Cement (SPG =3.14)	0.118	a)	b)
Water	d)	e)	c)
Fine Aggregate	0.335	f)	1550
Coarse Aggregate	g)	h)	1625
Total	1.000 yd^3	27.0 ft^3	i)

12. Acme Ready Mix has a standard deviation of 640 psi when producing 4000 psi compressive strength concrete. What should the target strength be for a structure to ensure they meet the minimum design compressive strength of 4000 psi?

Ch. 5 Basic Mix Design Concepts Answers

- 1. Why is standard deviation of producer important in mix design?
 - a. A producer with a high standard deviation can use less cement
 - b. A producer with a low standard deviation needs to use more cement
 - c. A producer with a lower standard deviation has tighter quality control, requiring lower over design and perhaps lower cement content
 - d. Standard deviation is not a requirement for mix design
- 2. What typical unit of volume is used when selling or placing concrete?
 - a. Tons
 - b. Pounds
 - c. Cubic foot
 - d. Cubic yard
- 3. Why is it preferable to design mixes using absolute volumes?
 - a. Because it equals on cubic yard
 - b. It is easy to determine the number of bags of cement in the mix
 - c. Because there are 27 cubic feet in a cubic yard
 - d. To achieve consistent yield by accounting for specific gravity differences
 - e. None of the above

4. _____
$$ft^3 = 0.118 \text{ yd}^3$$

$$0.118 \text{ yd}^3 \text{ X } (27 \text{ ft}^3 / 1 \text{ yd}^3) = \frac{3.186 \text{ ft}^3}{2.186 \text{ ft}^3}$$

5.
$$5.0 \text{ ft}^3 = \underline{\hspace{1cm}} \text{yd}^3$$

$$5 ft^3 \div 27 ft^3 = 0.185 yd^3$$

6. What is the weight of water (lbs/yd³), if the w/c ratio is 0.40 and the cement content is 448 lbs/yd³ and fly ash content is 112 lbs/yd³?

wt. water (lbs/yd
3
) = 0.40 X 560 = 224 lbs/yd 3

7. What is the absolute volume(ft³) of cement if the SPG is 3.14 and there are 625lbs/yd³?

$$AV = Wt / (SpG \times UW_{(water)}) = 625 lbs/yd3 / (3.14 \times 62.4 lbs/ft3) = 3.19 ft3/yd3$$

8. What is the W/C ratio given 500 lbs cement, 100lbs fly ash, 220 lbs of water at the plant, and 3 gallons added at the grade?

$$w/c = (220+3 \text{ gal } \times 8.33 \text{ lbs/gal}) / (500+100) = 245/600 = 0.408$$

- 9. Which of the following mixes will be considered a reasonable concrete mix design?
 - e) A mix with 10% paste and 90% aggregate
 - f) A mix with 30% paste and 70% aggregate
 - g) A mix with 75% paste and 25% aggregate
 - h) None of the above

10. Given that a concrete mix is designed on the basis of 1 yd³ (27 ft³) provide the correct answer in each box so that <u>ALL</u> of the missing information in the following table is completed. The w/c ratio is given as 0.45.

Component Material	Absolute Volume	Absolute Volume	Weight
	(yd^3/yd^3)	(ft ³ /yd ³)	(lbs/yd ³)
Cement (SPG =3.14)	d)	e)	c)
Water	0.159	a)	b)
Fine Aggregate	g)	h)	1650
Coarse Aggregate	f)	9.45	1560
Total	1.000 yd ³	27.0 ft ³	i)

- a) $0.159 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 4.29 \text{ ft}^3/\text{yd}^3$
- b) $0.159 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 \times 62.4 \text{ lbs/ft}^3 \times 1.00 = 268 \text{ lbs/yd}^3$
- c) w/c = 0.45 0.45 = 268/c $c = 268 / 0.45 = 596 lbs/yd^3$
- d) 596 lbs/yd³ / (27 ft³/yd³ x 62.4 lbs/ft³ x 3.14) = 0.113 yd³/yd³
- e) $0.113 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 3.05 \text{ ft}^3/\text{yd}^3$
- f) $9.45 \text{ ft}^3/\text{yd}^3/27 \text{ ft}^3/\text{yd}^3 = 0.350 \text{ yd}^3/\text{yd}^3$
- g) $1.000yd^3/yd^3 0.113yd^3/yd^3 0.159yd^3/yd^3 0.350yd^3/yd^3 = 0.378yd^3/yd^3$
- h) $0.378 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 10.21 \text{ ft}^3/\text{yd}^3$
- i) $596 + 268 + 1650 + 1560 = 4074 \text{ lbs/yd}^3$

Check totals

$$0.113 + 0.159 + 0.350 + 0.378 = 1.000 \text{ yd}^3/\text{yd}^3$$

 $4.29 + 3.05 + 10.21 + 9.45 = 27.0 \text{ ft}^3/\text{yd}^3$

11. Given that a concrete mix is designed on the basis of 1 yd 3 (27 ft 3) provide the correct answer in each box so that <u>ALL</u> of the missing information in the following table is completed. w/c = 0.40

	Absolute Volume	Absolute Volume	Weight
Component Material	(yd^3/yd^3)	(ft ³ /yd ³)	(lbs/yd ³)
Cement (SPG =3.14)	0.118	a)	b)
Water	d)	e)	c)
Fine Aggregate	0.335	f)	1550
Coarse Aggregate	g)	h)	1625
Total	1.000 yd^3	27.0 ft^3	i)

- a) $0.118 \text{ yd}^3/\text{yd}^3 \text{ x } 27 \text{ ft}^3/\text{yd}^3 = 3.19 \text{ ft}^3/\text{yd}^3$
- b) $0.118 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 \times 62.4 \text{ lbs/ft}^3 \times 3.14 = 624 \text{ lbs/yd}^3$
- c) w/c = 0.40 0.40 = w/624 lbs $w = 624 \times 0.40 = 250$ lbs/yd³
- d) $250 \text{ lbs/yd}^3 / (27 \text{ ft}^3/\text{yd}^3 \times 62.4 \text{ lbs/ft}^3 \times 1.00) = 0.148 \text{ yd}^3/\text{yd}^3$
- e) $0.148 \text{ yd}^3/\text{yd}^3 \text{ X } 27 \text{ ft}^3/\text{yd}^3 = 4.00 \text{ ft}^3/\text{yd}^3$
- f) $0.335 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 9.05 \text{ ft}^3/\text{yd}^3$
- g) $1.000 \text{yd}^3/\text{yd}^3 0.118 \text{yd}^3/\text{yd}^3 0.148 \text{yd}^3/\text{yd}^3 0.335 \text{yd}^3/\text{yd}^3 = 0.399 \text{yd}^3/\text{yd}^3$
- h) $0.399 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 10.77 \text{ ft}^3/\text{yd}^3$
- i) $624 \text{ lbs/yd}^3 + 250 \text{ lbs/yd}^3 + 1550 \text{ lbs/yd}^3 + 1625 \text{ lbs/yd}^3 = 4049 \text{ lbs/yd}^3$

Check totals

$$0.118 + 0.148 + 0.335 + 0.399 = 1.000 \text{ yd}^3/\text{yd}^3$$

 $3.19 + 4.00 + 9.05 + 10.77 = 27.0 \text{ ft}^3/\text{yd}^3$

12. Acme Ready Mix has a standard deviation of 640 psi when producing 4000 psi compressive strength concrete. What should the target strength be for a structure to ensure they meet the minimum design compressive strength of 4000 psi?

$$f'cr = 4000 + (2.33 \text{ X } 640 - 500) = 4991 \text{ psi}$$

 $f'cr = 4000 + 1.34 \text{ X } 640 = 4858 \text{ psi}$

Select the largest value 4991 and round to the next highest 10 psi Target = 5000 psi

Chapter 6 - Mix Design

1.	According to ACI, what is the maximum recommended w/c ratio for concrete exposed to freezing and thawing in a moist condition or exposed to deicing chemicals?
2.	Using the chart in ACI, estimate the approximate water content when using a 1 inch nominal aggregate size and a 3 inch slump?
3.	Given 6% air content in a cubic yard of concrete. What is the volume of air, in cubic feet?
4.	What are the mix design requirements for an HPC-D mix design?

Exercise 6A -QMC Mix Design

Given aggregate proportions of 47% Coarse, 10% Intermediate and 43% fine aggregate, determine the combined % passing, combined % retained. Calculate the coarseness & workability (CW) factors.

	%	%	%	%	%
	Passing	Passing	Passing	Passing	Retained
Sieve Size	Coarse	Intermediate	Fine	(Combined Agg)	(Combined Agg)
1 1/2"	100.0	100.0	100.0	100.0	0.0
1"	93.0	100.0	100.0	96.4	3.6
3/4"	75.0	100.0	100.0	87.3	9.2
1/2"	38.0	100.0	100.0		
3/8"	20.0	100.0	100.0		
#4	4.0	40.0	99.0		
#8	1.5	3.1	84.0		
#16	1.4	2,5	59.0	24.5	10.1
#30	1.3	2.0	32.0	13.6	10.9
#50	1.1	1.4	10.0	4.7	8.9
#100	1.0	0.9	2.1	1.4	3.3
#200	0.9	0.3	0.6	0.7	0.7

Based on relative aggregate proportions determined above, determine the dry batch weights for a QMC mix design, using Form 820150E. Given the following:

Cement:	Continental IS(20)	Sp. $G_{\cdot} = 3.10$
Fly Ash:	Port Neal (20%)	Sp. G. = 2.66
Coarse Agg:	Ames Mine A85006	Sp. G. = 2.68
Interm. Agg:	Ames Mine A85006	Sp. G. = 2.68
Fine Agg:	Saylorville Sand A77538	Sp. G. = 2.66

Rev 05/09		nent Of Transportation		Form E820150E	
	Office Of Materials				
	PORTLAND	CEMENT CONCRETE			
Project No.:			County:		
- · · · · · · -		•			
Mix No.:	Ab	s Vol. Cement:	Type:		
	11	_			
Cement (IM 401): _	lbs	Source:	Sp. Gr.:		
Fly Ash (IM 491.17):	76	Source:	Sp. Gr.:		
, / (1		ор. о		
Slag (IM 491.14): _		Source:	Sp. Gr.:		
		1			
Adjus	sted lbs. Cement:				
T	otal Cementitious	Total % Replacement =			
.``	otal cementitious	Total /6 Replacement =			
IM T203	Fine Aggregate Source:		Sp. Gr.:		
IM T203	Interm. Aggregate Source:		Sp. Gr.:		
IM T203	Coarse Agregate Source:		Sp. Gr.:		
Basis w/s		Motor (lholou) Design who have someth with	Chr Ach (Clear)		
Basic w/c_ Max w/c		Water (lbs/cy) = Design w/c (wt. cement + wt ax. Water (lbs/cy) = Design w/c (wt. cement + wt			
Max W/C_		ax. Water (183/cy) = Besign W/C (Wt. Cement + Wt	Tiy Asii +olag) =		
Absolute Volumes	Cement	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	=		
	Fly Ash	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	= .		
	Slag	(lbs/cy) / (Sp. Gr. X 62.4 X 27)	_		
	Siag	(IDS/Cy) / (Sp. Gr. A 62.4 A 27)	=		
	Water	(lbs/cy) / (1.00 X 62.4 X 27)	=		
			•		
	Air			0.060	
		Cultinal			
		Subtotal 1.000 - Subtotal	= .		
		Total	=	1.000	
% FA Agg.: _		gregate (1.000 - Subtotal) X % In Mix	=		
% In. Agg.: _		ggregate (1.000 - Subtotal) X % In Mix	=		
% CA Agg.: _	Coarse A	ggregate (1.000 - Subtotal) X % In Mix	=		
		Aggregate Total	= .		
Aggregate Weights	Fine Aggr	regate (abs vol.) X Sp. Gr. X 62.4 X 27	=		
			•		
	Intermediate A	Aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=		
	Coarse Age	gregate (abs vol.) X Sp. Gr. X 62.4 X 27	= .		
Summary		Cement (lbs/cy)			
ounniury .		Fly Ash (lbs/cy)			
		Slag (lbs/cy)			
		Water (lbs/cy)			
		Fine Agg. (lbs/cy)			
		Coarse Agg. (lbs/cv)			
		(1.00/1.99.			
Distribution: Materials, D	ME, Proj. Engr., Contractor	Interm. Agg. (Ibs/cy) Coarse Agg. (Ibs/cy)			

Example 6B -QMC Mix Design

Using Form 820150E for a QMC mix design, determine the dry batch weights for the aggregates, based on relative aggregate proportions of 45% Coarse, 12% Intermediate and 43% fine aggregate. Given the following:

Cement:	Ash Grove I/II	Sp. G. = 3.14
Fly Ash:	Council Bluffs (20%)	Sp. G. = 2.62
Coarse Agg:	Moore A76004	Sp. G. = 2.62
Interm. Agg:	Emmetsburg A74502	Sp. G. = 2.71
Fine Agg:	Emmetsburg A74502	Sp. G. = 2.64

Project No.:	NHSX-020				County:	Any
Mix No.:	QMC		Abs Vol. Cement:	0.106	Туре:	1/11
Cement (IM 401):		lbs	Source:	Ash Grove I/II	Sp. Gr.:	3.14
Fly Ash (IM 491.17):	% 20	112	Source:	Council Bluffs	Sp. Gr.:	2.62
Slag (IM 491.14):		0	Source:		Sp. Gr.:	
Adj	usted lbs. Cement:	448				
	Total Cementitious_	560	Total % Re	placement = 20		
IM T203	Fine Aggregat	e Source:	Emmetsburg		Sp. Gr.:	2.64
IM T203	Interm. Aggrega	ate Source:	Emmetsburg		Sp. Gr.:	2.71
IM T203			Moore		Sp. Gr.:	
Basic w/c	0.400		Water (lbs	s/cy) = Design w/c (wt. cement	+ wt Fly Ash +Slag) =	224
Max w/c			•	s/cy) = Design w/c (wt. cement	-	
			•		, ,,	
Absolute Volumes	Cement .			(lbs/cy) / (Sp. Gr. X 62.4 X 27	=	0.085
	Fly Ash			(lbs/cy) / (Sp. Gr. X 62.4 X 27	=	0.025
	Slag .			(lbs/cy) / (Sp. Gr. X 62.4 X 27	=	
	Water .			(lbs/cy) / (1.00 X 62.4 X 27)	=	0.133
	Air .					0.060
				Subtotal	_	0.303
				1.000 - Subtotal	_	0.697
				Total	- =	1.000
% FA Agg.:				Subtotal) X % In Mix	=	
% In. Agg.:				- Subtotal) X % In Mix	=	
% CA Agg.:		Coarse	e Aggregate (1.000	- Subtotal) X % In Mix	=	
				Aggregate Total	=	
Aggregate Weights		Fine A	ggregate (abs vo	.) X Sp. Gr. X 62.4 X 27	=	
		Intermedia	ate Aggregate (abs	s vol.) X Sp. Gr. X 62.4 X 27	=	
		Coarse	Aggregate (abs vo	ol.) X Sp. Gr. X 62.4 X 27	=	
Summary			Cement	448 (lbs/cy)		
			Fly Ash	112 (lbs/cy)		
			Slag			
			Water	224 (lbs/cy)		
			Fine Agg.	(lbs/cy)		
			Interm. Agg.	(lbs/cy)		
			Coarse Agg.	(lbs/cy)		
Distribution: Materials,	_ DME, Proj. Engr., _	Contractor				

Chapter 6 - Mix Design Answers

1. According to ACI, what is the maximum recommended w/c ratio for concrete exposed to freezing and thawing in a moist condition or exposed to deicing chemicals?

0.45 from table 4.2.2 or mix datasheet

2. Using the chart in ACI, estimate the approximate water content when using a 1 inch nominal aggregate size and a 3 inch slump?

~320 lbs of water from chart

3. Given 6% air content in a cubic yard of concrete. What is the volume of air, in cubic feet?

 $0.06 \text{ yd}^3/\text{yd}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 1.62 \text{ ft}^3$

4. What are the mix design requirements for an HPC-D mix design?

Basic w/c ratio = 0.40, Maximum w/c ratio = 0.435.

Type IP, IS, IT cement.

Type I/II or IL cement with a minimum of 30% replacement with GGBFS. Maximum fly ash replacement not to exceed 20%

Maximum total replacement of 50% by weight (mass) of the cement.

QMC Mix Design Example 6A Answer Key

	%	%	%	%	%	%
	Passing	Passing	Passing	Passing	Passing	Retained
Sieve Size	Coarse	Intermediate	Fine	Paste	(Combined Agg)	(Combined Agg)
1 1/2"	100.0	100.0	100.0	100.0	100.0	0.0
1"	93.0	100.0	100.0	100.0	96.7	3.3
3/4"	75.0	100.0	100.0	100.0	88.3	8.5
1/2"	38.0	100.0	100.0	100.0	70.9	17.4
3/8"	20.0	100.0	100.0	100.0	62.4	8.5
#4	4.0	40.0	99.0	100.0	48.5	14.0
#8	1.5	3.1	84.0	100.0	37.1	11.3
#16	1.4	2,5	59.0	100.0	26.3	10.9
#30	1.3	2.0	32.0	100.0	14.6	11.7
#50	1.1	1.4	10.0	100.0	5.0	9.6
#100	1.0	0.9	2.1	100.0	1.5	3.5
#200	0.9	0.3	0.6	100.0	0.7	0.8

$$WF = 37.1$$

$$CF = \underbrace{0 + 3.3 + 8.5 + 17.4 + 8.5}_{0 + 3.3 + 8.5 + 17.4 + 8.5 + 14 + 11.3} \times 100 = \underbrace{37.7}_{63.0} \times 100 = 59.8$$

Rev 05/09		-	tment Of Transportation		Form E820150E
			ice Of Materials		
		PORTLANI	CEMENT CONCRETE		
Project No.:	Exercise 6A		=	County:	Any
Mix No.:	. QMC	А	bs Vol. Cement: 0.106	Туре: _	IS(20)
Cement (IM 401):	553 %	lbs	Source: Continental IS(20)	Sp. Gr.:	3.10
Fly Ash (IM 491.17):	· · · · · · · · · · · · · · · · · · ·	111	Source: Port Neal	Sp. Gr.: _	2.66
Slag (IM 491.14):	:	0	Source:	Sp. Gr.: _	
Ad	ljusted lbs. Cement:	442]		
	Total Cementitious_	553	Total % Replacement = 36		
IM T203	3 Fine Aggregate	Source:	Saylorville	Sp. Gr.:	2.66
IM T203			Ames Mine	Sp. Gr.:	2.68
IM T203	3 Coarse Agregat	e Source:	Ames Mine	Sp. Gr.:	2.68
Dania w	- 0.400		Mater (lhales) Basing of fort someth	Flor Andrew Class	004
Basic w/o Max w/o			Water (lbs/cy) = Design w/c (wt. cement - Max. Water (lbs/cy) = Design w/c (wt. cement -		221 241
max w/	0.400		max. Water (103/0y) = Design W/o (Wt. dement	- with y Asin +olag) = _	241
Absolute Volumes	Cement .		(lbs/cy) / (Sp. Gr. X 62.4 X 27)	= -	0.085
	Fly Ash .		(lbs/cy) / (Sp. Gr. X 62.4 X 27)	= _	0.025
	Slag .		(lbs/cy) / (Sp. Gr. X 62.4 X 27)	= -	
	Water .		(lbs/cy) / (1.00 X 62.4 X 27)	= _	0.131
	Air .				0.060
			Subtotal	=	0.301
			1.000 - Subtotal	-	0.699
			Total	=	1.000
% FA Agg.:	: 43	Fine A	ggregate (1.000 - Subtotal) X % In Mix	=	0.300
% In. Agg.:			Aggregate (1.000 - Subtotal) X % In Mix	- =	0.070
% CA Agg.:			Aggregate (1.000 - Subtotal) X % In Mix	= -	0.329
			Aggregate Total	= _	0.699
Aggregate Weights		Fine Agg	gregate (abs vol.) X Sp. Gr. X 62.4 X 27	=_	1344
		Intermediate	Aggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=_	316
		Coarse A	ggregate (abs vol.) X Sp. Gr. X 62.4 X 27	=_	1486
Summary			Cement442 (lbs/cy)		
			Fly Ash 111 (lbs/cy)		
			Slag 0 (lbs/cy)		
			Water 221 (lbs/cy)		
			Fine Agg. 1344 (lbs/cy)		
			Interm. Agg. 316 (lbs/cy)		
			Coarse Agg1486 (lbs/cy)		
Distribution: Materials, _	DME, Proj. Engr.,	_ Contractor			

Example 6B -QMC Mix Design

Using Form 820150E for a QMC mix design, determine the dry batch weights for the aggregates, based on relative aggregate proportions of 45% Coarse, 12% Intermediate and 43% fine aggregate. Given the following:

Cement:	Ash Grove I/II	Sp. G. = 3.14
Fly Ash:	Council Bluffs (20%)	Sp. G. = 2.62
Coarse Agg:	Moore A76004	Sp. G. = 2.62
Interm. Agg:	Emmetsburg A74502	Sp. G. = 2.71
Fine Agg:	Emmetsburg A74502	Sp. G. = 2.64

Rev 05/09		-	artment Or Transpo	ortation				Form E820150E
			Office Of Materials ND CEMENT CON	PDETE				
		PURILA	ND CEMENT CON	ZKETE				
Project No.: N	NHSX-020					Cou	inty:	Anv
_								
Mix No.:	QMC		Abs Vol. Cement	0.106		Ty	уре:	I/II
	_						-	
Cement (IM 401): _		lbs	Source	Ash Grove I/II		Sp.	Gr.:	3.14
	% 					_	_	
Fly Ash (IM 491.17): _	20	112	Source	Council Bluffs		Sp.	Gr.:	2.62
Slag (IM 491.14):	Г	0	Source			Sn	Gr.:	
Siag (IWI 491.14)			Source.	' 		Эρ.	Gi	
Adju	sted lbs. Cement:	448						
•	_							
T	otal Cementitious_	560	Total % Re	placement =	20			
IM T203	Fine Aggregate	Source:	Emmetsburg			Sp.	Gr.:	2.64
IM T203	Interm. Aggrega		Emmetsburg			=	Gr.:	2.71
IM T203	Coarse Agregat	e Source:	Moore			Sp.	Gr.:	2.62
Pacia w/a	0.400		Water (lb	olov) – Docien wle	/ut coment :	urt Ely Ach i Si	aa) –	224
Basic w/c_ Max w/c	0.400 0.435		-	s/cy) = Design w/c s/cy) = Design w/c	•	-		224 244
Max W/C_	0.400		wax. water (ib	s/cy) = Design W/c	(w. cement +	Willy Asii +Oi	19) —	277
Absolute Volumes	Cement.			(lbs/cy) / (Sp. G	r. X 62.4 X 27)	=		0.085
				. ,,	,		•	
	Fly Ash .			(lbs/cy) / (Sp. G	r. X 62.4 X 27)	=		0.025
	Slag .			(lbs/cy) / (Sp. G	r. X 62.4 X 27)	=		
	Water .			(lbs/cy) / (1.00 X	62.4 X 27)		= .	0.133
	Δir							0.060
	All .							0.000
					Subtotal		=	0.303
				1.00	0 - Subtotal		=	0.697
					Total		=	1.000
% FA Agg.: _	43	Fine	Aggregate (1.000	- Subtotal) X % In	Mix		=	0.299
% In. Agg.: _	12	Intern	n. Aggregate (1.000) - Subtotal) X % I	ln Mix		=	0.084
% CA Agg.:	45	Coars	e Aggregate (1.000) - Subtotal) X %	In Mix		=	0.314
				Aggregate	Total		=	0.697
Aggregate Weights		Fine A	aggregate (absvo	l.) X Sp. Gr. X 62.4	4 X 27		=	1330
		Intermedia	nto Aggregato (ab	cvol) V Sn Gr V	62 4 V 27		_	384
		memeur	ate Aggregate (ab	s voi.) A 3p. Gr. A	02.4 A ZI		= .	304
		Coarse	Aggregate (abs v	ol.) X Sp. Gr. X 62	.4 X 27		=	1386
			999 (,				
Summary			Cement	448 (lbs	s/cy)			
			Fly Ash					
			Slag	0 (lbs	s/cy)			
			Water					
			Fine Agg.					
			Interm. Agg.		• •			
			Coarse Agg.					
			Course rigg.	1000 (103				
Distribution: Materials,	DME, Proj. Engr.,	Contractor						

APPENDIX E QMC DS & IMs

PORTLAND CEMENT (PC) CONCRETE PROPORTIONS

GENERAL

Materials for pavement concrete and structural concrete shall be mixed in any one of the following proportions for the class of concrete specified. Each mixture will have specific requirements for the coarse and fine aggregates and the type of cement. Concrete mix proportions include the unit volumes of all materials.

Mix numbers designate numerous aspects of the particular mix. The following is an explanation of the various aspects of the mix number:

- The first letter designates the class of concrete as designated in the contract documents.
- In certain mix designations, the letter V or L appears after the first hyphen. This indicates either Class V or Class L aggregate is to be used. If no letter is shown, aggregate other than Class V or Class L shall be used.
- The number indicates the relationship of coarse aggregate to fine aggregate. A mix with a 4 is a 50/50 mix. The following chart shows the number within the mix number and the proportions of the aggregates for each number:
 - 2 is composed of 40% fine and 60% coarse
 - 3 is composed of 45% fine and 55% coarse
 - 4 is composed of 50% fine and 50% coarse
 - 5 is composed of 55% fine and 45% coarse
 - 6 is composed of 60% fine and 40% coarse
 - 7 is composed of 65% fine and 35% coarse
 - 8 is composed of 70% fine and 30% coarse
 - is composed of 50% fine and 50% coarse
 - 57-6 is composed of 60% fine and 40% coarse
- The letters WR indicate water reducer is used in this mixture.
- When a C or an F is shown toward the end of the mix number, fly ash is a part of the mixture and C-fly ash or an F-fly ash, respectively, is used. The percentage of fly ash being used in the mixture shall be designated at the end of the mix number.
- When used as a mineral admixture, Ground Granulated Blast Furnace Slag (GGBFS) shall
 be designated through the letter "S," followed by the percent substitution, and shown at the
 end of the mix number. This would be in the same convention used for fly ash substitution.
 When GGBFS is a portion of a blended cement, the cement type will be designated as IS, but
 special notation will not be made in the mix number.
- The following example illustrates a mix number showing a Class C concrete mixture, 50/50 aggregate proportions, using Class L aggregate, water reducer, and 35% GGBFS substitution.

Example: C - L 4 W R - S35

The following example illustrates a mix number showing a Class C concrete mixture, 50/50 aggregate proportions, using water reducer and a Class C fly ash substitution at a rate of 10%.

Example: C - 4 W R - C10

The following example illustrates a mix number showing a Class C concrete mixture, 50/50 aggregate proportions, using a water reducer, Class C fly ash substitution at 20%, and GGBFS substitution at 20%.

Example: C - 4 W R - C20-S20

The Class D mixtures and the Class V mixtures vary somewhat from the above pattern but follow the general format.

MIX REQUIREMENTS

General requirements for the mixes are:

- Fly Ash and GGBFS used in concrete mixtures shall meet the requirements of <u>Section 4108</u>.
 Fly Ashes for use in concrete mixtures shall be included on the list of approved sources (Materials <u>IM 491.17</u>). GGBFS for use in concrete mixtures shall be included on the list of approved sources (Materials <u>IM 491.14</u>).
- 2. A water-reducing admixture shall be used in concrete mixtures with the designation as follows: Those mixtures have mixture numbers which have the letters "WR" following a single digit number, all following the first hyphen in the mixture number. These mixtures have reduced cementitious contents to produce concrete of approximately equal strength compared with other mixtures in a particular class of concrete. A water-reducing admixture may be added to other concrete mixtures, without cement reduction, to aid in workability and air entrainment. Other admixture combinations may be approved based on manufactures recommendations.

The water-reducing admixture shall meet the requirements of <u>Section 4103</u> and shall be included on the list of Approved Sources of Water Reducing Admixtures (<u>Materials IM 403</u>, <u>Appendix C</u>). The dosage shall be as described in <u>IM 403</u>.

- 3. The total quantity of water in the concrete, including water in the aggregate, shall not exceed the maximum water to cement and fly ash ratio.
- 4. Type I, Type II, Type III, Type IP, and Type IS Cement shall be used as provided for in the specifications. All cement shall be from an approved source as per IM 401. The cement type shall be documented on all reports pertaining to a project.
- 5. The fine aggregates other than Class V (<u>Section 4117</u>) and Class L (<u>Section 4111</u>) shall meet the requirements of <u>Section 4110</u> of the current specifications. The coarse aggregates for mixtures using aggregates, other than Class V aggregates, shall meet the requirements of <u>Articles 4115.01</u> through <u>4115.04</u> of the current specifications. The coarse aggregates for Class O or Class HPC-O concrete mixtures shall meet the requirements of <u>4115.05</u> of the current specifications, for overlays (<u>Article 2413</u>). Intermediate aggregates used for QMC, BR, or HPC-D mixes shall meet 4112.
- 6. When approved by the Engineer, combined fine and coarse aggregate may be used in combination with screened coarse aggregate to produce proportions specified for Class D and Class X concrete mixtures according to the percentage of particles passing the No. 4 sieve in the combined aggregate at the time the material is used.

- 7. With Engineer approval, proportions designated for mixtures A-V or C-V with and without fly ash may be substituted for Class X concrete.
- 8. With Engineer approval, Class M concrete may be substituted for Class A or Class C concrete.
- 9. Certain structural placements with congested steel and narrow forms may require higher slump to place the concrete. The Engineer may approve the use of a high range water reducer with standard mixes. When a high range water reducer is used, the allowable slump may be increased to a target range of 1 to 7 inches, with a maximum of 8 inches. If highly flowable concrete is needed for the placement, the Engineer may approve the use self-consolidating concrete (SCC) in accordance with Appendix A.

A-MIX

A-Mixes are specified primarily as paving mixes. They have a lower cement content and lower ultimate strength when compared to a Class C-Mix. A-Mix may be used on lower traffic roadways or detour pavement.

C-MIX

C-Mixes are specified for use in both paving and structures. The C-WR mixes are typically used in paving and bridge decks. Class C mixes are typically used in box culverts, bridge piers, bridge abutments, and other miscellaneous placements. When Class C is specified, any mix beginning with the letter C may be utilized.

D-MIX

D-Mixes are specified for use primarily in structures. A typical use includes drilled shafts.

M-MIX

M-Mixes are designed for high early strength, suitable for many applications for which they are allowed. Calcium chloride should only be used when needed, for patching and other placements without steel reinforcement. Do not include water in calcium chloride solution when calculating water cement ratio.

O-MIX

O-Mixes are specified for low slump concrete, primarily for use in bridge deck overlays. The water-cement ratio is intended to be controlled by the slump specified elsewhere for concrete where these mixtures are used. A water-reducing agent is required for this mix, as described in MIM 403. O-Mixes require coarse aggregate specifically intended for repair and overlay. See Article 4115.05. HPC-O is also used in bridge deck overlays. The HPC-O mix requires the use of slag or blended cements. Fly ash replacement up to a maximum of 20%. The maximum water-cement ratio is 0.42 (basic of 0.39).

X-MIX

X-Mixes are specified to be used as seal course concrete, primarily in cofferdams. No air entraining is required. No maximum water-cementitious ratio is specified. See Article 2405.05 for

limits on water usage.

QMC

Contractor-designed aggregate proportioning mixes for paving. Minimum absolute volume of cement is 0.106. Basic water-cement ratio is 0.40. Maximum water-cement ratio is 0.435 0.42.

BR

BR mixes are used in slip form barrier rail in accordance with <u>Section 2513</u>. Determine aggregate proportions based on production gradations. Unless major changes occur to aggregate gradations, utilize aggregate proportions determined and assess gradation of individual aggregates during concrete production. The minimum absolute volume of cement is 0.114. Maximum water-cement ratio is 0.45.

HPC

HPC mixes are used in bridge substructures and decks to achieve low permeability and higher compressive strength. HPC mixes require the use of slag or blended cements. Fly ash replacement up to a maximum of 20%. Maximum water-cement ratio is 0.42 (basic of 0.40) for decks and 0.45 (basic of 0.42) for substructures. Aggregate proportioning is required for HPC-D mixes with an absolute volume of cement of 0.118.

MCM

Mass Concrete Mix (MCM) mixes are used for mass concrete placements. MCM Mixes may utilize higher replacement rates of slag. Minimum absolute volume of cement is 0.106. Basic water-cement ratio is 0.40. Maximum water-cement ratio is 0.45.

CLASS V

Class V is an aggregate classification, specified in <u>Section 4116</u>. The fine limestone aggregates in concrete mixes using Class V aggregate with/without fly ash shall meet the requirements of <u>Article 4116.03</u> of the current specifications. Allowable cements and substitutions shall meet the requirements of <u>Article 4116.05</u>. This material may be used in various concrete mixes, including HPC mixes. The mixes utilizing this material will be designated with a Roman numeral V, in the Mix Number.

CLASS L

Class L is an aggregate classification, specified in <u>Section 4111</u>. This material may be used in various concrete mixes, so designated. The mixes utilizing this material will be designated with a Roman Numeral L, in the Mix Number.

SUDAS CONCRETE MIXTURES

Class C-SUD and CV-SUD mixes are utilized on SUDAS projects where higher durability is desired to reduce joint deterioration due to deicing chemicals. These mixes are designed with a lower water to cement ratio of 0.42 maximum (basic w/c 0.40) to reduce permeability.

QMC and C-SUD mixes are designed for slipform paving with a very low w/c ratio. For handwork,

a C-3WR or C-4WR mix is recommended.

FLY ASH & GGBFS SUBSTITUTION

At Contractor option, fly ash or GGBFS may be substituted for a portion of the cement in concrete mixes, within the limitations set forth in the appropriate Article for each type of placement. <u>IM 527</u> gives instructions on how to determine the proper batch proportions in a mix.

When fly ash or GGBFS is substituted for the cement, the replacement shall be on a pound-for-pound basis. Tables 1, 2, and 3 define concrete mixes with no substitution. These mixes shall be used as the basis for determining the final batch proportions and shall be adjusted accordingly. The change in volume resulting from the substitution shall be determined and an adjustment in both coarse and fine aggregate proportions shall be determined in order to ensure a unit volume. The change in aggregate proportions shall be in the same ratio as that of the specific mix. In those cases where the cement content is increased, relative to the standard design mix, the mix proportions shall be adjusted and a change in the aggregate content shall be determined, as described above.

When both fly ash and GGBFS are substituted for the cement in ready-mixed concrete, the replacement shall be on a pound-for-pound basis and shall be substituted as shown in the following example.

Example: C-3WR-C20-S20

Absolute Volume Cement = 0.108

Cement = 0.108 X 62.4 X 27 X 3.14 = 571 lbs. per cubic yard

Fly ash substitution 20% = 571 X 0.20 = 114 lbs. per cubic yard

Slag substitution 20% = 571 X 0.20 = 114 lbs. per cubic yard

Type IP, Type IS, Type IL, and Type IT cements shall be considered cement with regard to substitution of fly ash. Refer to appropriate Article for limitations. A Type IS(25) cement with a 20% fly ash replacement is equivalent to a 40% weight replacement of Portland cement.

Example: C-3WR-C20 using Type IS(20) cement

Absolute Volume Cement = 0.108

Cement = 0.108 X 62.4 X 27 X 3.10 = 564 lbs. per cubic yard

Fly ash substitution 20% = 564 X 0.20 = 113 lbs. per cubic yard

Weight of cement = 564 - 113 = 451 lbs. per cubic yard

Type IS(20) cement contains Portland cement and slag

451 x 0.80 = 361 lbs. Portland cement 451 X 0.20 = 90 lbs. slag Total replacement of Portland cement $((113 + 90) / 564) \times 100 = 36\%$

Example: C-3WR-C10-S20 using Type IL cement

Absolute Volume Cement = 0.108

Cement = 0.108 X 62.4 X 27 X 3.11 = 566 lbs. per cubic yard

Fly ash substitution 10% = 566 X 0.10 = 57 lbs. per cubic yard

Slag substitution 20% = 566 X 0.20 = 113 lbs. per cubic yard

Weight of cement = 566 - 57 - 113 = 396 lbs. per cubic yard

Type IL(10) cement contains Portland cement and inter-ground limestone

 $396 \times 0.90 = 356 \text{ lbs.}$ Portland cement $396 \times 0.10 = 40 \text{ lbs.}$ inter-ground limestone

Total replacement of Portland cement $((57 + 113 + 40) / 566) \times 100 = 37\%$

CARBONCURE PORTLAND CEMENT REDUCTION

Producers that are using CarbonCure or other carbon sequestration admixtures and have been approved for Portland cement reduction following the approval process in M 403 are eligible to reduce Portland cement content by up to 3 percent. The reduction is for Portland cement only and is determined after substitutions of fly ash and GGBFS have occurred. Blended cements will be considered cement when determining Portland cement reductions. The reduced Portland cement content should be used when calculating total replacement of Portland cement.

<u>Example: C-3WR-C20 using Type IL(10) cement and CarbonCure with a 3 percent Portland cement reduction</u>

Absolute Volume Cement = 0.108

Cement = 0.108 X 62.4 X 27 X 3.11 = 566 lbs. per cubic yard

Fly ash substitution $20\% = 566 \times 0.20 = 113 \text{ lbs. per cubic yard}$

Weight of cement = 566 - 113 = 453 lbs. per cubic yard

3 percent Portland cement reduction = 0.03 X 453 = 14 lbs. per cubic yard

Weight of cement = 453 - 14 = 439 lbs. per cubic yard

Type IL(10) cement contains Portland cement and inter-ground limestone

 $439 \times 0.90 = 395$ lbs. Portland cement $439 \times 0.10 = 44$ lbs. inter-ground limestone

Adjusted original cement weight = 566 - 14 = 552 lbs. per cubic yard

Total replacement of Portland cement ((113 + 44) / 552) X 100 = 28%

Proportion Table 1 Concrete Mixes

Using Article 4110 and 4115 Aggregates

Basic Absolute Volumes of Materials Per Unit Volume of Concrete

A MIXES	Basic Absolute Basic w/c = (Nolumes of Max v		t volume of Co	nicrete			
Mix No.	Cement	Water	Air	Fine	Coarse			
A-2	0.101	0.150	0.060	0.276	0.413			
A-3	0.104	0.155	0.060	0.306	0.375			
A-4	0.108	0.161	0.060	0.335	0.336			
A-5	0.111	0.165	0.060	0.365	0.299			
A-6	0.115	0.171	0.060	0.392	0.262			
	ES Basic w/				1 2:2-			
Mix No.	Cement		Air	Fine	Coarse			
BR	0.114	0.143		*	*			
C MIXES	Basic w/c = 0	0.430 Max v	v/c = 0.488					
Mix No.	Cement	Water	Air	Fine	Coarse			
C-2	0.110	0.149	0.060	0.272	0.409			
C-3	0.114	0.154	0.060	0.302	0.370			
C-4	0.118	0.159	0.060	0.331	0.332			
C-5	0.123	0.166	0.060	0.358	0.293			
C-6	0.128	0.173	0.060	0.383	0.256			
C-WR MIXES Basic w/c = 0.430 Max w/c = 0.450								
Mix No.	Cement	Water	Air	Fine	Coarse			
C-3WR	0.108	0.146	0.060	0.309	0.377			
C-4WR	0.112	0.151	0.060	0.338	0.339			
C-5WR	0.117	0.158	0.060	0.366	0.299			
C-6WR	0.121	0.163	0.060	0.394	0.262			
	S Basic w/c = 0	0.423 Max v	v/c = 0.450					
Mix No.	Cement	Water	Air	Fine	Coarse			
D-57	0.134	0.178	0.060	0.314	0.314			
D-57-6	0.134	0.178	0.060	0.377	0.251			
M MIXE	S Basic w/c = 0		v/c = 0.400					
Mix No.	Cement	Water	Air	Fine	Coarse			
M-3	0.149	0.153	0.060	0.287	0.351			
M-4	0.156	0.161	0.060	0.311	0.312			
M-5	0.160	0.165	0.060	0.338	0.277			
O MIXE	S Basic w/c = 0							
Mix No.	Cement	Water	Air	Fine	Coarse			
O-4WR	0.156	0.160	0.060	0.312	0.312			
	ES Basic w/							
Mix No.		Water		Fine	Coarse			
HPC-O	0.134	0.164	0.060	0.321	0.321			
	MIXES Basic w							
Mix No.		Water	Air	Fine	Coarse			
HPC-S	0.118	0.156	0.060	0.333	0.333			

HPC-D N	MIXES Basic w/c	= 0.400 Max	w/c = 0.435					
Mix No.	Cement	Water	Air	Fine	Coarse			
HPC-D	0.118	0.148	0.060	*	*			
QMC MI	QMC MIXES Basic w/c = 0.400 Max w/c = 0.4350.420							
Mix No.	Cement	Water	Air	Fine	Coarse			
QMC	0.106	0.133	0.060	*	*			
MCM M	IXES Basic w/c =	= 0.400 Max	w/c =0.450					
Mix No.	Cement	Water	Air	Fine	Coarse			
MCM	0.106	0.133	0.060	0.315	0.386			
X MIXES	Basic w/c = 0.4	23 Max w/c	=					
Mix No.	Cement	Water	Air	Fine	Coarse			
X-2	0.124	0.165	0.000	0.284	0.427			
X-3	0.129	0.171	0.000	0.315	0.385			
X-4	0.134	0.178	0.000	0.344	0.344			

Above mixtures are based on Type I or Type II cements (Sp. G. = 3.14). Mixes using blended cements (Type IP, IS, IL, or IT) must be adjusted for cement gravities listed in $\underline{IM 401}$.

Proportion Table 2 Concrete Mixes

Using Class V Aggregates Combined with Limestone Basic Absolute Volumes of Materials Per Unit Volume of Concrete

V47B MIXES

Mix No.	Cement	Water	Air	Class V.	Coarse Limestone	Basic w/c	Max. w/c
A-V47B	0.107	0.148	0.060	0.479	0.206	0.440	0.560
C-V47BP ¹	0.113	0.145	0.060	0.477	0.205	0.430	0.488
C-V47BS ³	0.113	0.145	0.060	0.477	0.205	0.430	0.488
M-V47B ²	0.155	0.170	0.060	0.338	0.277	0.350	0.400

V MIXES

Mix No.	Cement	Water	Air	Class V.	Fine Limestone	Basic w/c	Max. w/c
A-V	0.135	0.188	0.060	0.586	0.031	0.444	0.467
C-V	0.135	0.188	0.060	0.586	0.031	0.444	0.467
M-V	0.160	0.196	0.060	0.555	0.029	0.390	0.420

CV-HPC MIXES

Mix No.	Cement	Water	Air	Class V.	Coarse Limestone	Basic w/c	Max. w/c
CV-HPC-D1	0.123	0.147	0.060	0.368	0.302	0.400	0.435
CV-HPC-S ¹	0.123	0.155	0.060	0.364	0.298	0.420	0.450

Above mixtures are based on Type I or Type II cements (Sp. G. = 3.14). Mixes using blended cements (Type IP, IS, IL, or IT) must be adjusted for cement gravities listed in $\underline{\text{IM 401}}$.

^{*}These mixes require optimized aggregate proportioning in accordance with the specifications.

¹When Type IP or IL cement is used. See Section 4116 for requirements when Type IL used.

²M-V47B mix shall use Type I/II or IL cements for patching projects.

³When Type IS or IT cement is used.

Proportion Table 3 Concrete Mixes Using Class L Aggregates

Basic Absolute Volumes of Materials Per Unit Volume of Concrete

A-L MIXES Basic w/c = 0.474 Max w/c = 0.532

Mix No.	Cement	Water	Air	Fine	Coarse
A-L-2	0.107	0.159	0.060	0.270	0.404
A-L-3	0.111	0.165	0.060	0.299	0.365
A-L-4	0.115	0.171	0.060	0.327	0.327
A-L-5	0.118	0.176	0.060	0.355	0.291

C-L MIXES Basic w/c = 0.430 Max w/c = 0.488

Mix No.	Cement	Water	Air	Fine	Coarse
C-L-2	0.117	0.158	0.060	0.266	0.399
C-L-3	0.121	0.163	0.060	0.295	0.361
C-L-4	0.125	0.169	0.060	0.323	0.323
C-L-5	0.131	0.177	0.060	0.348	0.284

C-LWR MIXES Basic w/c = 0.430 Max w/c = 0.489

Mix No.	Cement	Water	Air	Fine	Coarse
C-L3WR	0.115	0.155	0.000	0.301	0.369
C-L4WR	0.119	0.161	0.000	0.330	0.330
C-L5WR	0.124	0.167	0.000	0.357	0.292

Above mixtures are based on Type I or Type II cements (Sp. G. = 3.14). Mixes using blended cements (Type IP, IS,IL, or IT) must be adjusted for cement gravities listed in <u>IM 401</u>.

Proportion Table 34 SUDAS Concrete Mixes

Using Article 4110 and 4115 Aggregates

Basic Absolute Volumes of Materials Per Unit Volume of Concrete

C-SUD MIXES Basic w/		ic w/c = 0.400	0.400 Max w/c = 0.420		
Mix No.	Cement	Water	Air	Fine	Coarse
C-SUD	0.106	0.133	0.060	*	*

Above mixture is based on Type I or Type II cements (Sp. G. = 3.14). Mixes using blended cements (Type IP, IS, IL, or IT) must be adjusted for cement gravities listed in MM 401. *These mixes require optimized aggregate proportioning in accordance with the specifications.

Using Class V Aggregates (4116) Combined with Limestone Basic Absolute Volumes of Materials Per Unit Volume of Concrete

CV-SUD	MIXES Basi	c w/c = 0.400	Max w/c = 0.	420	
Mix No.	Cement	Water	Air	Class V.	Coarse Limestone
CV-SUD	0 114	0.135	0.060	0.379	0.311

Above mixture is based on Type IP, IS, or IT cements.

GUIDELINES FOR APPROVING AND TESTING SCC MIX DESIGNS FOR FIELD PLACED CONCRETE

Description

- **A.** Develop and provide self-consolidating concrete (SCC) for cast in place structural concrete. SCC is defined as a concrete mix that provides the following:
 - Filling ability to flow and fill completely spaces within formwork, under its own weight.
 - Passing ability to flow through tight spaces between reinforcement without segregation or blocking.
 - Ability to resist segregation by remaining homogenous during transport and placement.
- **B.** Apply <u>Sections 2403</u>, <u>2412</u>, and Division 41 of the Standard Specifications with the following modifications.

Typically, aggregates are well graded with a maximum top size of 3/4" or less. Aggregate angularity and shape can affect the slump flow. Typical sand to aggregate ratio is 0.40 to 0.50. Paste volume can range from 28 to 40% depending on slump flow required. Water to cementitious ratio is typically in the 0.25 to 0.44 range.

If the producer has no previous experience with SCC, it is recommended that a technical representative of the admixture company be present during initial trial batches.

Materials

Meet the requirements of Division 41 for the appropriate materials and the following:

- Use a high range water reducer (HRWR) from Material IM 403 Appendix D.
- When a viscosity modifying admixture (VMA) is used, manufacturer shall provide documentation indicating compatibility with HRWR.
- Use maximum nominal aggregate size no larger than one third the minimum clear spacing between reinforcing steel
- Maximum w/c ratio of 0.45
- Minimum cementitious content shall be 700 pounds per cubic yard
- When required to maintain plasticity during a placement, use a retarding admixture or hydration stabilizer.

Mix Design

Mix designs will be approved by the District Materials Engineer (DME). New mix designs for SCC shall be verified through trial batches. Other mix designs will be qualified by previous performance. Field validation shall be required for all new mixes.

- Work with the admixture supplier representative to develop the mix design
- Slump flow in accordance with Materials <u>IM 389</u>. The target slump flow value is 23.0 inches. The allowable tolerance range of the slump flow is plus or minus 3 inches. The contractor may submit a target slump flow if placement requires different flow characteristics.

- Target Visual Stability Index (VSI) in accordance with Materials <u>IM 389</u>. The VSI Rating shall not exceed 1.0.
- Passing ability by J-Ring in accordance with ASTM C 1621. Calculate the difference between slump flow and J-Ring flow. The maximum allowable difference is 2 inches (50 mm).
- Static segregation using hardened cylinders in accordance with Material IM 390

Producer shall submit material sources, proportions, individual gradations of each aggregate, combined aggregate gradation, slump flow, visual stability index, air content, and compressive strength for the proposed mix design.

Trial Batch Validation

- **1.** Allow the District Materials Engineer ample opportunity to witness the trial batching. Provide the District Materials Engineer notice and mix proportions 7 calendar days prior to this event.
- 2. Mix the trial batch with a minimum of 3 cubic yards at least 30 calendar days prior to planned placement. Establish the batching sequence of the materials during the trial batch.
- **3.** Transport the concrete a distance comparable to the distance from the ready-mix plant to the placement site.
- 4. Test concrete samples that are representative of the entire batch for air content, slump flow, visual stability index, J-Ring, density (unit weight), static segregation and temperature. Cast specimens from each sample for compressive strength tests. Modify the consolidation method of all materials test procedures, including <u>IM 315</u>, <u>IM 316</u>, <u>IM 318</u>, and <u>IM 340</u> by placing the concrete in the molds in one layer without vibration or tamping.
- **5.** Cast a minimum of eight 4 inch by 8-inch cylinders for testing. Trial batch concrete will be tested for strength and static segregation. All samples will be cast, cured, and handled according to Materials IM 315.
- **6.** Strength samples will be stripped of their molds and wet cured until their break age. Strength samples will be tested according to AASHTO T 22. Three cylinders will be tested for strength at each age of 7 and 28 days. The District Materials Engineer may witness the strength testing. The samples for static segregation may be sent to the Central Materials Laboratory for sawing.
- 7. Submit a trial batch report to the District Materials Engineer no later than 7 calendar days after trial batching. Approval will be based on successful trial batch mixing and properties. The District Materials Engineer may waive the trial batch testing provided satisfactory mix properties have been achieved through testing of previous trial batches or production placements.

Quality Control Plan

Submit for approval a written Quality Control Plan describing the procedures to be used to control the production and placement of SCC. Submit the Quality Control Plan at least 30 calendar days before the first intended structural concrete placement. Do not place structural concrete before receiving written approval from the engineer of the Quality Control Plan and having all equipment and materials necessary to facilitate the plan on site and ready for use.

Include the following in the Quality Control Plan:

- Develop mix design that meets the design criteria for strength, flowability, passing ability, and consistency.
- Define concrete batching sequence, mixing time, and minimum revolutions to prevent cement balls and mix foaming. Include procedures for ensuring wash water is removed before batching.
- Define concrete placement pattern and methods. Include maximum horizontal flow distance from point of discharge.
- Describe additional quality control procedures at the plant to ensure consistent delivery of concrete.
- Define field procedures to accept or reject concrete during production.
- Describe procedures used when continuous placements are interrupted.
- Other information as needed.

Provide stability analysis of proposed formwork for full static pressure and proposed methods used to prevent leakage.

Placement

Deliver concrete without any interruption of flow such that a continuous placement is achieved. Deposit concrete continuously or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. Do not exceed 30 minutes between placement of successive batches unless engineer has reviewed placement conditions. If a section cannot be placed continuously, provide construction joints as specified.

If deemed necessary by the Engineer, construct a mock-up of the section to verify placement procedures.

Do not re-temper SCC.

Do not vibrate SCC without permission of the Engineer. If Engineer approves vibration, maximum insertion time is 2 seconds or less. If emergency delay occurs, concrete may be rodded with a piece of lumber or conduit if the material has lost its fluidity prior to placement of additional concrete. The DME may approve other methods of consolidation, if necessary.

Validate drop distance to demonstrate that separation does not occur.

Testing

Notify the Engineer 48 hours prior to placement of production concrete. Use only approved SCC mixes for production concrete. Ensure mix has the same materials, proportions, and properties established in the trial batch.

Perform air content testing in accordance with Materials <u>IM 318</u>, except place SCC in one layer, without consolidation or tapping. Cast cylinders in accordance with Materials <u>IM 315</u>, except place SCC in one layer, without consolidation or tapping.

The Engineer will perform air content testing at sampling at testing rate described in IM 204. The contractor will perform quality control testing of slump flow in accordance with IM 389 at rate of 1/30 cubic yards. Slump flow range shall be ±2 inches of the mix design target value. The visual stability index shall not exceed 1. If the slump flow exceeds the range up to a maximum of 28 inches, the concrete may be placed provided the visual stability index does not exceed 1. The producer will make adjustments to move the slump flow back into range.

The District Materials Engineer will obtain verification strength samples on a minimum of two random placements. Strength samples will be tested at the District Materials Laboratory according to AASHTO T 22. A set of five cylinders will be cast, cured, and handled according to Materials I.M. 315. Three cylinders will be tested for strength at 28 days. The remaining two cylinders will be checked for static segregation of hardened cylinders in accordance with Material IM 390.

Since SCC mixes are highly sensitive to moisture, the Producer should perform aggregate moistures at a minimum of once per day prior to mixing. The DME may adjust moisture testing depending on weather conditions and aggregate storage.

QUALITY MANAGEMENT & ACCEPTANCE PC CONCRETE PAVEMENT

GENERAL

This Instructional Memorandum is based on the concept of mutual benefit partnership between the Contracting Agency and the Contractor during progress of the work. Technical partnering shall be a part of this work and a formal partnership agreement may or may not be in effect.

The Contractor shall submit and comply with a Quality Control Program. The Contractor shall be responsible for the design of a Portland Cement Concrete Design Mixture (CDM) for use in pavement and shall be approved by the District Materials Engineer. The Contractor shall perform process control sampling, testing, and inspection during all phases of the concrete work at the rate specified in the contract documents, with monitor inspection by the agency personnel. Inspection of all other aspects of the concrete paving operation remains the responsibility of the Engineer.

The Contractor shall have an Iowa DOT PCC Level II Certified Technician responsible for all process control sampling and testing and execution of the Quality Control Plan as specified in the specification and this Instructional Memorandum. An Iowa DOT PCC Level I Concrete Field Testing Technician may perform the sampling and testing duties for which he or she is certified.

MIX DESIGN PROCEDURE

An lowa DOT PCC Level III Certified Technician shall perform the mix design. The Engineer shall concur with the Contractor designee.

The CDM shall be developed using the Excel spreadsheet developed by the Office of Construction and Materials. ACI 211 procedure, PCA procedure, or alternative methods may also be used. Aggregate proportions are contained on Form #955QMC (IM 532, Appendix A). When a CDM is developed, the absolute volume method shall be used.

The Contractor shall submit the CDM with test data, including a list of all ingredients, the source of all materials, target gradation, and the proportions, including absolute volumes.

A CDM with a satisfactory record of performance strength may be submitted in lieu of a new CDM. The concrete used for paving per this IM shall be produced with the same material sources and batched and mixed with the same equipment used to produce the concrete represented by the performance strength documentation.

QUALITY CONTROL PLAN

The Contractor shall submit a Quality Control Plan listing the type and frequency of inspection, sampling, and testing deemed necessary to measure and control the various properties of materials and construction governed by the specifications. As a minimum, the sampling and testing plan shall detail sampling location, sampling procedures, and the test frequency to be utilized. This Contractor Quality Control Plan shall be submitted to the Project Engineer prior to paving. A copy of the Quality Control Plan shall be available on the project at all times. Periodic updates may be required as necessary.

The Quality Control Plan shall include the Project Information Plan submitted for each project. The plan shall identify the personnel responsible for the contractor quality control. This should include the

company official who will act as liaison with Iowa DOT personnel, as well as the certified technician who will direct the inspection program. The certified technician shall be responsible to an upper-level company manager and not to those responsible for daily production. The Project Information Plan shall also include the mix design and mix design properties.

A. Elements of the Quality Control Plan

The plan shall address all elements that affect the quality of the concrete, including but not limited to, the following:

- 1. Stockpile management
- 2. Mixing time and transportation, including time from batching to completion of delivery and batch placement rate (batches per hour)
- 3. Placement and consolidation
- 4. The frequency of sampling and testing, coordination of activities, corrective actions to be taken, and documentation
- 5. How the duties and responsibilities are to be accomplished and documented, and whether more than one certified technician would be provided
- 6. The criteria used by the technician to correct or reject noncompliant materials, including notification procedures

B. Personnel Requirements

- 1. Perform and utilize process control tests and other quality control practices to ensure that delivered materials and proportioning meets the requirements of the mix design(s).
- 2. Periodically inspect all equipment utilized in transporting, proportioning, mixing, placing, consolidating, finishing, and curing to ensure proper operation. Monitor placement, consolidation, finishing, and curing to ensure conformance with the mix design and other contract requirements.

C. Elements of Project Information Plan

- 1. Mix design(s)
- 2. Mix design properties, as specified in the Specifications
- 3. The Contractor shall furnish name(s) and credentials of the quality control staff to the Engineer prior to the beginning of construction.
- 4. Project-related information

DOCUMENTATION

The Contractor shall maintain records of all inspections and tests. The records shall indicate the nature and number of observations made, the number and type of deficiencies found, the quantities

represented by the test, and any corrective action taken. The contractor documentation procedures will be subject to the approval of the lowa DOT prior to the start of the work and prior to regular monitoring during the progress of the work. Use standard lowa DOT forms. Batch tickets and gradation data shall be documented in accordance with lowa DOT requirements. Copies shall be submitted to the engineer as work progresses.

A control chart and running tabulation of individual test results shall be prepared for the following tests. An Excel spreadsheet is available from the Office of Construction and Materials to plot the test results. These shall be available to the Engineer at any time and submitted to the Engineer weekly:

- 1. Gradation (% passing) for each of the following sieves: 1 1/2 in., 1 in., 3/4 in., 1/2 in., 3/8 in., #4, #8, #16, #30, #50, #100, #200, and pan. Gradation test frequency is based on the running total of concrete production.
- 2. Moisture: Coarse Aggregate, Intermediate Aggregate & Sand. See IM 527
- 3. Unit Weight tested in front of the paver. Unit weight is used as a check on air content and batch changes. If the unit weight range exceeds the theoretical unit weight at the target air content, check batch proportions, scales, etc. for any problems. Unit weight test frequency is twice per day for normal production or once per week for intermittent production. No testing required for hand placements.
- 4. Plastic Air Content
- 5. Coarseness & Workability Factors
- 6. Water/cementitious Ratio

Charting will be completed within 24 hours after testing. Working range limits shall be indicated on the control charts.

The Contractor shall notify the Engineer whenever the process approaches a specification limit and shall take action, which results in the test results moving toward the specification target, away from the limit.

All charts and records documenting the contractor quality control inspections and tests shall become property of the Iowa DOT upon completion of the work.

The PCC Level II Technician shall document the changes to the mix design, allowed by the specification, on the lowa DOT QM-C Mix Adjustment form (IM 530, Appendix A). The PCC Level III Technician shall concur with the changes and shall periodically review mix changes effect on workability and placement in the field.

FIELD VERIFICATION TESTING

For continuous construction operation, a lot will be defined as a week of paving. Lots less than three days of paving will be grouped with the previous week. If less than 500 cu. yd. are produced in one day that day's production, group with the following day's production.

Intermittent construction operation involving quantities less than 500 cubic yards per day, shall be grouped to establish a lot, not to exceed one week.

The Engineer will perform verification testing at the following minimum test frequencies:

MINIMUM TEST FREQUENCIES

	Verification	
Unit Weight Plastic Concrete	None	<u>IM 340</u>
Gradation	Sample 1/day if production >500 yd3	
(Individual aggr., % passing)	Test 1st/day, then twice per week	<u>IM 302</u>
Flexural Strength, Third	1/10,000 cu. yd.	
Point Loading - 28 days *	Maximum of three sets	<u>IM 328</u>
Air Content		
Unconsolidated Concrete	1/700 cu. yd.	<u>IM 318</u>
Water/Cement Ratio	None	<u>IM 527</u>
Vibration Frequency	1/week	<u>IM 384</u>

^{*}One set of two beams at the above rate shall be cast for pavement design purposes. The beams shall be delivered to the Central Laboratory in Ames for testing. Transported beams shall be stripped and wrapped in wet burlap and plastic to ensure adequate curing during delivery. Include information on project number, contractor, date cast and air content with delivery. Date of testing will be increased to 90 days when quartzite coarse aggregate is used.

CONTROL & ACCEPTANCE PROCESS OF PLASTIC AIR TESTING

On the first air test of each day, the Contractor and Agency shall run side by side tests to ensure both air meters are within the tolerance in <u>IM 216</u>. If the air tests are outside the tolerance, both air meters should be calibrated in accordance with <u>IM 318</u> to resolve the difference.

Thereafter, the Engineer will randomly test the plastic air content at the minimum frequency in the table above. The Contractor may elect to run side by side comparison at the same time as the Engineer to ensure both meters are operating properly. When a verification test result is outside the tolerance for the target air content, the Contractor will be immediately notified.

The unconsolidated air content limits will be established according to Article 2301.04C using Contractor test results. The Contractor shall notify the Engineer whenever an individual quality control test result is outside the tolerance for the target air content. Lot acceptance shall be based on the agency verification test results on the unconsolidated mix on the grade.

VALIDATING COARSENESS & WORKABILITY FACTOR

On the first day of paving, the Engineer will direct and witness sampling and splitting of one sample of each aggregate. The split sample shall meet the requirements of <u>IM 216</u>. If correlation is not established, the District Materials Engineer will resolve the differences.

Thereafter, the Engineer will direct and witness sampling of one random independent sample per day, for normal production. The agency will take immediate possession of the samples.

The Engineer will randomly test a minimum of two samples per lot. The samples will be tested in a timely manner and the results will be given to the Contractor within a week after results are obtained. The Engineer will determine aggregate percentages based on the batch weights at the time the sample was obtained, compute the average coarseness and workability factors in accordance with IM 532 for the combined samples tested, and average the results. Report each weekly lot for aggregate coarseness/workability factor validations on the verification gradation report (821283 COMPUTER). (See IM 530, Appendix B). Enter the contractor average coarseness/workability factors for the lot. If the average results obtained by the Engineer fall within the same zone as the Contractor, the results are validated for the lot.

If the average results obtained by the agency are not in the same zone as the Contractor, the Engineer will test the remaining samples representing the lot and average all results for the lot. The average results obtained by the agency shall govern as validation for the lot.

CORRECTIVE ACTION

The Contractor shall take prompt action to correct conditions that have resulted, or could result, in the incorporation of noncompliant materials.

NONCOMPLIANT MATERIALS

The Contractor shall establish and maintain an effective and positive system for controlling noncompliant material, including procedures for its identification, isolation and disposition. Reclaiming or reworking of noncompliant materials shall be in accordance with procedures acceptable to the lowa DOT.

All noncompliant materials and products shall be positively identified to prevent use, shipment, and intermingling with conforming materials and products.

AVOIDANCE OF DISPUTES

Every effort should be made by Contractor and Engineer personnel to avoid any potential conflicts in the Quality Assurance Program prior to and during the project by using partnering concepts. Potential conflicts should be resolved at the lowest possible levels between the Contractor and Engineer personnel. Correction of problems and performance of the final product should be the primary objective of this resolution process.

****THIS IS A NEW APPENDIX. – PLEASE READ CAREFULLY.**** IOWA DOT QM-C MIX ADJUSTMENT FORM

Project Number:				
Contractor:				
Date of Mix Adjus	stment (m/d/yy):			
Station of Mix Ad	justment:			
Number of Mix C	hanges to Date:			
Old Mix ID:				
New Mix ID:				
Mix Adjustment 1 Reason:	:			
Mix Adjustment 2 Reason:	<u>:</u>			
Mix Adjustment 3 Reason:	d:			
	Old Mix Pr	roportions	New Mi	x Proportions
	Source	SSD Weight or Dosage	Source	SSD Weight or Dosage
Cement		o. Beeage		o. Beeage
Fly Ash				
Water				
Coarse				
Aggregate				
Intermediate				
Aggregate				
Fine Aggregate				
Air Entraining				
Agent				
Water Reducer				
Retarder				
PCC II Technicia	n		Cert No	
i oo ii rediiiida	"1"		JUIL 140.	· · · · · · · · · · · · · · · · · · ·
	strict Materials Engir esident Construction			

TEST METHOD FOR COMBINING AGGREGATE GRADATIONS

When the aggregate gradations for a PCC mixture are sampled and tested individually, the results must be mathematically combined to create a theoretical combined gradation. This combined gradation is based on their relative percent volume in the mixture.

Each individual aggregate gradation shall start with the largest appropriate sieve for that material and shall include all the consecutive smaller sieve sizes through the #200 sieve. They shall include: 1/2-in., 1-in., 3/4-in., 1/2-in., 3/8-in., #4, #8, #16, #30, #50, #100, and #200 sieves. For coarse and intermediate aggregates, the #16 through #100 sieves may be determined mathematically.

The following methods outline the procedures to be used to determine the combined gradation. Method A is generally used for most aggregate combinations. Method B should be used when the specific gravity of the individual aggregates differ by more than 0.25.

METHOD A

Multiply relative percentage by the percent passing and sum all aggregates for each sieve size.

P = Aa + Bb + Cc

P = Combined percent passing of a given sieve

A,B,C = Percent passing given sieve for aggregate A, B, and C

a,b,c = Relative percent of total aggregates A, B, and C

Convert combined percent passing to combined percent retained by subtracting the combined percent passing on the top sieve from 100 and the combined percent passing from each subsequent sieve, thereafter.

				Theoretical	Theoretical
	Coores	lusto was a di ata	Fine	Combined	Combined
	Coarse	Intermediate	Fine	Gradation	Gradation
Sieve	Aggregate	Aggregate	Aggregate	% Passing	% Retained
Relative Percent→	0.472	0.118	0.410		
1 1/2 inch	100	100	100	100	0.0
1 inch	83	100	100	92	8.0
3/4 inch	65	100	100	83.4	8.5
1/2 inch	35	100	100	69.3	14.2
3/8 inch	14	100	100	59.4	9.9
No. 4	2.1	33	96	44.2	15.2
No. 8	0.9	2.8	82	34.4	9.8
No. 16	0.8	2.3	63	26.5	7.9
No. 30	0.7	1.8	37	15.7	10.8
No. 50	0.5	1.2	9.4	4.3	11.4
No. 100	0.4	0.7	1	0.7	3.6
No. 200	0.3	0.1	0.4	0.3	0.4

METHOD B

STEP 1:

The percent volume of each of the aggregates is determined from the volume proportions of the mixture design. The relative proportion of each aggregate of the total aggregate is determined by dividing the individual aggregate portion in the mix by the total aggregate portion in the mix.

Example:

A mixture design has the following mix proportions by volume:

Cement	0.110
Water	0.150
Air Entraining	0.070
Fine Aggregate (PCC Sand)	0.270
½ inch Intermediate Aggregate (Limestone Chip)	0.100
1½ inch Coarse Aggregate (Limestone PCC Stone)	0.300
Total	1.000

The total aggregate portion is: 0.270 + 0.100 + 0.300 = 0.670

The relative percent retained portion for each aggregate by volume is determined as follows:

Fine Aggregate (0.270/0.670) = 0.403 Intermediate Aggregate (0.100/0.670) = 0.149 Coarse Aggregate (0.300/0.670) = 0.448

Check the total aggregate relative portions. They should equal 1.000.

$$0.403 + 0.149 + 0.448 = 1.000 (OK)$$

STEP 2:

These volume proportions are then adjusted by the specific gravity of the aggregates, since gradations are based on percent weight retained on each sieve. The proportion retained by weight is determined by multiplying each aggregate's volume proportion by its specific gravity. These weights are then summed to obtain a total weight. The proportion by weight is then determined by dividing each aggregate's weight by the total weight.

Example:

Aggregate	Proportion Volume	Specific Gravity	Weight	Proportion By Weight
Fine	0.403	2.67	1.07601	(1.07601/2.64912)= 0.406
Intermediate	0.149	2.59	0.38591	(0.38591/2.64912 = 0.146
Coarse	0.448	2.65	1.18720	(1.18720/2.64912)= 0.448
Total	1.000		2.64912	1.000

STEP 3:

Determine the theoretical combined gradation from the individual gradations. This is done by multiplying the percent retained on each sieve for the individual gradations by the relative portion of the aggregate volumes. Then total the percent retained of each product for each sieve size. This is the theoretical combined percent retained for each sieve. The total of these percents retained should equal 100.0. If the total is off due to rounding, prorate the rounding error.

Example:

Coarse Aggregate

		Relative	Adjusted
Sieve	% Retained	Volume	% Retained
1 1/2 inch	0.0	0.448	0.0
1 inch	1.4	0.448	0.6
3/4 inch	23.7	0.448	10.6
1/2 inch	31.0	0.448	13.9
3/8 inch	24.5	0.448	11.0
No. 4	14.1	0.448	6.3
No. 16	0.7	0.448	0.3
No. 30	0.8	0.448	0.4
No. 100	0.4	0.448	0.2
No. 200	0.2	0.448	0.1
Minus 200	0.8	0.448	0.4

Similar calculations are done for the intermediate and fine aggregates.

STEP 4:

The individual adjusted gradations are summed to get the theoretical combined gradation, percent retained. The theoretical combined gradation, percent passing, may be calculated by subtracting subsequent sieves beginning with 100, as per IM 302. The following table shows the calculations:

				Theoretical Combined	Theoretical Combined
	Coarse	Intermediate	Fine	Gradation	Gradation
Sieve	Aggregate	Aggregate	Aggregate	% Retained	% Passing
1 1/2 inch	0.0			0.0	100
1 inch	0.6			0.6	99.4
3/4 inch	10.6	0.0		10.6	88.8
1/2 inch	13.9	3.2		17.1	71.7
3/8 inch	11.0	5.4	0.0	16.4	55.3
No. 4	6.3	4.9	2.0	13.2	42.1
No. 8	0.9	0.4	4.1	5.4	36.7
No. 16	0.3	0.3	5.6	6.2	30.5
No. 30	0.4	0.1	12.9	13.4	17.1
No. 50	0.1	0.2	12.0	12.3	4.8
No. 100	0.2	0.1	3.1	3.4	1.4
No. 200	0.1	0.1	0.2	0.4	1.0
Minus 200	0.4	0.2	0.4	1.0	0.0

The theoretical combined gradations are used in graphically displaying aggregate blends of PCC mixture designs and for plotting control charts to compare target gradation with working ranges of the mixture design.

AGGREGATE PROPORTIONING GUIDE FOR PC CONCRETE PAVEMENT

GENERAL

This Instructional Memorandum covers procedures for developing a well-graded aggregate combination for use in Portland Cement Concrete paving. It is the responsibility of the mix designer to design a mix with appropriate properties for the intended application and placement method. The mixture should be economical, meet workability and finishing requirements, and allow for a proper air void system at a minimum water/cementitious ratio. Regardless of how the mix performs in controlled conditions, ultimately it must be evaluated on how well it performs during production and placement in the field.

Concrete mixtures produced with a well-graded aggregate combination tend to reduce the need for water, provide and maintain adequate workability, require minimal finishing, and consolidate without segregation. These characteristics tend to enhance placement properties as well as strength and long-term performance. Concrete mixtures produced with a gap graded aggregate combination tend to segregate easily, contain higher amounts of fines, require more water, and increase susceptibility to shrinkage. These characteristics tend to limit placement properties as well as strength and long term performance.

Achieving a uniform gradation may require the use of three or more different aggregate sizes. It is the responsibility of the mix designer to consider particle shape when designing a mix. When using the coarseness/workability chart it is assumed that particles are rounded or cubical shaped. Rounded or cubical shaped aggregates typically enhance workability and finishing characteristics. Flat and elongated aggregates typically limit workability and finishing characteristics.

COARSENESS/WORKABILITY CHART1

The mathematically combined gradation, expressed as percent retained, shall be calculated in accordance with M531. The coarseness and workability factors shall be calculated and then plotted in a coarseness/workability chart as shown in Figure 1.

Coarseness Factor =
$$\frac{[\text{combined \% retained above 3/8 in. sieve}]}{[\text{combined \% retained above No. 8 seive}]} \times 100$$

Workability Factor = Combined % Passing No. 8 Sieve*

*The workability factor shall be increased by 2.5% for each increase of 94 pounds of cement over 564 pounds per cubic yard.

¹ Shilstone, J. Sr., "Concrete Mixture Optimization", Concrete International, June 1990

Zone II is considered well graded for ¾" to 1 ½" aggregate top size. For slipform paving, Shilstone recommends a target of 60 Coarseness Factor and 35 Workability Factor. For a nominal maximum aggregate size of 1 in. to 1 1/2 in., Shilstone recommends a Workability Factor of 34 to 38 when the Coarseness Factor is 52 and a Workability Factor of 32 to 36 when the Coarseness Factor is 68.

Aggregate blends that plot close to the bottom boundary line may tend to have too much coarse aggregate. Aggregate blends with a point below the bottom boundary line (Zone V) will produce rocky mixtures with inadequate mortar and shall not be allowed.

Aggregate blends above the top boundary line (Zone IV) will produce sandy mixtures with high amounts of fines requiring higher water contents and potential for segregation.

Aggregate blends with coarseness factors higher than 75 (Zone I) will produce gap graded mixtures with inadequate workability and high potential for segregation.

Aggregate blends with a point in Zone III, respectively, corresponds with Zone II for aggregate sizes less than 1/2 in.

0.45 POWER CURVE

The 0.45 power curve is based on the mathematically combined percent passing gradation determined in accordance with <u>IM 531</u>. Historically, the 0.45 power curve has been used to develop uniform gradations for asphalt mix designs; however, it is increasingly being used to develop uniform gradations for Portland Cement Concrete mix designs.

To create a 0.45 power curve plot the mathematically combined percent passing for each sieve on a chart having percent passing on the y-axis and sieve sizes raised to the 0.45 power on the x-axis. Sieve sizes shall include the Connect the plotted points as shown in Figure 2. Plot the maximum density line from the origin of the chart to the sieve one size larger than the first sieve to have 90 percent or less passing.

A well-graded aggregate combination will follow the maximum density line to the No. 16 sieve. A slight deviation below the maximum density line at the No. 16 sieve will occur to account for the effect of the fines provided by the cementitious materials (Figure 2). A gap graded aggregate combination will produce an "S- shaped" curve deviating above and below the maximum density line (Figure 3).

PERCENT-RETAINED CHART

The percent-retained chart is based on the mathematically combined percent-retained gradation for each sieve in accordance with <u>IM 531</u>. The percent-retained chart has evolved from efforts to limit disproportionate amounts of material retained on any one sieve. Typical limits are no more than 18% retained on the 1 in. to the #100 sieve and no less than 8% retained on the 1/2 in. to the #30 sieve.

To create a percent-retained chart plot the mathematically combined percent retained for each sieve on a chart having percent retained on the y-axis and sieve sizes on the x-axis. Sieve sizes shall include the 1 1/2 in., 1 in., 3/4 in., 1/2 in., 3/8 in., No. 4, No. 8, No 16, No. 30, No 50, No. 100, and the No. 200. Connect the points and plot the boundary lines as shown in Figure 4.

A well-graded aggregate combination will have no significant peaks and/or dips (Figure 4). A gap graded aggregate combination will have significant peaks and dips (Figure 5). Shilstone recommends that the sum of percent retained on two consecutive sieves should be at least 13% to be an optimum gradation.

TARANTULA CURVE

The Tarantula curve is a modified percent retained curve developed by Tyler Ley² Oklahoma State University. The percent retained band limits are shown in the table below.

	1 ½ in.	1 in.	¾ in.	½ in.	3/8 in.	No. 4	No. 8	No. 16	No. 30	No. 50	No. 100	No. 200
Max.		0	0	4	4	4	0	0	4	4	0	2
Min.	0	16	20	20	20	20	12	12	20	20	10	0

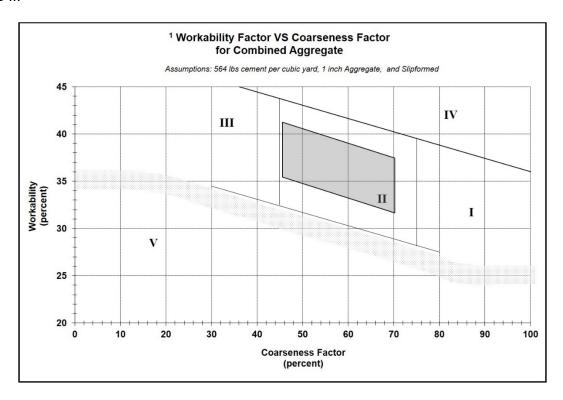
Other required parameters include the following:

- The sum of percent retained on the #8 through #30 sieve shall retain at least 15% for mix cohesion.
- The sum of percent retained on the #30 through #200 sieve shall retain at between 24% and 34% to retain mix workability.
- Limit flat or elongated particles to 15% or less at a ratio of 1:3.

A well graded combination will fall within the limits as shown in Figure 6.

AGGREGATE SHAPE EFFECT ON OPTIMUM GRADATION

The shape and texture of aggregate particles affect the volume of paste needed to coat particles and decrease interactions during placement. The ideal aggregate shape for workability is smooth and round. Smooth and round particles, such as gravels, have a low surface to volume ratio and require less paste to coat the surfaces of each particle. Crushed limestone aggregates, which usually tend to be more angular and rough than gravel aggregates, have a higher surface to volume ratio, and may require more paste to reduce particle interactions. These rules are generalized and the mix designer must determine the actual optimum gradation, considering particle shape, with placing and finishing characteristics as the ultimate assessment of workability.


OPTIMUM AGGREGATE BLEND

Determining an optimum combined aggregate blend will require the use of all 3 graphical representations as well as sound practical experience. The coarseness/workability chart should be the primary method used to develop an aggregate combination that will produce a mixture with appropriate properties for the intended application and placement method. The 0.45 power curve and the percent-retained chart should be used as secondary means to verify the coarseness/workability chart results and to identify areas deviating from a well-graded aggregate combination. Aggregate blend for QMC mixes may be found on Form #955QMC (Appendix A).

Depending on aggregate top size, shape, and texture, typical optimum aggregate combinations tend to fall within the range of 44-48% coarse, 10-15% intermediate, and 38-42% fine aggregate.

² Cook D, Seader N, Ley T, Russell B. *Investigation of Optimized Graded Concrete for Oklahoma- Phase 2.* FHWA-OK-15-07. Oklahoma City, OK: Oklahoma Department of Transportation; 2015

The following may be used as a guide to determine aggregate combinations for optimum placement characteristics. For QMC paving, use aggregate combinations in the gray box of Zone II.

For BR and HPC-D mixes, use aggregate combinations in the hatched box Zone II.

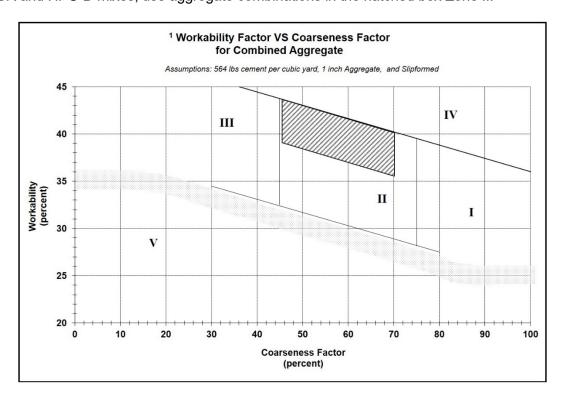


FIGURE 1

¹ Workability Factor VS Coarseness Factor for Combined Aggregate

Assumptions: 564 lbs cement per cubic yard, 1 inch Aggregate, and Slipformed

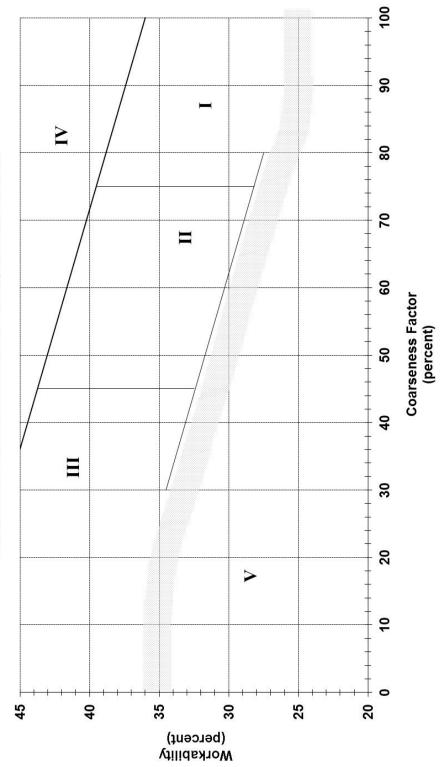


FIGURE #2

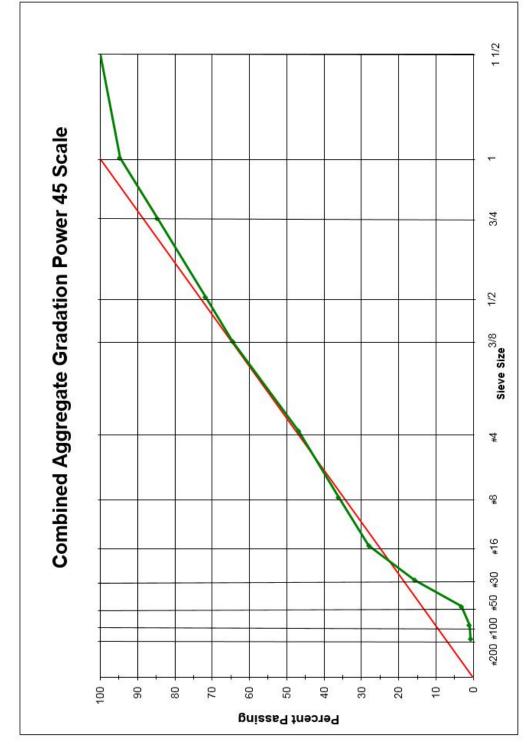


FIGURE 3

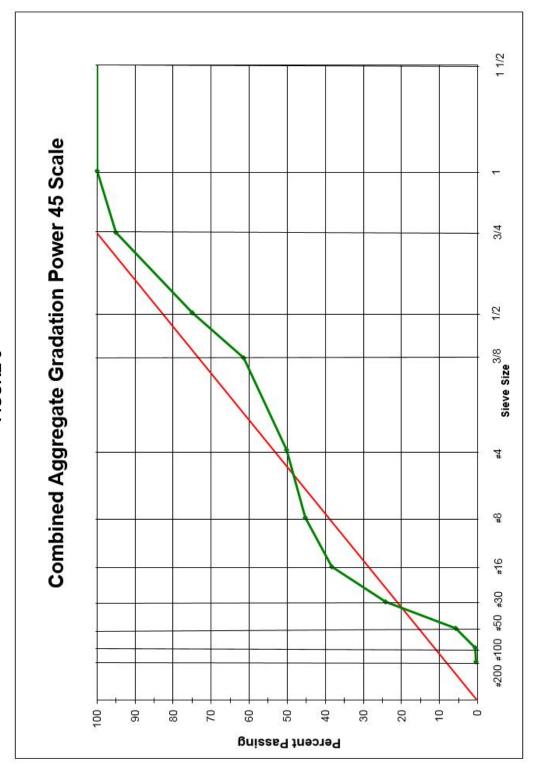


FIGURE 4

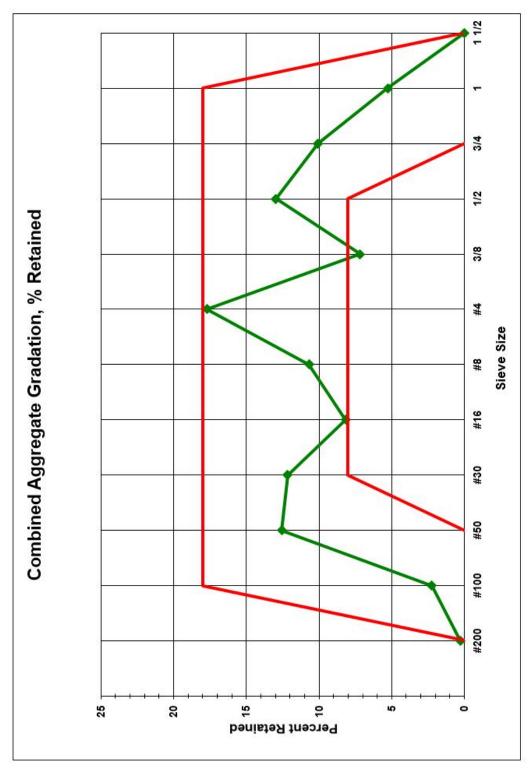


FIGURE 5

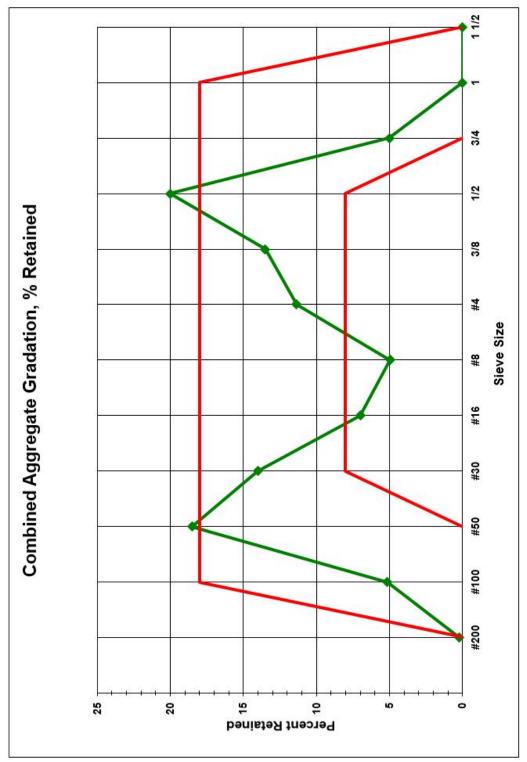
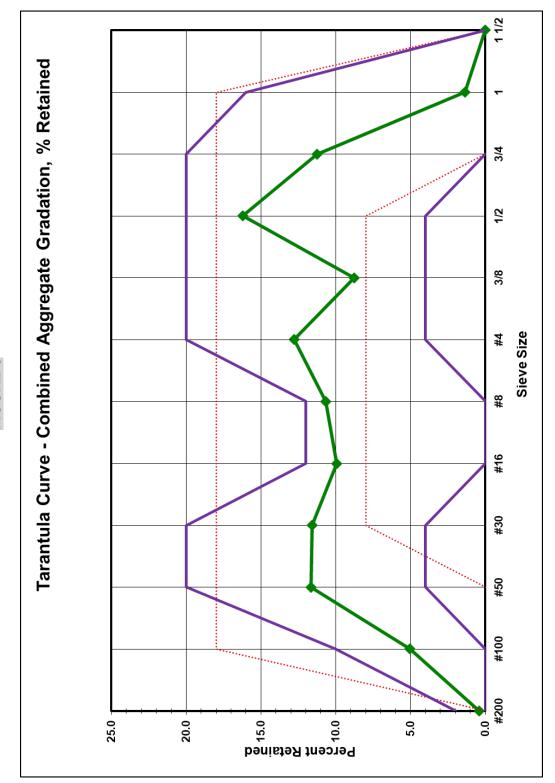



FIGURE 6

Form 955QMC			Hig	nway Divi	sion-Offi	Transport ce of Materi mits For Agg	als					
County:			Projec	t No.:					Date:			
Project Location:								Mix De	sign No.:			
Contractor:				Prod	ncer:			Loca	ation:			
Material	Ident#	% in Mi	A#			Producer a	& Location			Class	Beds]
		0.0%	0	0								
Conc. Sand		0.0%	0	0								
		In	idiv <mark>i</mark> dual <i>i</i>	Aggregat	es Sieve	e Analysis	- % Passi	ng (Targ	get)			
Material	1 1/2 "	1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
0	0	0	0	0	0	0	0					0
Conc. Sand	100	0 100	100	0	0	0	0	0	0	0	0	0
Conc. Sand	100	100	100	U	U	0	0	U	0	0	0	0
* Upper Tolerance Comb Grading	5 0	5	5 0	relimina 5 0	ry Targo	et Gradatio	4 0	4.0	4.0	3.0	2.0	0
Lower Tolerance	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0
Comments: The above individe reviewed with an representative of	authoriz	ed repre	sentative (of the ag								 d
						Check(X						
Signed:		Duo des e			Coars		Signed:		Contract			-
		Produce	r		Interm				Contracto	or		
Signed:					Fin	***	Signed:					
		Produce							Contracto			

DEVELOPMENTAL SPECIFICATIONS FOR QUALITY MANAGEMENT CONCRETE (QM-C)

Effective Date October 17, 2023

THE STANDARD SPECIFICATIONS, SERIES 2023, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE DEVELOPMENTAL SPECIFICATIONS AND THEY PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

23027.01 DESCRIPTION.

- **A.** This specification identifies a concrete mixture design with an optimum combined aggregate gradation, and the Contractor's testing and quality control responsibilities. Optimization of the aggregates should produce concrete with low water requirement as well as improved workability and finishing characteristics. While concrete strength is important and is measured, it is not the basis for optimization of the concrete mixture design.
- **B.** Testing and quality control apply to all Contractor produced concrete using the Concrete Design Mixture (CDM). The CDM applies to mainline slip form pavement. At the Contractor's option, the CDM may apply to any other slip form paving.

23027.02 MATERIALS.

For all materials, meet the quality requirements for the respective items in Division 41 of the Standard Specifications. Compatibility of all material combinations is the Contractor's responsibility based on acquired field experience with proposed materials.

23027.03 CONCRETE DESIGN MIXTURE.

A. An lowa DOT PCC Level III Certified Technician is responsible for the development of the CDM. Develop a CDM based on a unit volume of 1.000 according to industry standard practice, and containing proportions of materials, including admixtures. Base the proportions upon saturated surface dry aggregates to produce a workable concrete mixture meeting the constraints of Table DS-23027.03-1:

Table DS-23027.03-1: Concrete Mixture Constraints

Table be 2002 for it controls mixture contained					
Nominal Maximum Coarse Aggregate Size	Greater than or equal to 1 inch				
Gradation	Materials I.M. 532				
Cementitious Content	Minimum, 560 pounds per cubic yard*				
Fly Ash Substitution Rate	See Article 2301.02, B, 6				
Water/Cementitious Ratio	Maximum, 0.42				
Air Content	6% ± 1%, Design Absolute Volume = 0.060				
28 Day Flexural Strength, Third Point	Minimum, 640 pounds per square inch				

- The minimum cement content assumes the use of Type I/II cement with a specific gravity of 3.14 for an absolute volume of 0.106. If cement other than Type I/II is used, use an absolute volume of 0.106 and determine the weight of cement from the specific gravity of the cement. Cement content may need to be increased to maintain the water to cementitious ratio during hot weather conditions.
- **B.** Develop a target combined gradation in Zone II for each CDM based on normal production gradations and the relative percentages of each individual aggregate. Submit Form 955QMC to aggregate producer(s) to ensure individual gradations used are acceptable. Limit the percent passing the No. 200 sieve to no more than 1.5% for the combined aggregate gradation. When the coarse aggregate used meets the increase in percent passing the No. 200 sieve, according to Section 4109, Aggregate Gradation Table, Note 10 of the Standard Specifications, limit the percent passing the No. 200 sieve to no more than 2.0% for the combined aggregate gradation.
- **C.** Contractor may use water reducing admixture, Type A, or water reducing and retarding admixture, Type D, in the CDM.

23027.04 MIX DESIGN DOCUMENTATION.

At least 7 calendar days prior to the start of paving, submit a CDM report to the District Materials Engineer for approval on Iowa DOT form. Contract extensions will not be allowed due to inadequate or additional CDMs.

23027.05 QUALITY CONTROL.

A. General.

- 1. The Contractor is responsible for quality control of the concrete. An Iowa DOT PCC Level II Certified Technician is required to oversee quality control operations. The individual conducting the testing on grade is required to be an Iowa DOT PCC Level I Certified Technician. Calibrate and correlate testing equipment prior to and during paving operations.
- 2. At least 7 calendar days prior to the preconstruction conference, submit to the Engineer a Quality Control Plan complying with Materials I.M. 530. Include the proposed mix design(s) with the Quality Control Plan. Do not begin paving until the plan is reviewed for compliance with the contract documents. Maintain equipment and qualified personnel to direct and perform all field quality control sampling and testing necessary to:
 - Determine the various properties of the concrete governed by the contract documents, and
 - Maintain the properties described in this specification.

B. Quality Control Testing.

1. Perform all quality control tests necessary to control the production and construction processes applicable to this specification and as set forth in the Quality Control Plan. Take samples for quality control testing in a random manner according to the prescribed sampling rate. Perform the tests listed in Table DS-23027.05-1:

Table DS-23027.05-1: Quality Control Table

	Limits	Testing Frequency	Test Methods
Unit Weight (Mass) of Plastic Concrete	Monitor for changes, ± 3%	Twice/day	AASHTO T 121
Gradation Combined % Passing	See Paragraph 2 below	1/1500 cubic yard	Materials I.M. 216, 301, 302, 531
Aggregate Moisture Contents	See Materials I.M. 527	1/1500 cubic yard	Materials I.M. 308
Air Content Plastic Concrete In Front of Paver	See <u>Article</u> 2301.02, B, 4	1/350 cubic yard 1/100 cubic yard (ready mix)	Materials I.M. 318

Air Content Plastic Concrete In Back of Paver	May be used by Project Engineer to adjust target air in front of paver	2/day for first 3 days and 1/week thereafter (for each paver used)	Materials I.M. 318
Water/Cementitious Ratio	0.42 maximum	Twice/day	Materials I.M. 527
Vibrator Frequency	See Article 2301.03, A, 3, a, 6, a	With Electronic Vibration Monitoring: Twice/day Without Electronic Vibration Monitoring: Twice/Vibrator/Day	Materials I.M. 384

2. Maintain the running average of three combined aggregate gradation tests within the limits established by the CDM target gradation and the working ranges of Table DS-23027.05-2:

Table DS-23027.05-2: CDM Target Gradations

Sieve Size	Working Range
No. 4 or greater	± 5%
No. 8 to No. 30	± 4%
No. 50	± 3%
No. 100	± 2%
minus No. 200	See Article DS-23027.03

C. Corrective Action.

For QM-C mixes only, plot all process control test results on control charts as described in Materials I.M. 530.

1. Aggregate Tests.

Take corrective action when the running average approaches the working range limits. When a combined gradation test result for a sieve exceeds the working range limits, adjust the target and notify the Engineer. If the verification test result for the minus No. 200 exceeds the limits in Article DS-23027.03 for the combined gradation, the material represented by that test for this sieve will be considered non-complying. Price adjustments will be assessed based on Coarseness/Workability Factors as described in Article DS-23027.07, E.

2. Concrete Tests.

Take corrective action when an individual test result approaches the control limits. Notify the Engineer whenever an individual test result exceeds the control limits.

D. Acceptable Field Adjustments.

- 1. All mix changes must be mutually agreed upon between the Contractor and Engineer. Document all mix changes on the QM-C Mix Adjustment form. Determine batch weights using a basic water cement ratio of 0.40. When the water cement ratio varies more than ±0.03 from the basic water cement ratio, adjust the mix design to unit volume of 1.000. A change in the source of materials or an addition of admixtures or additives requires a new CDM. The following are small adjustments that may be made without a new CDM being required:
 - Increase cementitious content.
 - Decrease fly ash substitution rate.
 - Aggregate proportions may be adjusted from CDM proportions by a maximum of ± 4% for each aggregate.
 - Change water reducer to water reducer retarder.
 - Adjustment in water reducer or water reducer retarder admixture dosage.
 - Change in source of fly ash.
 - Change in source of sand, provided target gradation limits are met.

- 2. When circumstances arise, such as a cement plant breakdown, that create cement supply problems, a change in cement source may be allowed with the Engineer's approval. Consult the District Materials Engineer for approval of other changes to the mix design. A set of three beams for 28 day flexural strength testing may be required to document the changes.
- 3. Should conditions beyond the Contractor's control prevent completion of the work with the CDM, a Class C mix, or a mix based on Class C mix proportions using project materials, will be allowed, at no additional cost to the Contracting Authority. Mutual agreement between the Contractor and Engineer is required. When Class C mix, or mix based on Class C mix proportions using project materials is allowed it will not be considered in the coarseness and workability lot evaluation.

E. Hand Finished Pavement.

Use project materials based on Class C or Class M concrete mix proportions. With approval of the Engineer, the Contractor's CDM may be used for hand finished pavement. Quality control, as required in this specification, will not apply to hand finished pavement.

23027.06 METHOD OF MEASUREMENT.

Measurement will be as follows:

A. Standard or Slip-Form Portland Cement Concrete Pavement, QM-C.

Square yards shown in the contract documents.

B. Portland Cement Concrete Overlay, QM-C, Furnish Only.

Article 2310.04, A, of the Standard Specifications applies.

C. Portland Cement Concrete Overlay, QM-C, Placement Only.

Article 2310.04, B, of the Standard Specifications applies.

D. Hand Finished Pavement.

Square yards of Standard or Slip-Form Portland Cement Concrete Pavement, QM-C, constructed using Class C or Class M mixtures. For overlays, the Engineer will compute the number of:

- Square yards of Portland Cement Concrete Overlay, QM-C, Placement Only, constructed using Class C or Class M mixtures, and
- Cubic yards of Class C and Class M mixtures used.

23027.07 BASIS OF PAYMENT.

The cost for furnishing labor, equipment, and materials for the work required by the Contractor to design, test, and provide process control for production of QM-C shall be included in the contract unit price for QM-C bid items. Payment will be the contract unit prices as follows:

A. Standard or Slip Form Portland Cement Concrete Pavement, QM-C.

Contract unit price for Standard or Slip-Form Portland Cement Concrete Pavement, QM-C, per square yard.

B. Portland Cement Concrete Overlay, QM-C, Furnish Only.

<u>Article 2310.05, A</u>, of the Standard Specifications applies. Average coarseness and workability factor for each lot will be determined according to <u>Materials I.M. 530</u>.

C. Portland Cement Concrete Overlay, QM-C, Placement Only.

Article 2310.05, B, of the Standard Specifications applies. Average coarseness and workability factor for each lot will be determined according to Materials I.M. 530.

D. Hand Finished Pavement.

1. Standard or Slip-Form Portland Cement Concrete Pavement, QM-C: per square yard.

- 2. Portland Cement Concrete Overlay, QM-C, Placement Only: per square yard.
- 3. Portland Cement Concrete Overlay, QM-C, Furnish Only: per cubic yard.

E. Price Adjustment

Failure to provide an optimized gradation within Zone II, when required, will result in the following price adjustments.

Table DS-23027.07-1: Price Adjustments

Table D3-23027.07-1. Frice F	aujustinents
Gradation Zone (Materials I.M. 532)	Price Adjustment Per Lot
IV	2%
I	5%

DEVELOPMENTAL SPECIFICATIONS FOR HIGH PERFORMANCE CONCRETE FOR STRUCTURES

Effective Date October 17, 2023

THE STANDARD SPECIFICATIONS, SERIES 2023, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE DEVELOPMENTAL SPECIFICATIONS AND THEY PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

23034.01 DESCRIPTION.

- **A.** Develop and provide high performance concrete (HPC) for bridge substructures and decks when called for in the contract documents. HPC is defined as a concrete mix providing the following:
 - Desired workability.
 - Maximum 28 day permeability of 2000 coulombs for the substructure (or greater than 20 K ohm-cm surface resistivity by Wenner probe) and 1500 coulombs for the deck (or greater than 30 K ohm-cm surface resistivity by Wenner probe), as a target.
- B. Apply <u>Sections 2403</u>, <u>2412</u>, and <u>Division 41</u> of the Standard Specifications with the following modifications.

23034.02 MATERIALS.

Contractor may use other mixes than those described below provided they meet the requirements of this specification and are approved by the District Materials Engineer.

A. Substructure.

- 1. Apply the following conditions for substructure HPC mixes:
 - Coarse aggregate meeting Class 3i durability.
 - Basic water to cementitious material (w/c) ratio of 0.42, with a maximum w/c ratio of 0.45.
- 2. HPC mix for substructure may be a HPC-S or CV-HPC-S. Apply the following conditions:
 - **a.** Use one of the following cement combinations:
 - Type IS, IP or IT.
 - Type I, II or IL with a minimum of 30% weight substitution with GGBFS.
 - **b.** Fly ash substitution not to exceed 20% by weight of the cement.
 - c. Maximum total substitution of 50%
 - **d.** A high range water reducer may be used with a maximum allowable slump of 8 inches and target air content of $7.5\% \pm 2.0\%$.

B. Deck.

1. Apply the following conditions for deck HPC mixes:

- a. Use coarse aggregate meeting Class 3i durability.
- **b.** Basic w/c ratio of 0.40, with a maximum w/c ratio of 0.42.
- 2. The HPC mix for the deck may be a HPC-D or a CV-HPC-D. Apply the following conditions:
 - a. Use one of the following cement combinations:
 - Type IS, IP or IT.
 - Type I, II or IL with a minimum of 30% weight substitution with GGBFS.
 - **b.** Fly ash substitution not to exceed 20% by weight of the cement.
 - c. Maximum total substitution of 50%.
 - d. Combined aggregate gradation optimized in Zone II according to Materials I.M. 532.

C. Contractor Designed HPC.

Other mixes meeting the above requirements may be approved by the District Materials Engineer.

23034.03 CONSTRUCTION.

A. Production Concrete.

- 1. Notify the Engineer at least 48 hours prior to placement of production concrete. Use only approved HPC mixes for production concrete. If a mix other than mix described in Article DS-23034.02, A or B is to be used, ensure it has same materials, proportions, and properties (including slump, air content, and w/c ratio) as approved by the District Materials Engineer.
- 2. District Materials Engineer will obtain random verification strength samples on a minimum of one deck placement. Strength samples will be tested at District Materials Laboratory according to AASHTO T 22. A set of four cylinders will be cast, cured, and handled according to Materials I.M. 315. Three cylinders will be tested for strength at 28 days. One cylinder will be tested for permeability on a random basis by Central Materials Laboratory or Wenner probe resistivity testing by the District Materials Engineer. Permeability testing will not be evaluated on footings or drilled shafts.

B. Placing Concrete.

For the deck, placing of concrete floors shall not begin if the theoretical rate of evaporation exceeds 0.1 pounds per square foot per hour. Monitor theoretical evaporation rate at a maximum interval of every three hours during placement at a location as near the deck as possible. If the rate exceeds 0.15 pounds per square foot per hour cease placement at next location acceptable to Engineer.

C. Curing.

1. Substructure.

- **a.** Leave forms in place for 96 hours of curing.
- **b.** Apply curing protection to exposed surfaces of concrete in accordance with <u>Article 2403.03</u>, E, 4, b. Leave curing protection in place for 96 hours.

2. Deck.

- a. Leave forms in place for 168 hours of curing.
- **b.** Apply water to the burlap covering for 168 hours of continuous wet sprinkling system curing.
- **c.** Do not place curing compound on floor.
- d. Use burlap that is prewetted by fully saturating, stockpiling to drain, and covering with plastic to maintain wetness prior to placement. Place two layers of prewetted burlap on floor immediately after artificial turf drag or broom finish with a maximum time limit of 10 minutes after final finishing. Apply water to burlap covering for entire curing period by means of a continuous wet sprinkling system that is effective in keeping burlap wet during moist curing period.

e. Use evaporation retardant only in situations where equipment and/or labor delays, or environmental conditions, prevent adequate protection of concrete until prewetted burlap is in place. Have an evaporation retardant, including Confilm, Conspec Acquafilm, Evapre, or Sure Film, readily available during placement for application as directed by the Engineer. Do not work evaporation retardant into concrete surface or use as a finishing aid.

D. Cold Weather Protection.

- 1. Monitor surface temperature of concrete continuously during curing period using electronic recording type thermometers capable of recording a minimum of one reading per hour. Furnish results to Engineer in electronic format as required.
- 2. If supplemental housing and heating is used, locate temperature monitors in the concrete at the furthest and closest point from heat source. Verify maximum temperature at monitor point closest to heat source does not exceed 150°F.
- **3.** After required curing period, gradually reduce temperature of air surrounding concrete to outside air temperature according to Article 2403.03, I, of the Standard Specifications.
 - a. Substructure.

Ensure concrete and its surface temperature are maintained at a temperature of no less than 50°F for the first 120 hours after placing. Curing time will not be counted if concrete temperature falls below 50°F.

b. Deck.

- Covering with plastic will not be allowed as a substitute for continuous wet sprinkling system curing.
- 2) Ensure concrete and its surface temperature are maintained at a temperature of no less than 50°F for 168 hours of continuous wet sprinkling system curing. Curing time will not be counted if the concrete temperature falls below 50°F.

23034.04 METHOD OF MEASUREMENT.

Measurement for High Performance Concrete will be the cubic yards shown in the contract documents.

23034.05 BASIS OF PAYMENT.

Payment for High Performance Concrete will be at the contract unit price per cubic yard. Payment includes cost for testing production concrete.

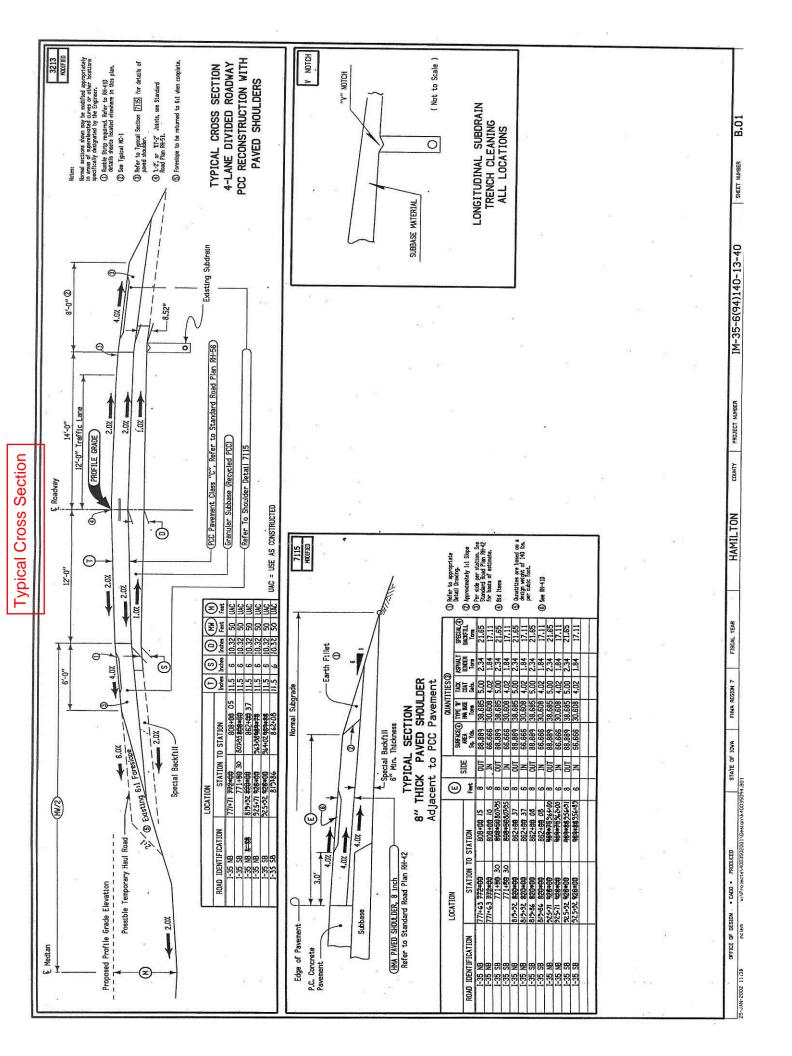
APPENDIX F COMPUTER MIX DESIGN

QMC Mix Design Problem

You are responsible for designing and proportioning a QMC paving mix for a federally funded Iowa DOT interstate paving project. As a designer you must ensure you meet all specification requirements while providing the most economical mix design.

The project cover page, typical cross section, and bid items have been provided. This information can be used to identify the location of the project, pavement width/depth/cross slope, quantity, and aggregate quality.

With the location of the project and aggregate quality known use the provided T203, aggregate map, and production gradations to select individual aggregates and then optimize their combined grading using the mix design spreadsheet. There are multiple aggregates provided for coarse, intermediate, and fine. Base your selection on proximity to the project as well as the maximum nominal aggregate top size and the ability to optimize the combined aggregate gradation. The average production gradations are provided at the bottom of each production gradation sheet and should be used when optimizing. If your selection of individual aggregates proves difficult to optimize do not be afraid to switch an aggregate out for another.


When you have completed optimizing the combined aggregate gradation, have it reviewed by the instructor. Once it is reviewed and approved you then will need to select other component materials to complete the mix design and develop proportions. Component materials can be selected directly on the mix design spreadsheet using the pull downs. When determining what component materials to use, consider the time of year (temperature) the project will be constructed at, contractor plant/equipment capabilities, paver/plant accessibility, and economics.

Make the following assumptions:

- Central mix batch plant capable of using up to three cementitious materials and three aggregates
- Pavement will be placed by slip-form paver and delivered by dump truck
- Paving will be in late July through late August
- Shoulder area exists to provide a haul road so opening time is not as critical
- Maturity will be used for opening
- Per specification, the maximum allowable substitution rates for fly ash and GGBFS are 20 and 35 percent respectively, with a total substitution limit of 40 percent
- Fly ash is 15 percent and GGBFS is 5 percent cheaper than cement
- Chemical admixtures are equal in cost and should be selected on compatibility

When you have selected component materials and completed the mix design and proportions, have it reviewed by an instructor.

1014 1014 1014 1014 1014 1014 1014 1014 1014 1015 1014 1015		Perissions Per	Shorter State Shorter Shorte			
PAVEN FISS PATCHE	matriculina and opply to construction work on this project. Provisions shall opply to construction work on this project. MILEAGE SUMMARY DIV. LOCATION BASE SEPTION Sta. Fig. 60-90 to Sta. 66-90-90 Sta. Fig. 60-90-90 Sta. Fig.	Sta. 550 Sta. 550	1998 ANDT 19.441 V.P.D. 2018 ANDT 27,631 V.P.D. 20 DHV 27,631 V.P.D. 180.00x 24 \times	102-4 102-	STA 862+08 SB STOP PROJECT STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP	## STA 771+30 SB FEET DESIGN TEAM ABRANS/CLEM/BLIVEN/GOLIBBER/JENSEN
	PCC PAVEMENT-	LTON CO.	רט ש שעטו			

1 100 - 045207 SPECIAL BACKFRL TON 12041 HAVE 2 1002 - 27307 EDWARD 1. 13. BOW1-90880W TO 2 2 2 2 2 2 2 2 2	TEM NO.	ITEM CODE	ITEM	UNIT	TOTAL	AS BUILT
Color				TON	12041	
A 1122-5500000 PATO,					28103	2691
\$ 2212-500310 PATCH, PAUL-OPPH REALR \$7						8786
6 2121-900320 JATON PORTILL-PETH HERAIR ST 44 7 2212-500330 JATON PORTILL-PETH HERAIR ST 4212 CATES 6 2207-1001115 SUPST-PED RWT, DHC DL 31, 11.5° ST 7 1212 CATES 6 2207-1001115 SUPST-PETH WT, DHC DL 31, 11.5° ST 7 1212 CATES 6 2207-1001115 SUPST-PETH WT, DHC DL 31, 11.5° ST 7 1212 CATES 6 2207-1001115 SUPST-PETH WT, DHC DL 31, 11.5° ST 7 1212 CATES 6 2207-1001100 DHL MARYT SAPEL 6 12 2409-1000 DHL MARYT SAPEL 7 12 2409-10000 DHL MARYT SAPEL 7 12 2409-100000 DHL MARYT SAPEL 7 12 2409-100000 DHL MARYT SAPEL 7 12 2409-1000000 DHL MARYT SAPEL 7 12 2409-1000000 DHL MARYT SAPEL 7 12 2409-1000000 DHL MARYT SAPEL						
7 2212-5070330 PATOH BY COUNT (REPAIR) 8 2801-001115 SINGS-FED PAY', MAR'C S. S. J. LIS'S 9 2801-001115 SINGS-FED PAY', MAR'C S. S. J. LIS'S 9 2801-001115 SINGS-FED PAY', MAR'C S. S. J. LIS'S 9 2801-001172 PUT PAY'T SAPETE 10 2801-001172 PUT PAY'T SAPETE 11 2801-001172 PUT PAY'T SAPETE 12 2801-001172 PUT PAY'T SAPETE 13 2811-0017000 CORP PIT PUT PAY'T SAPETE 14 2811-0017000 CORP PIT PET CLUY. I ST' A DA WAY. 15 2810-0017000 CORP PIT PET CLUY. I ST' A DA WAY. 16 2811-0017000 CORP PIT PET CLUY. I ST' A DA WAY. 17 2811-0017000 CORP PIT PET CLUY. I ST' A DA WAY. 18 2801-0017000 CORP PIT CLUY. I ST' A DA WAY. 18 2801-0017000 CORP. 18 2801-0017000 CO						
8 201-1001-115 SIDNS-F PCC PAYT, 6NFC EL 3], 11.5° 97 3201-990000 DAIL TY MANAGEMENT CONDRETE 97 24799 32.55 10 203-990000 DAIL TY MANAGEMENT CONDRETE 97 24799 32.55 10 203-991000 DAIL TY MANAGEMENT CONDRETE 98 2410-1007000 DAIL TY MANAGEMENT CONDRETE 99 312 7752 10 2417-1007000 DORR PIPE DLY, 15°, 80-8-4-49 10 2417-1007000 DORR PIPE DLY, 15°, 80-8-4-49 10 2417-1007000 DORR PIPE DLY, 15°, 80-8-4-49 10 2417-1007000 DORR PIPE DLY, 15°, 80-8-4-49 10 252-10-1000 DAIL TY MANAGEMENT SY 113792 10 252-10-1000 DAIL TY MANAGEMENT SY 113792 10 252-10-1000 DAIL TY LOSSE 10 253-10-1000 DAIL TY LOSSE 10 253-10-1000 DAIL TY MANAGEMENT SY 113792 10 252-10-1000 DAIL TY MANAGEMENT SY 113792						
SQ SQ SQ SQ SQ SQ SQ SQ						
10 201 - 201 201	9 23	01-6911722	PCC PAY'T SAMPLE		1	
1.203-991-10000 PMA APV - SAMPLE 1.5 1.512-0.5					24709	22,59
13 2477-1007000 CORR PIPE COLV. 5" As JAMAY IF 234 46. 14 2417-599000 REVER DIPE-GUARD EACH 2 2 7 13792 3923-1					1	\$120
12 217-599000 PEVELD PIPE-GUARD EACH 2 1 1 1 1 1 1 1 1 1		17-1007000	TOOD DIDE ON A 18 0 - A			
S S S S S S S S S S	14 24	17-5895000	BEVELED PIPE+GUARD			
16 2516-6910000 SAFETY CLOSURE						
17 2520-359001 FIELD LARGRATORY						
11 1222-628000 RENEW RANK MTERORNE EACH 910 124 1222-628000 RENEW PAT Y HANKE RANK 910 124 1222-628000 RANKE RANK MTERORNE EACH 910 124 1222-628000 RANKE RANK MTERORNE EACH 16 17 1222-628000 RANKE RANK MTERORNE EACH 16 17 16 17 17 17 17 17						
20 2527-9683110 PANIMED PAY'T MAK, WATERBORNE STA 21 2527-9683103 PANIMED SYMBOL-LEGEND, WATERBORNE STA 31 37 37 37 37 37 37 37						\$30,900
21 2527-263339 REPOVABLE TARE MARK 31 31 257 2527-263339 PANT MARK RIVD 57A 1125 1574 22 2527-263339 PANT MARK RIVD 57A 1125 1574 22 2527-263319 PANT MARK RIVD EACH 16 16 17 22 2529-263390 PANT MARK RIVD EACH 16 17 25 2528-4983200 PANT MARK RIVD EACH 16 17 25 2528-4983200 PANT MARK RIVD EACH 16 17 25 2528-4983200 PANT MARK RIVD EACH 16 17 25 2528-263390 PANT MARK RIVD EACH 16 17 25 2528-26400047 PEP ATTENNATIOR, SAND-FILLED BARREL, RE-73 EACH 2 2 2528-26400047 PEP ATTENNATIOR, SAND-FILLED BARREL, RE-73 EACH 2 2 2528-26400047 PEP ATTENNATIOR, SAND-FILLED BARREL, RE-73 EACH 2 2 2528-26400047 PEP ATTENNATIOR, SAND-FILLED BARREL, RE-73 EACH 2 2 2528-26400107 PEP ATTENNATIOR, SAND-FILLED BARREL, RE-73 EACH 2 2 2 2 2 2 2 2 2						1266
22 2527-263190 PAINTED SYMBOL-LEGEND, WATERDONNE STA 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 1573 1125 11						
22 2527-963190 PAVT MARK RWD FACH 16 157 21 2527-963190 STAPL LEEDER RWD FACH 16 157 22 2528-9493200 MONITOR M. VINDIDENT RESPONSE COLV 12.0 23 2528-9493200 MONITOR M. VINDIDENT RESPONSE COLV 12.0 24 2528-9400047 TEPP REVIALL (ROSSOVER BARRICADE FACH 2 25 2528-9400047 TEPP RATICHARDIN, SAND-FILLED BARREL JRE-73 FACH 2 25 2528-9400047 TEPP RATICHARDIN, SAND-FILLED BARREL JRE-73 FACH 5 26 2528-9400047 TEPP RATICHARDIN, SAND-FILLED BARREL JRE-73 FACH 5 27 2528-940017 TEPP FLOOD, IDENTIFY RESPONSE FACH 7 28 2528-940017 TEPP FLOOD, IDENTIFY RESPONSE FACH 7 29 2528-940017 TEPP FLOOD, IDENTIFY RINGH, BY AREA 5 21 2528-9445110 RAFE TOLONTON TEPP FLOOD, TEPP FINISH, BY AREA 5 21 2529-9507010 PATCH, PUL-DEPTH FINISH, BY AREA 5 21 2529-9507010 PATCH, PUL-DEPTH FINISH, BY COUNT FACH 15 25 2539-9480005 WOBILIZATION TEPP FINISH, BY COUNT FACH 15 25 2539-9480005 WOBILIZATION TEPP FINISH, BY COUNT FACH TEPP FINISH, BY						
22 2237-923109 SYMBOL-LECEND RWYD EACH 16			PAV'T MARK RMVD			
25 2528-4903200 MONITOR WYIND DENT RESPONSE CAPA 17.2 Capaborate Capa						16
27 2528-9400004 TEMP ATTENNIOR, SAND-FILLED BARREL JRE-73 EACH 2 2 2 2 2 2 2 2 2						169
28 2528-8400107 TEPP BARRIER RAIL						2
292 2529 440110 THE FLOOR, ISHTING LUMINAIRE						- 6
30 2228-8445110 RAFFIC CONTROL R						
31 2228-8445 2 FLAGGER TATCH, FULL-DEPTH FINISH, BY AREA SY 187 686 32 2229-5070110 PATCH, FULL-DEPTH FINISH, BY COUNT EACH 15 686 34 2229-5170120 PATCH, FULL-DEPTH FINISH, BY COUNT EACH 15 686 36 32 233-4980005 MGBILIZATION LS 1 \$157000 35 2801-2834100 MA.CH AGRE 10.8 33 3201-2834100 MA.CH AGRE 10.8 33 37 2801-2834100 MA.CH AGRE 10.8 36 37 2801-2834100 MA.CH AGRE 10.8 36 38 2801-2834100 MA.CH AGRE 10.8 36 38 2801-2834100 MA.CH AGRE 11 C AGRE 11 AGRE AGRE 11 AGRE AGR						
32 2529-5070110 PATCH, FULL-DEPTH FINISH, BY AREA 33 2529-5070120 PATCH, FULL-DEPTH FINISH, BY COMT 44 2529-8174010 SUBBASE, (PATCH) (ITEM NOT USED) 57 862 58 2533-4800005 NOBILIZATION 58 2501-2634010 MACH 59 2501-2634010 MACH 59 2501-2635010 SEED-FERTILIZE 59 2501-263501 SEED-FERTILIZE 50 78 2501-263501 SEED-FERTILIZE 60 2501-263501 SEED-FERTILIZE 60 2501-263501 SEED-FERTILIZE 61 8 30 2501-263501 SEED-FERTILIZE 61 8 30 2501-263501 SEED-FERTILIZE 61 8 30 2501-263501 SEED-FERTILIZE 62 8 2501-2642100 STABILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 63 2501-2642100 STABILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 64 2 2501-2642100 STABILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 65 26 2 2501-2642100 STABILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 65 26 2 2501-2642100 STABILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 66 2 2501-2642100 STABILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 67 8 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 68 2501-2642100 STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 69 27 8 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 70 8 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 71 8 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 72 2500 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 73 2501-2642100 STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 74 2 2502-0000003 SILT FERCE (TYPE NOT USED) 75 2600 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 2500 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 2500 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 250 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 250 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 250 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 250 CCC STABLIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 250 CCC STABLIZE CROP - SEED-FERTILIZE CROP - SEED-FERTILIZE (TYPE NOT USED) 75 250 CCC STABLIZE CROP - SEED-FERTILIZE CROP - SEED-FERTIL	31 252	28-8445112				
33 2529-5070120	32 252	29-5070110	PATCH, FULL-DEPTH FINISH, BY AREA			
35 2833-4980005 MOBILIZATION	33 252	29-5070120	PATCH, FULL-DEPTH FINISH, BY COUNT			86
36 2601-2634110 MLCH	34 252	29-8174010			862	0
37 2501-2858041 SEED-HERTILIZE 30.0 31.0 32.0						\$137,000
38 2601-2842100 STABILIZE CROP - SEED-FERTILIZE (TTEM NOT USED) SO 78 CO						
39 2601-2642100 STABILIZE CROP - SEED-FERTILIZE (TTEM NOT USED) ACRE 11 C 40 2602-26030020 SILT FENCE LF 2500 2595 42 2602-0000020 SILT FENCE LF 2500 2595 42 2602-0000030 SILT FENCE - DITCH CHECKS LF 2400 1522 2402-0000030 SILT FENCE - DITCH CHECKS LF 2400 1522 2402-0000030 SILT FENCE - DITCH CHECKS LF 2400 1522 2402-0000030 SILT FENCE - DITCH CHECKS LF 2400 1522 2402-0000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2402-0000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2402-0000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-0000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 24000 C 2403-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 246-130 IS83-000030 SILT FENCE - DITCH CHECK (TTEM NOT USED) LF 188						
40 2601-2643110 MATER-SDU/SPEC DITCH CNIT/SLOPE PROTECT (ITEM NOT USED) Moral 3.9 0			STABILIZE CROP - SEED+FERTILIZE (ITEM NOT USED)			
12802-0000000 SILT FENCE						0
43 2602-0000060 RMVL OF SILT FENCE					2500	2295
44 2802-0000070 RPM. OF SILT FENCE-DITCH CHECK (ITEM NOT USED)						1522
44.5						0
45. PATCH, PARTIAL-DEPTH PCC FINISH BY COUNT EACH 186 183 45.5. TRAFFIC CONTROL - PARTIAL DEPTH PATCHING L.S I \$935 46. CORRUGATED PIPE CULVERT, 18 IN. LF 188 188 46.5. BEVELED PIPE & GUARD, 18 IN. LF 188 188 46.5. REMOVE & REPLACE 24" RCP APRON LF 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Z 0000010				
45.5			PATCH, PARTIAL-DEPTH PCC FINISH BY COUNT			
46 CORRUGATED PIPE CULVERT, IB IN. LF 188 188 188 184 185 18				COLUMN TO SERVICE AND ADDRESS OF THE PARTY AND	104	THE RESERVE OF THE PARTY OF THE
##5 BEVELED PIPE & GUARD, 18 IN. ##5 CULVERT, CONCRETE RDWY, PIPE 24" ##7 CULVERT, CONCRETE RDWY, PIPE 24" ##75 REMOVE & REPLACE 24" RCP APRON ##8 TRAFFIC CONTROL - MEDIAN CROSSOVERS ##85 MOBILIZATION-CROSSOVERS ##85 MOBILIZATION-PCC REMOVAL ##85 LS I \$10,000 ##85 MOBILIZATION-PCC REMOVAL ##85 LS I \$10,000 ##85 LS I \$10,000 ##85 LS I \$3,500 ##85 LS I \$3,500 ##85 LS I \$1,000 ##85 LF JOINT ASSEMBLY ##86 PACH 3 3 3 ##86 LF JOINT ASSEMBLY ##86 L			CORRUGATED PIPE CULVERT, 18 IN.		188	
A75			BEVELED PIPE & GUARD, 18 IN.	EACH		1
TRAFFIC CONTROL - MEDIAN CROSSOVERS			CULVERI, CONCRETE ROWY, PIPE, 24"		8	- 8
48.5						1
49 MOBILIZATION - PCC REMOVAL			MORILIZATION-CROSSOVERS			
A9.5	49					
SOC REMOVE & REINSTALL DELINEATORS EACH 90 105	49.5				3	
SAWCUT						
INSIACL & REMOVE TRAFFIC SIGNS S \$1,00						
SZ			INSTALL & REMOVE TRAFFIC SIGNS			\$1,100
S25						\$21,431.
S3						
SHOULDER REPAIR					11006 (47	
S4	53.5					
S			PAVEMENT SMOOTHNESS INCENTIVE			
SY 67,881.307 67,881.307 55.55 SPECIAL BACKFILL TON 5,428.000 5,428.56 TRAFFIC CONTROL LS 1 19,240.56 1,55 1 1,55 1 1,55 1 1,55 1 1,55					1	
55.5 SPECIAL BACKFILL TON 5.428.000 5.428.					67,881.307	
1				TON		5,428.
57 NON-COMPLYING TRAFFIC CONTROL EACH -750.000 -750.			POL PANEMENT THICKNESS THEFATIVE		1	19,240.
- 750.000 - 750.						<u>67,891.</u>
	,		TOO CONTRIBE TOUR TO CONTROL	EACH	- 750.000	-750.
			off an an			

October 18, 2005 Supersedes April 19, 2005

Matls. IM T203

		RECENTLY ACTIVE	AGGREC	SATE	SOURC	ES	BULK	DUI	R	FR	ICT	N
CODE	OPERATOR	SOURCE NAME	LOC	ATIO	N		SSD SpGr	PC		HM A		BEDS E
38 A38504	GRUNDY DIST 1 CARLSON MATERIALS CO	SAND & GRAVEL HERONIMOUS	SE	35	TO88	R17W	2.63		X			
39 A39502 A39506	GUTHRIE DIST 4 BECKER GRAVEL CO BUTTLER CONST CO	SAND & GRAVEL HEILAND BAYARD	SW NE	29 22	TO79 TO81	R30W R32W				4 4	4 4	
40 A40006	HAMILTON DIST 1 MARTIN MARIETTA	CRUSHED STONE GRANDGEORGE SAND & GRAVEL	SE	18	TO89	R25W						
A40512	BECKER GRAVEL CO	ANDERSON	ingleiggen een de	12	TO87	R26W		Silving November	- Water Spatial Control		20 <u>400</u> 000000000000000000000000000000000	
41 A41002	HANCOCK DIST 2 BASIC MATERIALS CORP	CRUSHED STONE GARNER NORTH	SE	11	TO95	R24W	2.77 2.77	3iB 3i		4 4	4	1 - 4
A41004	BASIC MATERIALS CORP	GARNER SOUTH-WIELAND SAND & GRAVEL	NW	13	TO95	R24W	2.77 2.77	3iB 3i		4 4	4	1 - 4
A41504 A41506 A41510	HANCOCK COUNTY HANCOCK COUNTY NUCKOLL'S CONCRETE SERVICES INC	HUTCHINS KLEMME BRITT	E2	27 26 34	TO96 TO95 TO96	R26W R24W R26W	DWU	2	Х	3	4 4 3	
A41518	HANCOCK COUNTY	AUSTIN	NE	11	TO97	R25W						
42 A42002	HARDIN DIST 1 MARTIN MARIETTA	CRUSHED STONE ALDEN	NW	20	TO89	R21W	2.56	3i		4	4	0, 1, 3
A42004	GERHKE QUARRIES INC	GIFFORD SAND & GRAVEL	NW	04	TO86	R19W	DWU	3			5	0, 1
A42502	WELDON BROS CONST CO	IOWA FALLS	NW	20	TO89	R20W	2.65	2	,,	4	4	
A42510	MARTIN MARIETTA	JANSSEN	SE	34	TO89	R20W	2.68 2.65 2.65		X	4	4	
A42512	HARDIN AGGREGATES INC	GIFFORD	SW	31	TO87	R19W	2.66		$\hat{\mathbf{x}}$	4	4	
A42524 A42528	BECKER GRAVEL CO BECKER GRAVEL CO	GRIFFEL LLOYD	SE	31 04	TO89 TO86	R19W R19W	DWU			3 4	3 4	

Coarse Aggregate Production Gradations

Material D67 Concrete Stone 2004 Certified Aggregate Source Aiden 2004 Certified Aggregate Froducer Martin 4 #8 #200 Date Lab # 37.5 26 10 5 15 100 11/2* 1* 12* 9.5 mm 4.75 mm 2.36 mm 75 mm 15 10 30-Mar 15 100 100 100 66 40 77 0.8 0.7 y 11-Apr 16 100 100 100 66 40 77 0.8 0.7 y 12-Apr 17 100 100 66 40 77 0.8 0.7 y 12-Apr 18 100 100 96 56 22 22 0.3 0.3 y 12-Apr 19 100 100 96 42 24 20 0.3 y 28-May 43 100 100	aterial	De7 Conci	č	Γ	, 000	;	•				
Lab # 37.5 25 19 12.5 9.5 mm 4.75 mm 2.36 mm 7.5 μm 1.6 mm 1.12" 1 100 90 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	urce :	Alden	rete Ston	Φ.	2004	Certified	1 Aggrega	ate e			
Lab # 37.5 25 19 12.5 9.5 mm 4.75 mm 2.35 mm 75 µm -Mar 15 100 100 66 40 77 08 0.3 -Mar 16 100 100 100 66 40 77 0.8 -Apr 19 100 100 99 54 22 2.2 0.3 0.3 -Apr 19 100 100 99 54 26 22 0.3 0.3 -Apr 44 100 100 99 54 22 2.2 0.3 0.3 -Jun 45 100 100 99 49 22 2.2 0.3 0.3 -Jun 74 100 100 99 45 20 0.8 -Jun 74 100 100 99 44 20 0.8 -Jun 75 100 100 99 44 20 0.8 -Jun 76 100 100 99 54 20 0.8 -Jun 77 100 100 99 54 20 0.8 -Jun 77 100 100 99 54 20 0.8 -Jun 78 100 100 99 54 20 0.8 -Jun 79 100 100 99 54 20 0.8 -Jun 70 100 99 55 32 0.9 -Jun 100 100 99 54 33 2.6 -Jun 100 100 99 54 33 2.6 -Jun 100 100 99 54 33 2.6 -Jun 100 100 99 54 34 3.7 -Jun 100 100 99 54 30 0.9 -Jun 100 100 98 54 30 0.9 -Jun 100 100 0.9 -Jun 100 0.0 -Jun 10	oducer	l	rietta 1 1/2"] =	3/4"	1/2"	3/8"	#	\$ #	#200	
15 100 100 100 65 29 2.3 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ıte	Lab#	37.5	25	19 100 90	12.5	9.5 mm 55 20	4.75 mm 10 0	2.36 mm 5 0	75 µm 1.5 0	
16 100 100 100 66 40 7.7 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30-Ma	15	100	100	100	62		23	0.3	0.3	>
17 100 100 99 56 24 2.4 0.3 18 100 100 100 49 21 1.9 0.3 20 100 100 99 54 22 2.2 0.3 20 100 100 98 45 24 2.0 44 100 100 96 45 27 3.6 0.4 45 100 100 96 45 23 2.6 0.4 45 100 100 96 42 20 0.8 77 100 100 96 42 20 0.8 77 100 100 96 42 20 0.8 77 100 100 96 44 20 0.9 77 100 100 96 44 20 0.9 77 100 100 96 44 20 0.9 77 100 100 97 43 23 1.0 0.4 77 100 100 97 43 23 1.0 0.4 77 100 100 97 54 28 2.7 0.2 155 100 100 99 54 33 2.6 0.2 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.6 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 160 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3	31-Ma		100	100	100	99		7.7	0.8	0.7	~ >
18 100 100 49 21 1.9 0.3 20 100 100 99 49 22 2.2 0.3 42 100 100 99 54 26 2.2 0.3 43 100 100 99 54 26 2.2 0.3 44 100 100 96 55 27 3.6 0.4 45 100 100 98 45 22 2.2 0.3 74 100 100 96 42 20 0.8 75 100 100 96 42 20 0.8 76 100 100 96 42 20 0.8 77 100 100 96 44 24 0.9 77 100 100 96 44 24 0.9 78 100 100 97 43 23 1.0 79 15 100 100 99 58 34 1.8 70 100 100 99 55 3.2 71 100 100 99 55 3.2 71 100 100 99 55 3.2 72 100 100 99 56 33 2.5 73 100 100 99 55 33 2.5 74 100 100 98 54 28 4.7 75 100 100 98 55 3.2 76 100 100 98 55 33 2.5 77 100 100 98 54 20 1.4 78 100 100 98 54 20 1.4 79 100 100 98 51 28 1.4 70 100 98 51 28 1.4 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 28 0.9 70 100 98 51 27 2.3 70 100 100 98 51 28 0.9 70 100 98 51 27 2.3 70 100 98 51 20 20 20	12-Ap		100	100	66	56		2.4	0.3	0.3	· >
19 100 100 99 49 · 22 2.2 0.3 42 100 100 99 54 26 2.2 0.3 43 100 100 98 45 24 20 0.6 44 100 100 96 55 27 3.6 0.4 45 100 100 96 42 20 0.8 0.4 74 100 100 96 42 20 0.8 0.4 75 100 100 96 42 20 0.8 0.4 77 100 100 96 44 24 0.9 0.5 76 100 100 97 43 23 1.0 0.4 77 100 100 96 44 24 0.9 0.5 76 100 100 97 43 23 1.0 0.4 77 100 100 99 58 34 1.8 0.2 155 100 100 99 56 33 2.5 0.2 167 100 100 99 55 33 2.5 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 98 54 26 0.2 169 100 100 98 54 26 0.2 169 100 100 98 54 20 0.2 169 100 100 98 54 20 0.2 169 100 100 98 54 20 0.2 190 100 98 54 20 0.3 191 100 100 98 51 28 0.4 192 100 100 98 51 28 0.9 193 100 100 98 51 28 0.9 194 100 100 98 51 28 0.9 195 100 100 98 51 28 0.9 196 100 100 98 51 28 0.9 197 100 100 98 51 28 0.9 198 100 100 98 51 28 0.9 199 100 100 98 51 28 0.9 100 100 98 51 27 2.5 0.4	13-Ap		100	100	100	49		1.9	0.3	0.3	· >
20 100 100 99 54 26 2.2 0.3 42 100 100 98 45 24 2.0 0.6 44 100 100 97 52 29 3.5 0.4 45 100 100 98 45 22 1.2 0.3 73 100 100 96 42 22 1.2 0.3 74 100 100 96 42 20 0.8 0.4 77 100 100 96 41 21 0.9 0.5 77 100 100 96 44 20 0.0 77 100 100 96 44 24 0.9 0.3 154 100 100 97 43 23 1.0 0.4 77 100 100 99 54 28 2.7 0.2 165 100 100 99 55 33 2.5 0.2 168 100 100 99 55 31 3.2 0.2 169 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 169 100 100 98 54 34 3.7 0.3 169 100 100 98 54 26 1.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 169 100 100 98 55 31 2.5 0.2 169 100 100 98 54 26 1.2 0.2 190 100 100 98 54 26 1.2 0.2 191 100 100 98 51 22 0.9 192 100 100 98 51 28 0.9 193 100 100 98 51 22 0.9 194 100 100 98 51 22 0.9 195 100 100 98 51 22 0.9 197 100 100 98 51 22 0.9 198 100 100 98 51 22 0.9 199 100 100 98 51 22 0.9 100 100 98 51 22 0.9 100 100 98 51 22 0.9 100 100 98 51 28 0.9 100 100 98 51 22 0.9 100 100 98 51 27 2.5 0.4	14-Ap		100	100	66	49	-0	2.2	0.3	0.3	· >
42 100 100 98 45 24 2.0 0.6 43 100 100 96 55 27 3.6 0.4 44 100 100 97 52 29 3.5 0.4 45 100 100 98 45 22 1.2 0.3 73 100 100 96 42 22 1.2 0.3 74 100 100 96 42 20 0.8 0.4 77 100 100 96 41 21 0.9 0.5 77 100 100 96 44 20 0.9 0.3 154 100 100 97 43 23 1.0 0.4 77 100 100 97 43 23 1.0 0.4 77 100 100 99 54 28 2.7 0.2 155 100 100 99 55 33 2.5 0.2 168 100 100 99 55 31 3.2 0.2 168 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 169 100 100 98 54 26 1.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 3.2 0.2 169 100 100 98 55 31 0.2 169 100 100 98 55 31 0.2 169 100 100 98 55 31 0.2 169 100 100 98 55 31 3.2 17 20 0.2 189 100 100 98 54 26 1.2 189 100 100 98 55 31 2.5 0.4 191 100 100 98 51 22 1.4 0.2 192 100 100 98 51 28 0.9 100 100 98 51 28 0.9 100 100 98 51 28 0.9 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4	16-Ap		100	100	66	54		2.2	0.3	0.8	`>
43 100 100 96 55 27 3.6 0.4 44 100 100 97 52 29 3.5 0.4 46 100 100 98 45 23 2.6 0.4 46 100 100 96 42 22 1.2 0.3 73 100 100 96 42 20 0.8 0.4 74 100 100 96 41 21 0.9 0.5 75 100 100 96 44 20 0.8 0.4 77 100 100 97 43 23 1.0 0.4 77 100 100 97 43 23 1.0 0.4 77 100 100 99 54 28 2.7 0.2 154 100 100 99 54 28 2.7 0.2 155 100 100 99 54 28 0.7 156 100 100 99 55 33 2.5 0.2 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 98 55 33 2.5 0.2 169 100 100 98 55 33 0.9 190 100 98 54 20 1.4 0.2 191 100 100 98 55 33 0.9 192 100 100 98 51 28 0.4 193 100 100 98 55 33 0.9 194 100 100 98 55 33 0.9 195 100 100 98 55 33 0.9 196 100 100 98 55 33 0.9 197 100 100 98 55 33 0.9 198 100 100 98 55 0.4 199 100 100 98 55 0.4 190 100 98 55 0.7 190 100 98 51 27 2.5 0.4 190 100 100 98 51 27 2.5 0.4 190 100 100 98 51 27 2.5 0.4 190 100 100 98 51 27 2.5 0.4 190 100 100 98 51 27 2.5 0.4 190 100 100 98 51 27 2.5 0.4 190 100 100 98 51 27 2.5 0.4	27-Ma		100	100	86	45		2.0	9.0	0.5	>
44 100 100 97 52 29 3.5 0.4 45 100 100 98 45 23 2.6 0.4 46 100 100 96 42 22 1.2 0.3 73 100 100 96 42 20 0.8 74 100 100 96 42 20 0.8 75 100 100 96 41 21 0.9 76 100 100 97 44 24 0.9 77 100 100 97 49 28 2.7 0.2 154 100 100 97 53 25 0.5 155 100 100 99 54 28 2.7 0.5 156 100 100 99 54 28 0.7 0.6 157 100 100 99 55 33 2.5 0.2 168 100 100 99 55 33 2.5 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 99 55 33 2.5 0.2 169 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 0.9 170 100 98 54 34 0.9 189 100 100 98 54 0.0 189 100 100 98 54 0.0 190 100 98 54 0.0 190 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 28 0.9 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 0.3	28-Ma		100	100	96	55		3.6	0.4	0.3	>
45 100 100 98 45 23 2.6 0.4 46 100 100 95 42 22 1.2 0.3 73 100 100 96 42 20 0.8 0.4 74 100 100 96 42 20 0.8 0.4 75 100 100 96 41 21 0.9 0.5 76 100 100 96 44 24 0.9 0.5 77 100 100 96 44 24 0.9 0.3 153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 155 100 100 99 54 28 0.7 0.5 156 100 100 99 55 3.2 0.5 167 100 100 99 55 33 2.5 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 98 54 34 0.3 189 100 100 98 54 34 0.3 190 100 98 54 26 1.2 0.2 191 100 100 98 54 26 0.3 192 100 100 98 54 26 0.3 193 100 100 98 55 31 3.2 194 100 100 98 54 26 0.3 195 100 100 98 54 26 0.3 197 100 100 98 54 20 0.3 198 100 100 98 54 20 0.3 199 100 100 98 54 20 0.3 190 100 98 54 20 0.3 190 100 98 54 20 0.3 190 100 98 51 27 2.3 0.3 190 100 100 98 51 27 2.3 190 100 100 100 98 51 27 2.3 190 100 100 100 98 51 27 2.3 190 100 100 100 100 100 100 100 100 100	1-Ju		100	100	26	52		3.5	0.4	0.4	>
46 100 100 95 42 22 1.2 0.3 73 100 100 96 42 20 0.8 0.4 74 100 100 96 41 21 0.9 0.5 75 100 100 96 41 21 0.9 0.5 76 100 100 97 43 23 1.0 0.4 77 100 100 97 43 23 1.0 0.3 153 100 100 97 43 23 1.0 0.3 154 100 100 97 43 23 0.0 155 100 100 99 54 28 4.7 0.6 156 100 100 99 54 28 4.7 0.6 157 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.6 0.2 169 100 100 98 54 34 3.7 0.3 169 100 100 98 54 26 1.2 0.2 190 100 100 98 55 31 0.9 191 100 100 98 51 27 2.5 0.4 192 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 100 98 51 27 2.5 100 100 100 98 51 27 2.5 100 100 100 98 51 27 2.5 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.5 100 100 100 98 51 27 2.5 100 100 100 98 51 27 2.3 100 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.3 100 100 100 100 98 91 20 20 20 20 20 20 20 20 20 20 20 20 20	3-Jui		100	100	86	45		2.6	0.4	0.3	>
73 100 100 96 42 20 0.8 0.4 74 100 100 95 40 20 1.0 0.5 75 100 100 96 41 21 0.9 0.5 76 100 100 97 43 23 1.0 0.4 77 100 100 96 44 24 0.9 0.3 153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 155 100 100 99 55 3.2 0.5 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 99 55 31 3.2 0.2 169 100 100 99 55 31 3.2 0.2 169 100 100 99 55 31 0.2 190 100 98 54 26 1.2 0.2 191 100 100 98 51 28 1.4 0.2 192 100 100 98 51 28 0.9 193 100 100 98 51 28 0.9 194 100 100 98 51 28 0.9 195 100 100 98 51 28 0.9 197 100 100 98 51 28 0.9 198 100 100 98 51 28 0.9 199 100 100 98 51 28 0.9 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3	4-Jui		100	100	92	42	22	1.2	0.3	0.2	>
74 100 100 95 40 20 1.0 0.5 75 100 100 96 41 21 0.9 0.5 76 100 100 97 43 23 1.0 0.4 77 100 100 96 44 24 0.9 0.3 153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 155 100 100 99 54 33 2.6 0.2 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 99 55 31 3.2 0.2 169 100 100 99 55 31 3.2 0.2 189 100 100 98 54 26 1.2 0.2 190 100 98 54 26 1.4 0.2 191 100 100 98 51 28 1.4 0.2 192 100 100 98 51 28 0.9 192 100 100 98 51 28 0.9 100 100 98 51 28 1.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3	lo-9ul		100	100	96	42	20	0.8	0.4	0.3	>
75 100 100 96 41 21 0.9 0.5 76 100 100 97 43 23 1.0 0.4 77 100 100 96 44 24 0.9 0.3 153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 156 100 100 99 58 34 1.8 0.2 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.6 0.2 169 100 100 99 55 33 0.2 169 100 100 99 55 31 3.2 189 100 100 99 55 31 3.2 189 100 100 98 54 26 1.2 0.2 190 100 98 54 26 1.2 0.2 191 100 100 98 54 26 1.2 192 100 100 98 51 28 0.9 193 100 100 98 51 28 0.9 194 100 100 98 51 28 0.9 195 100 100 98 51 28 0.9 197 100 100 98 51 28 0.9 198 100 100 98 51 28 0.9 199 100 100 98 51 27 2.5 100 100 98 51 27 2.5 100 100 98 51 27 2.5 100 100 98 51 37 0.3 100 100 98 51 27 2.5 100 100 98 51 37 0.3 100 100 98 51 37 0.3 100 100 98 51 37 0.3 100 100 98 51 37 0.3 100 100 98 51 37 0.3	7-Jui		100	100	92	40	20	1.0	0.5	0.4	>
76 100 100 97 43 23 1.0 0.4 77 100 100 96 44 24 0.9 0.3 153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 155 100 100 99 58 34 1.8 0.2 157 100 100 99 55 3.2 0.5 168 100 100 99 55 31 3.2 0.2 168 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 189 100 100 98 54 34 0.2 190 100 98 54 34 0.2 191 100 100 98 54 0.2 192 100 100 98 51 22 1.4 0.2 193 100 100 98 52 23 0.9 0.2 194 100 100 98 52 23 0.9 195 100 100 98 52 23 0.9 107 100 100 98 51 27 2.5 108 100 100 98 50 27 2.5 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 0 1.48 6.28 5.01 1.39 0.15 100 100 100 98 51 27 2.3 100 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 100 98 51 27 2.3 100 0 1.48 6.28 5.01 1.39 0.15	12-Jui		100	100	96	4	21	0.9	0.5	0.4	>
77 100 100 96 44 24 0.9 0.3 153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 155 100 100 99 54 28 0.7 0.5 156 100 100 99 58 34 1.8 0.2 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 33 2.5 0.2 168 100 100 99 55 33 2.5 0.2 169 100 100 98 54 34 3.7 0.3 189 100 100 98 54 34 0.2 190 100 98 54 26 1.2 0.2 190 100 100 98 51 22 1.4 0.2 191 100 100 98 51 22 0.9 0.2 192 100 100 98 51 27 2.5 0.4 194 100 100 98 52 23 0.9 0.2 195 100 100 98 51 27 2.5 0.4 197 100 100 98 51 27 2.5 0.4 198 100 100 98 52 23 0.9 0.2 199 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.8 100 100 0 1.48 6.28 5.01 1.39 0.15 0.8	ე <u>-</u> -9		100	100	97	43	23	1.0	0.4	0.3	>
153 100 100 97 49 28 2.7 0.2 154 100 100 99 54 28 4.7 0.6 155 100 100 99 54 28 4.7 0.6 156 100 100 99 58 34 1.8 0.2 157 100 100 99 54 33 2.6 0.2 167 100 100 99 55 33 2.5 0.2 168 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 189 100 100 98 54 26 1.2 0.2 190 100 100 98 54 26 1.2 0.2 191 100 100 98 51 22 1.4 0.2 192 100 100 98 52 23 0.9 0.2 193 100 100 98 52 23 0.9 0.2 194 100 100 98 52 23 0.9 0.2 195 100 100 98 55 23 0.9 0.2 197 100 100 98 57 2.5 0.4 198 100 100 98 50 27 2.5 0.4 199 100 100 98 50 27 2.5 0.4 190 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3	7-Jr		100	100	96	44	24	0.9	0.3	0.3	>
154 100 100 99 54 28 4.7 0.6 155 100 100 97 53 25 3.2 0.5 156 100 100 99 58 34 1.8 0.2 157 100 100 99 58 34 0.8 167 100 100 99 55 33 2.6 0.2 168 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 189 100 100 98 54 26 1.2 0.2 190 100 100 98 51 22 1.4 0.2 191 100 100 98 51 22 0.9 0.2 192 100 100 98 51 27 2.5 0.4 194 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9 100 100 98 51 27 2.5 0.9	3-Se	•	100	100	26	49		2.7	0.2	0.2	>
155 100 100 97 53 25 3.2 0.5 156 100 100 99 58 34 1.8 0.2 157 100 100 99 58 34 1.8 0.2 166 100 100 99 54 33 2.6 0.2 167 100 100 99 55 33 2.5 0.2 168 100 100 98 55 31 3.2 0.2 169 100 100 98 54 26 1.2 0.2 189 100 100 98 51 22 1.4 0.2 190 100 98 52 23 0.9 191 100 100 98 52 23 0.9 192 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4	8-Se		100	100	66	54		4.7	9.0	0.4	>
156 100 100 99 58 34 1.8 0.2 157 100 100 99 54 33 2.6 0.2 166 100 100 98 55 33 2.5 0.2 168 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 189 100 100 98 54 26 1.2 0.2 190 100 100 98 51 22 1.4 0.2 191 100 100 98 51 22 0.9 192 100 100 98 51 22 0.9 194 100 100 98 51 28 0.9 197 20 0.9 108 0.15 0.0	9-Se	•	100	100	97	53		3.2	0.5	0.4	>
157 100 100 99 54 33 2.6 0.2 166 100 100 98 58 35 2.3 0.2 167 100 100 99 55 33 2.5 0.2 168 100 100 98 54 34 3.7 0.3 188 100 100 98 54 26 1.2 0.2 189 100 100 98 51 22 1.4 0.2 190 100 100 98 51 28 1.4 0.2 191 100 100 98 51 28 0.9 0.2 192 100 100 98 51 28 0.9 0.2 194 100 100 98 51 28 0.9 0.2 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4	29-Sej		100	100	66	58		1.8	0.2	0.2	>
166 100 100 98 58 35 2.3 0.2 167 100 100 99 55 33 2.5 0.2 168 100 100 98 54 34 3.7 0.2 169 100 100 98 54 26 1.2 0.2 189 100 100 98 51 22 1.4 0.2 190 100 98 51 28 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 96 46 20 0.8 0.15 100 100 96 40 20 0.8 0.15 100 100 96 40 20	30-Se	•	100	100	66	54		2.6	0.2	0.2	>
167 100 100 99 55 33 2.5 0.2 168 100 100 98 54 34 3.7 0.2 169 100 100 98 54 26 1.2 0.2 188 100 100 98 54 26 1.2 0.2 189 100 100 98 51 28 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 96 50 20 0.08 0.15 0.2 100 100 96 50 0.08 0.09 0.09 0.08 100 100 0	1-0	•	100	100	98	58		2.3	0.2	0.2	>
168 100 100 99 55 31 3.2 0.2 169 100 100 98 54 34 3.7 0.3 188 100 100 98 54 26 1.2 0.2 189 100 100 98 51 22 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 96 50 20 0.8 0.15 0.2	4-00-	•	100	100	66	55		2.5	0.2	0.2	>
169 100 100 98 54 34 3.7 0.3 188 100 100 98 54 26 1.2 0.2 189 100 100 96 45 22 1.4 0.2 190 100 98 51 28 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 100 50 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 96 40 0.8 0.15 0.2	11-00	•	100	100	66	52		3.2	0.2	0.2	>
188 100 100 98 54 26 1.2 0.2 189 100 100 96 45 22 1.4 0.2 190 100 100 98 51 28 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 98 51 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 99 500 0.8 0.15 0.0	12-00	•	100	100	86	54		3.7	0.3	0.3	>
189 100 100 96 45 22 1.4 0.2 190 100 100 98 51 28 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 100 50 27 2.5 0.4 100 100 98 51 27 2.3 0.3 100 100 98 51 27 2.3 0.3 100 100 95 40 0.8 0.15 0.0	1-De	•	100	100	86	54		1.2	0.2	0.2	>
190 100 100 98 51 28 1.4 0.2 191 100 100 98 52 23 0.9 0.2 192 100 100 100 50 27 2.5 0.4 192 100 100 98 51 27 2.3 0.3 0 0 1.48 6.28 5.01 1.39 0.15 0 100 100 95 40 0.8 0.2	2-De	`	100	100	96	45		1.4	0.2	0.2	>
192 100 100 98 52 23 0.9 0.2 192 100 100 100 50 27 2.5 0.4 192 100 100 98 51 27 2.3 0.3 0 0 1.48 6.28 5.01 1.39 0.15 (100 100 95 40 20 0.8 0.2	3-De	•	100	100	86	51		1.4	0.2	0.1	>
192 100 100 100 50 27 2.5 0.4	4-De	•	100	100	86	52		0.9	0.2	0.2	>
→ 100 100 98 51 27 2.3 0.3 0 0 1.48 6.28 5.01 1.39 0.15 (100 100 95 40 20 0.8 0.2	6-De	,	100	100	100	20		2.5	0.4	0.3	>
100 100 98 51 27 2.3 0.3 0 0 1.48 6.28 5.01 1.39 0.15 (100 100 95 40 20 0.8 0.2	sr here	_		0	Č	ì	1	d	C	Ċ	
0 0 1.48 6.28 5.01 1.39 0.15 0 100 100 95 40 20 0.8 0.2	erage.		1 00	100	<u>ဆ</u> တ	21		2.3	0.3	0.3	1
.00 100 95 40 20 0.8 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	d. Devi	ation	0 0	0 9	1.48	6.28	ſΩ	1.39	0.15	0.15	
	nımum		001	3	င္သာ မ	40		Ö.Ö	0.7		

Coarse Aggregate Production Gradations

Material Source	Alden	Concrete S	Stone	2004	Certified	Aggrega	te			
Producer	Martin M					.			#C 5 =	
		1 1/2"	1"	3/4"	1/2"	3/8"	#4	#8	#200	0"
Date	Lab#	37.5	25	19	12.5	9.5 mm	4.75 mm	2.36 mm		Complies
Limits			100		60		10.0	5.0	1.5	
		100	95		25		0.0	0.0	0.0	
25-Mar	6R	100	100	74	29	13	2.0	0.8	0.8	Υ
25-Mar		100	99	73	32	15	2.0	1.0	0.8	Υ
25-Mar		100	100	75	34	18	2.7	1.0	0.8	Υ
8-Apr		100	98	76	34	16	2.0	0.7	0.7	
26-Apr		100	99	73	32	14		0.4	0.6	Y
27-Apr		100	99	70	30	14		0.4	0.3	Υ
20-May		100	99	78	30	18		0.4	0.3	Ý
25-May		100	99	79	37	17		0.3	0.3	Y
26-May		100	98	76	30	12		0.4	0.4	Ý
20-May 7-Jun		100	99	78	44	23		0.4	0.4	
7-Jun 18-Jun		100	98	76 75		23 19		0.4	0.2	
		100	96 98	79		. 22		0.2	0.2	Ϋ́
9-Jun						22		0.4	0.3	
11-Jun		100	98	79					0.2	Ϋ́
14-Jun		100	99	81	37	18		0.3		Ϋ́Υ
15-Jun		100	99	80	34	15		0.3	0.3	
29-Jun		100	99	81	30	14		0.4	0.4	
30-Jun		100	99	82		12		0.3	0.3	Y
9-Jul		100	99	81	31	12		0.3	0.3	
12-Jul		100	100	73	42	20		0.4	0.6	
13-Jul		100	98	81	35	16		0.3	0.3	
14-Jul		100	99	79		15		0.2	0.2	
31-Ju		100	99	77		18		0.4	0.4	
2-Aug		100	99	81	29	15		0.3	0.3	
10-Aug		100	100	87		15		0.3	0.3	
11-Aug	133	100	99	81	33	17		0.3	0.3	
17-Aug	134	100	99	76	26	12	0.9	0.4	0.3	
18-Aug	135	100	97	76	32	17		0.3	0.3	
31-Aug	145	100	100	83	44	25	3.8	0.5	0.3	
1-Sep	146	100	100	81	42	22	3.2	0.3	0.3	
2-Sep	147	100	100	84	54	37	5.7	0.7	0.6	
3-Sep	148	100	98	68	28	15	1.3	0.6	0.2	Υ
10-Sep		100	100	83	43	26	4.6	0.7	0.4	
13-Sep		100	98	78		16	1.7	0.3	0.3	
14-Sep		100	98	72	31	15	1.5	0.4	0.3	
16-Sep		100	99	72		18	1.5	0.3	0.3	
27-Sep		100	100	81		16		0.3	0.2	Υ
28-Sep		100	99	78		18	2.1	0.4	0.3	Υ
18-Oc		100	100	82		30		1.1	0.4	
19-Oc		100	100	77		15		0.4	0.3	Υ
20-Oc		100	99	80		14		0.3	0.3	
21-Oc		100	99	76		14		0.3	0.3	
28-Oc		100	100	75		15		0.3	0.3	
29-Oc		100	100	77		17		0.4	0.4	
1-Nov		100	99	72		16		0.3	0.2	
2-Nov		100	100	72		16		0.3	0.4	
7-Dec		100	99	80		18		0.3	0.2	
8-Dec		100	99	78		16		0.3		
10-Dec		100	99	82		21		0.2		
Crsr here		100	99	02	71	۱ ک	1.1	0.0	0.0	
Average		100	99	78	35	17	1.9	0.4	0.4	<u> </u>
Standard	Deviation	0.00	0.75	3.95	5.98	4.69	1.12	0.20	0.16	

Coarse Aggregate Production Gradations

																													,
				ies																							!		
	40			Complies		1	` >	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	I I I I I I I I	\bigvee	
7	14013		#200	75 µm	1.5	0.0	0.4	0.2	0.3	0.2	0.4	0.2	0.2	0.3	0.3	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.5		0.4	0.3		0.3	
	Carlson IM-35-6(94)14013-40		8#	2.36 mm	5.0	0.0	0.3	0.3	0.4	0.3	0.4	0.3	0.3	0.4	0.4	0.5	0.5	0.3	0.2	0.3	0.3	0.3	0.5	0.5	9.0	0.5		0.4	
			#4	4.75 mm	7.0	0.0	1.6	1.7	1.9	1.8	2.1	0.8	7.	1.2	1.3	2.0	2.4	2.4	1.4	2.0	1.7	1.6	1.9	1.9	2.8	2.0	1	1.8	
	Certified Aggregate		3/8"	9.5 mm 4	21	-	14	7	12	13	16	_	7	7	14	12	13	14	13	12	=======================================	7	15	16	18	15		13	
	Sertified		1/2"	12.5	33	23	. 26	23	24	25	28	24	23	23	25	23	23	25	26	27	24	23	29	28	32	29	-	26	
	2003		3/4"	19	65	52	63	59	9	59	61	99	29	52	26	56	90	58	09	09	59	56	61	62	65	59		29	
	Stone		=	25	88	78	83	82	79	81	81	78	82	81	78	78	82	81	83	81	78	79	78	79	85	79		80	
	ial Conc.	etta	1 1/2"	37.5		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		▼ 100.0	
	1 1/2" Special Conc. Stone Alden	Martin Marietta		Lab#			121	122	123	124	125	126	127	128	181	182	183	184	185	186	187	188	207	208	209	210			,
	Material Source /	ē		Date	'n			0-Jun	9-Jun	12-Jun	24-Jun	25-Jun	26-Jun	28-Jun	29-Jun	30-Jun	1-Jul	2-Jul	4-Aug	5-Aug	6-Aug	7-Aug	15-Sep	16-Sep	17-Sep	18-Sep	Insert Here	Average	

Intermediate Aggregate Production Gradations

			_		,	.c ·	
		#200	75 µm			0.5	0.
	:	#100	150 µm				
		#20	600 µm 300 µm 150 µm 75 µm				
		#30	600 µm				
		#16	12.5 9.5 mm 4.75 mm 2.36 mm 1.18 mm				
		8 #	2.36 mm			1.3	1.7
		#4	1.75 mm 2			17.2	27
		3/8"	9.5 mm 4	,		86	86
Monitor		1/2"	12.5			100	100
	747007 747007	3/4"	19				
Material 3/8" Washed Chips 2006	Producer Martin Marietta		Lab#			20	40
Material 3	Producer N		Date L	LIMITS		16-May	11-Sep

Insert

Average	IO/VIO#	100	86	22	1.5	#DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	DIV/0i	0.5
Standard Deviation	i0//IO#	0.00	00.0	4.90		#DIV/0i	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	DIV/0i	0.00
Maximum	0	100	98	27	1.7	0	0 0	0	0.5
Minimum	0	100	86	17.2	1.3	0.0	0 0	0	0.5

ntermediate Aggregate Production Gradations

M-35-6(94)140--13-40 Carlson

Certified Aggregate

1/2"Conc. Chip: 2003

Material Source

Alden

75 µm Complies #200 0.4 0.5 0.5 0.5 0.4 #100 0.6 0.5 0.5 0.6 0.5 0.6 0.5 9.0 0.6 0.6 1.0 #20 0.6 #30 #16 4.1.2 0.1.2 0.1.5 0 1.0 2.1 2.36 mm **8**# 3/8" #4 9.5 mm 4.75 mm 10 88 100 9 1/2" 100 3/4" 145 146 148 149 164 165 166 167 168 169 170 45 130 132 132 133 135 135 136 137 142 143 44 147 Producer Martin Marietta Crsr here to insert Lab# 14-Apr 17-Apr 21-Apr 23-Apr 25-Apr 25-Apr 5-Jun 6-Jun 7-Jun 31-Jul 16-Sep 10-Jun 11-Jun 24-Jun 26-Jun 28-Jun 29-Jun 30-Jun 1-Jul 2-Jul 3-Jul 3-Jul 9-Jul 9-Jul 10-Jul 11-Jul 21-Jul 22-Jul 23-Jul 28-Jul 9-Jun Date Limits

0.4

0.5

0.7

9.0

0.

1.5

4

8

66

100

Average

Fine Aggregate Production Gradations

Material	Concrete Sand	2005								
Source	Welden Pit									
Producer	Welden Aggregate									
		3/8"	#	# #	#16	#30	#20	#100	#200	
Date	Lab#	9.5 mm	4.75 mm 2.36 mm 1.18 mm	2.36 mm	1.18 mm	600 µm	300 µm	150 µm		Complies
Limits			100	100		20			7.5	
		100	06	70		10			0	
	6-May WA-1-05	100	96	82	64	41	15	1.8	0.7	>
	18-Aug WA-2-05	100	96	79	61	39	13	1.8	0.5	>
	26-Aug WA-3-05	100	96	79	29	37	12	2.0	0.9	^
	2-Sep WA-4-05	100	96	8	62	39	14	2.2	0.9	>
	9-Sep WA-5-05	100	96	80	9	36	12	1.0	0.3	>
	16-Sep WA-6-05	100	96	80	61	36	12	1.2	9.4	>
	23-Sep WA-7-05	100	97	83	65	42	14	1.6	9.0	>
	23-Sep WA-8-05	100	97	79	54	27	6.5	1.6	0.9	>
	12-Oct WA-9-05	100	96	8	63	41	13	1.7	0.7	>
	31-Oct WA-10-05	100	96	8	63	41	13	1.4	0.5	^
-	15-Nov WA-11-05	100	96	80	61	37	12	1.5	0.8	۶
Crsr Here to insert	to insert									

Average	100	96	80	61			1.6	> 2.0	
Standard Deviation	0	0.39	1.23	2.82			0.33	0.20	
Maximum	100	26	83	65			2.2	6.0	
Minimum	100	96	79	54			~	0.3	
Range	0	~	4	7			1.2	9.0	
Middle of Range	100	26	8	90	35	7	1.6	9.0	
% Range of Average	0.0	1.0	5.0	18.0			74.2	91.7	
Range to Std. Dev.		2.6	3.3	3.9			3.7	3.0	

Fine Aggregate Production Gradations

Material	Concret	Concrete Sand		2004	2004 Certified			7		
, –	Janssen	<u> </u>		-))	5					
_	√artin N	Martin Marietta 3/8"	 	#8	#16	#30	#20	#100	#200	
	Lab#	Ξ	4.75 mm	2.36 m	1.18 mm	900 mm	300 µm	150 µm	75 µm	Complies
			100		89	46	1/	3.G	7.5	
		100	92	78	09	38	7	0	0	
25-Mar J1	1	100	86	85	62	34	10.0	1.3	0.5	>
25-Mar J2	12	100	98	88	69	44	7	1.6	0.9	>
5-Aug	~	100		86	99	41	12	7:	9.0	>
5-Aug	2			88	99	45	14	2.1	0.8	>
Crsr Here to insert	sert		;						 	
Average -		100	98	87	99	41	11.8	1.5	0.7	
Standard Deviation	ation	0	0.00	1.50	3.10	4.97	1.71	0.45	0.18	
Maximum		100		88	69	45	14	2.1	0.0	
Minimum		100	98	85	62	34	10	7	0.5	

Fine Aggregate Production Gradations

Material	Concrete Sa	and	Certified A	Aggregate)				
Source	Heronimus		2004						
Producer	Carlson Ma	tls.							
		3/8"	#4	#8	#16	#30	#50	#100	#200
Date	Lab#	9.5 mm	4.75 mm	2.36 mm	1.18 mm	600 µm	300 µm	150 µm	75 µm
			100		80	50			1
Limits		100	90		10	10			0
12-May	RC-04-01	100	95	84	68	42	13.0	1.6	0.6
12-May	RC-04-02	100	96	89	74	44	10	1.2	0.6
12-May	RC-04-03	. 100	97	89	74	45	12	1.6	0.8
12-May	RC-04-04	100	97	89	74	44	11	0.9	0.5
12-May	RC-04-05	100	95	85	69	43	9.6	1.0	0.6
Crsr here to i	nsert								
Average		1 00	96	87	72	44	11.1	1.3	0.6 €
Standard De	viation	0	0.89	2.23	2.71	1.02	1.26	0.29	0.10
Maximum		100	97	89	74	45	13	1.6	0.8
Minimum		100	95	84	68	42	9.6	0.9	0.5